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Definition of boolean grammars

Definition

A Boolean grammar is a quadruple G = (Σ,N,P,S) in which:

Σ is a finite nonempty set of terminal symbols;

N is a finite nonempty set of nonterminal symbols, with N ∩ Σ = ∅;

P is a finite set of rules of the form

A→ α1& . . .&αk&¬αk+1& . . .&¬αk+l

where k + l > 0 and αi ∈ (Σ ∪ N)∗ for all i in {1, . . . , k + l};
S ∈ N is the start symbol of the grammar.
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Why are these grammars interesting?

Example

We consider the grammar

G =
(
{a} ,

{
S ,X ,X ′,X ′′,X ′′′,Y ′,Y ′′,Y ′′′,Z ,T

}
,P,S

)
where P is the following set of rules:

S → X&¬aX X → aX ′X ′ Y → aaY ′Y ′ Z → Y
S → ¬X&aX X ′ → ¬X ′′X ′′ Y ′ → Y ′′Y ′′&T Z → aY
S → Z&¬aZ X ′′ → ¬X ′′′X ′′′ Y ′′ → ¬Y ′′′Y ′′′&T T → aaT
S → ¬Z&aZ X ′′′ → ¬X Y ′′′ → ¬Y&T T → ε

The language described by this grammar is the language:

L (G ) =
{
a2n | n ≥ 0

}
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All too easy. . .

What to think of the following rule?

S → ¬S

But also. . .

Some grammars can accept multiple languages, and yet not recognize the
union of these languages.

In other words

Unlike usual context-free grammars, Boolean grammars ensure neither
existence nor uniqueness of a solution.
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Systems of language equations

Example 

S = X&¬aX ∨ ¬X&aX ∨ Z&¬aZ ∨ ¬Z&aZ

X = a

(
¬
(
¬ (¬X )2

)2
)2

Y = aa

(
¬
(
¬ (¬Y&T )2 &T

)2
&T

)2

Z = Y ∨ aY
T = aaT ∨ ε

Recognized language

Let (s, x , y , z , t) be the unique solution to this system. The language
recognized by the grammar is:

L (G ) = s =
{
a2n | n ≥ 0

}
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Characterizing convenient systems

Two possibilities

Finding a means of characterizing systems with a unique solution;

Defining a “most convenient” solution for systems with multiple
solutions.

Naturally reachable solutions

We introduce naturally reachable solutions, unique peculiar solutions to
some systems with multiple solutions.
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Naturally reachable solutions

Definition

Let X = φ (X ) be a system. For a finite language M closed under
substring, a string u not in M such that all proper substrings of u are in M

and a pair (P,Q) of language vectors, we write P
φ−−→

M,u
Q if their exists an

integer k such that:

Qi = Pi (i 6= k) Qk = φk (P) ∩ (M ∪ {u})

L = (L1, . . . , Ln) is a naturally reachable solution of the system X = φ (X )
if for each finite language M closed under substring and each string u not
in M such that all proper substrings of u are in M, we have

(L1 ∩M, . . . , Ln ∩M)
φ−−→

M,u
. . .

φ−−→
M,u

(L1 ∩ (M ∪ {u}) , . . . , Ln ∩ (M ∪ {u}))
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Conclusion

Theorem

If a system has a naturally reachable solution L, then:

L is unique;

L is a solution of the system.

At the end of the day. . .

The semantics of naturally reachable solutions for Boolean grammars are a
powerful means of describing certain languages, including some languages
out of the scope of usual context-free grammars.
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Rémi Varloot (Informatique 2010) Boolean Grammars 8 / 8


