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Rémi Varloot

25 December 2010

Boolean grammars are a generalization of context-free grammars in which
one can include new logical operators when defining rules. Standard context-
free grammars already allow us to use the union operator, where multiple
rules can begin with the same nonterminal symbol. Boolean grammars ex-
tend this concept by introducing the set intersection and negation operators
in their rules. We shall see that this generalization comes at a cost, however,
as not all such grammars yield a unique solution.

In order to properly introduce Boolean grammars, we first define the
notion of systems of equations for languages. Boolean grammars are then
properly introduced. The last part of this paper takes a look at a means
of properly defining a unique language attached to each grammar: naturally
reachable solutions.
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1 Language equations

This section is aimed at properly defining systems of equations, which are
very useful when dealing with Boolean grammars.

First, we introduce language formulae:

Definition 1. Language formulae over an alphabet Σ in variables X =
(X1, . . . Xn) are defined inductively as follows:

• the empty word ε is a formula;

• a symbol from Σ is a formula;

• a variable from X is a formula;

• if φ and ψ are formulae, then:

– the concatenation φ · ψ is a formula,

– the union φ ∨ ψ is a formula,

– the intersection φ & ψ is a formula,

– the negation ¬φ is a formula.

The default precedence of operators is, from highest precedence to lowest:
the concatenation (·), the negation (¬), the intersection ( & ) and the union
(∨).

We can now go on to define the value of a formula:

Definition 2. The value of a formula φ over a vector of languages L =
(L1, . . . , Ln), denoted as φ (L), is defined inductively as follows:

• ε (L) = {ε};

• ∀a ∈ Σ, a (L) = {a};

• ∀Xi ∈ X,Xi (L) = {Li};

• ∀ (φ, ψ):

– φ · ψ (L) = φ (L) · ψ (L),

– φ ∨ ψ (L) = φ (L) ∪ ψ (L),

– φ & ψ (L) = φ (L) ∩ ψ (L),

– ¬φ (L) = Σ∗ \ ψ (L).1

1Σ∗ = {w | ∃n > 0,∃ (u1, . . . , un) ∈ Σn, w = u1 · . . . · un} ∪ {ε}
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We finish by introducing resolved systems of equations :

Definition 3. A resolved systems of equations over an alphabet Σ in vari-
ables X is a system

X = φ (X) =


X1 = φ1 (X)

...
Xn = φn (X)

where φ = (φ1, . . . , φn) is a vector of formulae over Σ in variables X.
Any vector of languages L is said to be a solution of this system if L =

φ (L).

This definition established, we now illustrate how language formulae can
be used to define languages:

Example 1. Consider the following system of equations over the alphabet
{a, b} in variables (X1, X2, X3, X4):

X1 = ¬X2 ·X3 & ¬X3 ·X2 & X4

X2 = (a ∨ b) ·X2 · (a ∨ b) ∨ a
X3 = (a ∨ b) ·X3 · (a ∨ b) ∨ b
X4 = (a · a ∨ a · b ∨ b · a ∨ b · b) ·X4 ∨ ε

This system has a unique solution L, and we have:

L1 = {w · w | w ∈ {a, b}∗} .

Though the resolution of this system shall not be demonstrated here, it
is important to underline that there is no known denotation of this language
using normal context-free languages or conjunctive languages.2

Though defining languages by means of such systems — as the first com-
ponent of the solution of a system — would be most satisfactory, this method
is not applicable as not all systems yield a unique solution, and as it has fur-
thermore been proven that the class of these languages is the same as that
of recursive sets, which is simply too big. We introduce Boolean grammars,
but keep in mind that a proper characterization of a unique solution to such
systems is necessary for these grammars to be correctly defined.

2Conjunctive languages are a restricted form of Boolean grammars, where only the
intersection operator — not the negation — has been added to standard context-free
grammars.
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2 Boolean grammars

We are now ready to define Boolean grammars.

Definition 4. A Boolean grammar is a quadruple G = (Σ, N, P, S) in which:

• Σ is a finite nonempty set of terminal symbols;

• N is a finite nonempty set of nonterminal symbols, with N ∩ Σ = ∅;

• P is a finite set of rules of the form

A→ α1 & . . . & αk & ¬αk+1 & . . . & ¬αk+l
where k + l > 0 and αi ∈ (Σ ∪N)∗ for all i in {1, . . . , k + l};

• S ∈ N is the start symbol of the grammar.

The grammar is then interpreted as the following system:
S =

∨
φ∈{ψ|S→ψ∈P} φ

A1 =
∨
φ∈{ψ|A1→ψ∈P} φ

...
An =

∨
φ∈{ψ|An→ψ∈P} φ

for N = {S,A1, . . . An}

A language L is generated by the grammar if L = S (L′) where L′ is a
solution of the system.

We give an example of a Boolean grammar.

Example 2. Let us consider the same language as before:

L = {w · w | w ∈ {a, b}∗} .

A corresponding grammar would be

G = ({a, b} , {S,A,B,C,X} , P, S)

where P is the following set of rules:

S → ¬A ·B & ¬B · A & C C → X ·X · C C → ε

A→ X · A ·X A→ a X → a

B → X ·B ·X B → b X → b

Furthermore, L is the unique language generated by this grammar.

Though Boolean grammars appear to be an adequate means of defining
languages, it is however important to remind that not all systems yield a
unique solution, and that this definition is therefore not yet satisfactory. We
now give a means of properly characterizing unique solutions.
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3 Characterization of systems with naturally

reachable solutions

There are different ways to introduce a semantic for a proper solution. The
one given here is that of naturally reachable solutions.

We begin by defining modulo equality and closure under substring for
languages:

Definition 5. Let L1 and L2 be two languages on Σ and M ⊆ Σ∗. L1 and L2

are equal modulo M if L1∩M = L2∩M . We denote this L1 = L2 (modM).

Definition 6. A language L is closed under substring if, for each word w
in L, every substring of w is in L.

We now have the appropriate tools for defining a naturally reachable
solution:

Definition 7. A vector of languages L = (L1, . . . , Ln) is called a naturally
reachable solution of a system X = φ (X) if:

• for every finite modulus M closed under substring,

• for every string u /∈M such that all of u’s proper substrings are in M ,

• for every sequence (σi)i∈N in {1, . . . , n}∗,3

the sequence
(
L(i)
)
i∈N defined by:

L(1) = (L1 ∩M, . . . , Ln ∩M)

∀i ∈ N, ∀j ∈ {1, . . . , n} L
(i+1)
j =

{
φj
(
L(i)
)
∩ (M ∪ {u}) if σi = j

L
(i)
j otherwise

converges to

(L1 ∩ (M ∪ {u}) , . . . , Ln ∩ (M ∪ {u}))

in a finite number of steps.

With this new definition, we have access to a new class of languages:
naturally reachable solutions of systems of equations.

Furthermore, we have he following theorem, which makes these languages
all the more interesting:

3N denotes the set of positive integers, that is to say {1, 2, . . .}.

5



Theorem 1. A naturally reachable solution is a solution, and no system can
have more than one such solution.

In order to properly prove this theorem, two intermediate results must
first be established:

Proposition 1. If two languages L′ and L′′ are not equal, then there exists
a finite language M closed under substring such that L′ 6= L′′ (modM).

Proof. L′ 6= L′′ means there there exists a substring w in L′∆L′′. We conclude
by noticing that L′ 6= L′′ (mod substrings (w)).

Lemma 1. If a vector of languages L is a solution of a given system X =
φ (X) modulo every finite language M closed under substring, then L is a
solution of the system.

Proof. Suppose L is not a solution of the system. The previous proposition
immediately yields the existence of a finite languageM closed under substring
such that L 6= φ (L) (modM).

Proof of the theorem. A naturally reachable solution being a solution modulo
every finite language closed under substring, the lemma tells us that it is a
solution.

Let us now suppose two such solutions L1 and L2 exist. We can prove
that they are equal modulo all finite languages M closed under substring
inductively on |M |.

Clearly, L1 = L2 (mod∅). Furthermore, supposing that L1 = L2 (modM),
we have that (

L
(i)
1

)
i∈N

and
(
L
(i)
2

)
i∈N

both converge towards the same sequence. In other words:

L1 = L2 (modM ∪ {u}) .

Hence the result, from which we can use the proposition to conclude that
L1 = L2.

We have proven that, for all system of equations, there is at most one
unique naturally reachable solution. Though we lack a characterization of
systems where such a solution exists, we can already offer the following def-
inition:

Definition 8. If the system corresponding to G has a naturally reachable
solution L′, then the language generated by a grammar G is the language
L (G) = S (L′).
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It is important to underline that this is a definition, and that it is not
unique. Other means of characterizing systems with unique solutions or
specific solutions for given systems exist, such as the semantics of the unique
solution in the strong sense, and these can yield other definitions. What
matters is defining which criterion will be used when introducing a Boolean
grammar.
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