Boolean Grammars

Rémi Varloot

Informatique 2010

Definition of boolean grammars

Definition of boolean grammars

Definition

A Boolean grammar is a quadruple $G=(\Sigma, N, P, S)$ in which:

- Σ is a finite nonempty set of terminal symbols;
- N is a finite nonempty set of nonterminal symbols, with $N \cap \Sigma=\varnothing$;
- P is a finite set of rules of the form

$$
A \rightarrow \alpha_{1} \& \ldots \& \alpha_{k} \& \neg \alpha_{k+1} \& \ldots \& \neg \alpha_{k+1}
$$

where $k+I>0$ and $\alpha_{i} \in(\Sigma \cup N)^{*}$ for all i in $\{1, \ldots, k+I\}$;

- $S \in N$ is the start symbol of the grammar.

Why are these grammars interesting?

Why are these grammars interesting?

Example

We consider the grammar

$$
G=\left(\{a\},\left\{S, X, X^{\prime}, X^{\prime \prime}, X^{\prime \prime \prime}, Y^{\prime}, Y^{\prime \prime}, Y^{\prime \prime \prime}, Z, T\right\}, P, S\right)
$$

where P is the following set of rules:

$$
\begin{array}{llll}
S \rightarrow X \& \neg a X & X \rightarrow a X^{\prime} X^{\prime} & Y \rightarrow a a Y^{\prime} Y^{\prime} & Z \rightarrow Y \\
S \rightarrow \neg X \& a X & X^{\prime} \rightarrow \neg X^{\prime \prime} X^{\prime \prime} & Y^{\prime} \rightarrow Y^{\prime \prime} Y^{\prime \prime} \& T & Z \rightarrow a Y \\
S \rightarrow Z \& \neg a Z & X^{\prime \prime} \rightarrow \neg X^{\prime \prime \prime} X^{\prime \prime \prime} & Y^{\prime \prime} \rightarrow \neg Y^{\prime \prime \prime} Y^{\prime \prime \prime} \& T & T \rightarrow a a T \\
S \rightarrow \neg Z \& a Z & X^{\prime \prime \prime} \rightarrow \neg X & Y^{\prime \prime \prime} \rightarrow \neg Y \& T & T \rightarrow \epsilon
\end{array}
$$

Why are these grammars interesting?

Example

We consider the grammar

$$
G=\left(\{a\},\left\{S, X, X^{\prime}, X^{\prime \prime}, X^{\prime \prime \prime}, Y^{\prime}, Y^{\prime \prime}, Y^{\prime \prime \prime}, Z, T\right\}, P, S\right)
$$

where P is the following set of rules:

$$
\begin{array}{llll}
S \rightarrow X \& \neg a X & X \rightarrow a X^{\prime} X^{\prime} & Y \rightarrow a a Y^{\prime} Y^{\prime} & Z \rightarrow Y \\
S \rightarrow \neg X \& a X & X^{\prime} \rightarrow \neg X^{\prime \prime} X^{\prime \prime} & Y^{\prime} \rightarrow Y^{\prime \prime} Y^{\prime \prime} \& T & Z \rightarrow a Y \\
S \rightarrow Z \& \neg a Z & X^{\prime \prime} \rightarrow \neg X^{\prime \prime \prime} X^{\prime \prime \prime} & Y^{\prime \prime} \rightarrow \neg Y^{\prime \prime \prime} Y^{\prime \prime \prime} \& T & T \rightarrow a a T \\
S \rightarrow \neg Z \& a Z & X^{\prime \prime \prime} \rightarrow \neg X & Y^{\prime \prime \prime} \rightarrow \neg Y \& T & T \rightarrow \epsilon
\end{array}
$$

The language described by this grammar is the language:

$$
L(G)=\left\{a^{2^{n}} \mid n \geq 0\right\}
$$

All too easy. . .

All too easy. . .

What to think of the following rule?

$$
S \rightarrow \neg S
$$

All too easy. . .

What to think of the following rule?

$$
S \rightarrow \neg S
$$

But also. . .

Some grammars can accept multiple languages, and yet not recognize the union of these languages.

All too easy. . .

What to think of the following rule?

$$
S \rightarrow \neg S
$$

But also...

Some grammars can accept multiple languages, and yet not recognize the union of these languages.

In other words

Unlike usual context-free grammars, Boolean grammars ensure neither existence nor uniqueness of a solution.

Systems of language equations

Systems of language equations

Example

$$
\left\{\begin{aligned}
S & =X \& \neg a X \vee \neg X \& a X \vee Z \& \neg a Z \vee \neg Z \& a Z \\
X & =a\left(\neg\left(\neg(\neg X)^{2}\right)^{2}\right)^{2} \\
Y & =a a\left(\neg\left(\neg(\neg Y \& T)^{2} \& T\right)^{2} \& T\right)^{2} \\
Z & =Y \vee a Y \\
T & =a a T \vee \epsilon
\end{aligned}\right.
$$

Systems of language equations

Example

$$
\left\{\begin{aligned}
S & =X \& \neg a X \vee \neg X \& a X \vee Z \& \neg a Z \vee \neg Z \& a Z \\
X & =a\left(\neg\left(\neg(\neg X)^{2}\right)^{2}\right)^{2} \\
Y & =a a\left(\neg\left(\neg(\neg Y \& T)^{2} \& T\right)^{2} \& T\right)^{2} \\
Z & =Y \vee a Y \\
T & =a a T \vee \epsilon
\end{aligned}\right.
$$

Recognized language

Let (s, x, y, z, t) be the unique solution to this system. The language recognized by the grammar is:

$$
L(G)=s=\left\{a^{2^{n}} \mid n \geq 0\right\}
$$

Characterizing convenient systems

Characterizing convenient systems

Two possibilities

Characterizing convenient systems

Two possibilities

- Finding a means of characterizing systems with a unique solution;

Characterizing convenient systems

Two possibilities

- Finding a means of characterizing systems with a unique solution;
- Defining a "most convenient" solution for systems with multiple solutions.

Characterizing convenient systems

Two possibilities

- Finding a means of characterizing systems with a unique solution;
- Defining a "most convenient" solution for systems with multiple solutions.

Naturally reachable solutions

We introduce naturally reachable solutions, unique peculiar solutions to some systems with multiple solutions.

Naturally reachable solutions

Naturally reachable solutions

Definition

Let $X=\phi(X)$ be a system. For a finite language M closed under substring, a string u not in M such that all proper substrings of u are in M and a pair (P, Q) of language vectors, we write $P \xrightarrow[M, u]{\phi} Q$ if their exists an integer k such that:

$$
Q_{i}=P_{i} \quad(i \neq k) \quad Q_{k}=\phi_{k}(P) \cap(M \cup\{u\})
$$

Naturally reachable solutions

Definition

Let $X=\phi(X)$ be a system. For a finite language M closed under substring, a string u not in M such that all proper substrings of u are in M and a pair (P, Q) of language vectors, we write $P \xrightarrow[M, u]{\phi} Q$ if their exists an integer k such that:

$$
Q_{i}=P_{i} \quad(i \neq k) \quad Q_{k}=\phi_{k}(P) \cap(M \cup\{u\})
$$

$L=\left(L_{1}, \ldots, L_{n}\right)$ is a naturally reachable solution of the system $X=\phi(X)$ if for each finite language M closed under substring and each string u not in M such that all proper substrings of u are in M, we have

$$
\left(L_{1} \cap M, \ldots, L_{n} \cap M\right) \underset{M, u}{\phi} \ldots \xrightarrow[M, u]{\phi}\left(L_{1} \cap(M \cup\{u\}), \ldots, L_{n} \cap(M \cup\{u\})\right)
$$

Conclusion

Conclusion

Theorem
 If a system has a naturally reachable solution L, then:

Conclusion

Theorem

If a system has a naturally reachable solution L, then:

- L is unique;

Conclusion

Theorem

If a system has a naturally reachable solution L, then:

- L is unique;
- L is a solution of the system.

Conclusion

Theorem

If a system has a naturally reachable solution L, then:

- L is unique;
- L is a solution of the system.

At the end of the day...

The semantics of naturally reachable solutions for Boolean grammars are a powerful means of describing certain languages, including some languages out of the scope of usual context-free grammars.

