Boolean Grammars

Rémi VARLOOT

Informatique 2010

Rémi VARLOOT (Informatique 2010)

Definition

A Boolean grammar is a quadruple $G = (\Sigma, N, P, S)$ in which:

- Σ is a finite nonempty set of terminal symbols;
- N is a finite nonempty set of nonterminal symbols, with N ∩ Σ = ∅;

• P is a finite set of rules of the form

$$\mathsf{A} \to \alpha_1 \& \dots \& \alpha_k \& \neg \alpha_{k+1} \& \dots \& \neg \alpha_{k+l}$$

where k + l > 0 and $\alpha_i \in (\Sigma \cup N)^*$ for all *i* in $\{1, \ldots, k + l\}$;

• $S \in N$ is the start symbol of the grammar.

Why are these grammars interesting?

Example

We consider the grammar

$$G = (\{a\}, \{S, X, X', X'', X''', Y'', Y'', Y''', Z, T\}, P, S)$$

where P is the following set of rules:

$S ightarrow X\& \neg aX$	X ightarrow a $X'X'$	Y ightarrow aa $Y'Y'$	Z o Y
$S ightarrow \neg X\&aX$	X' ightarrow eg X'' X''	Y' ightarrow Y''Y''&T	Z ightarrow a Y
S ightarrow Z& eg a Z	X'' ightarrow eg X''' X'''	$Y'' ightarrow \neg Y''' Y''' \& T$	T ightarrow aa T
$S ightarrow \neg Z\&aZ$	X''' ightarrow eg X	$Y''' ightarrow \neg Y \& T$	$T ightarrow \epsilon$

Example

We consider the grammar

$$G = (\{a\}, \{S, X, X', X'', X''', Y'', Y'', Y''', Z, T\}, P, S)$$

where P is the following set of rules:

S ightarrow X& eg a X	X ightarrow a $X'X'$	Y ightarrow aa $Y'Y'$	$Z \rightarrow Y$
$S ightarrow \neg X\&aX$	X' ightarrow eg X'' X''	Y' ightarrow Y'' Y'' & T	Z ightarrow a Y
S ightarrow Z& eg a Z	X'' ightarrow eg X''' X'''	$Y'' ightarrow \neg Y''' Y''' \& T$	T ightarrow aa T
$S ightarrow \neg Z\&aZ$	X''' ightarrow eg X	$Y''' ightarrow \neg Y\&T$	$T ightarrow \epsilon$

The language described by this grammar is the language:

$$L(G) = \left\{a^{2^n} \mid n \ge 0\right\}$$

All too easy...

What to think of the following rule?

$$S \rightarrow \neg S$$

What to think of the following rule?

$$S \rightarrow \neg S$$

But also...

Some grammars can accept multiple languages, and yet not recognize the union of these languages.

What to think of the following rule?

$$S \rightarrow \neg S$$

But also...

Some grammars can accept multiple languages, and yet not recognize the union of these languages.

In other words

Unlike usual context-free grammars, Boolean grammars ensure neither existence nor uniqueness of a solution.

Systems of language equations

Example

$$S = X \& \neg aX \lor \neg X \& aX \lor Z \& \neg aZ \lor \neg Z \& aZ$$
$$X = a \left(\neg \left(\neg (\neg X)^2 \right)^2 \right)^2$$
$$Y = aa \left(\neg \left(\neg (\neg Y \& T)^2 \& T \right)^2 \& T \right)^2$$
$$Z = Y \lor aY$$
$$T = aaT \lor \epsilon$$

Systems of language equations

Example

$$S = X \& \neg aX \lor \neg X \& aX \lor Z \& \neg aZ \lor \neg Z \& aZ$$

$$X = a \left(\neg \left(\neg (\neg X)^2 \right)^2 \right)^2$$

$$Y = aa \left(\neg \left(\neg (\neg Y \& T)^2 \& T \right)^2 \& T \right)^2$$

$$Z = Y \lor aY$$

$$T = aaT \lor \epsilon$$

Recognized language

Let (s, x, y, z, t) be the *unique* solution to this system. The language recognized by the grammar is:

$$L(G) = s = \left\{a^{2^n} \mid n \ge 0\right\}$$

• Finding a means of characterizing systems with a unique solution;

- Finding a means of characterizing systems with a unique solution;
- Defining a "most convenient" solution for systems with multiple solutions.

- Finding a means of characterizing systems with a unique solution;
- Defining a "most convenient" solution for systems with multiple solutions.

Naturally reachable solutions

We introduce *naturally reachable solutions*, unique peculiar solutions to some systems with multiple solutions.

Rémi VARLOOT (Informatique 2010)

Definition

Let $X = \phi(X)$ be a system. For a finite language M closed under substring, a string u not in M such that all proper substrings of u are in Mand a pair (P, Q) of language vectors, we write $P \xrightarrow{\phi}{M, u} Q$ if their exists an integer k such that:

$$Q_i = P_i$$
 $(i \neq k)$ $Q_k = \phi_k(P) \cap (M \cup \{u\})$

Definition

Let $X = \phi(X)$ be a system. For a finite language M closed under substring, a string u not in M such that all proper substrings of u are in Mand a pair (P, Q) of language vectors, we write $P \xrightarrow{\phi}_{M,u} Q$ if their exists an integer k such that:

$$Q_i = P_i$$
 $(i \neq k)$ $Q_k = \phi_k (P) \cap (M \cup \{u\})$

 $L = (L_1, \ldots, L_n)$ is a naturally reachable solution of the system $X = \phi(X)$ if for each finite language M closed under substring and each string u not in M such that all proper substrings of u are in M, we have

$$(L_1 \cap M, \ldots, L_n \cap M) \xrightarrow{\phi} \ldots \xrightarrow{\phi} (L_1 \cap (M \cup \{u\}), \ldots, L_n \cap (M \cup \{u\}))$$

Conclusion

If a system has a naturally reachable solution L, then:

If a system has a naturally reachable solution L, then:

• *L* is unique;

If a system has a naturally reachable solution L, then:

- *L* is unique;
- L is a solution of the system.

If a system has a naturally reachable solution L, then:

- L is unique;
- L is a solution of the system.

At the end of the day...

The semantics of naturally reachable solutions for Boolean grammars are a powerful means of describing certain languages, including some languages out of the scope of usual context-free grammars.