
Randomized Complexity

QIN Teng

December 17, 2010

Abstract

In this report, the concept of randomized algorithms is firstly
motivated. Following these examples, we formulated and discussed
about the definition and properties of randomized Turing Machines
and complexity classes. Finally, we proposed some results about the
relationship between randomized complexity classes and other com-
plexity classes.

Contents

1 Motivations 2
1.1 Polynomial Identity Testing 2
1.2 Probabilistic Primality Testing 3

2 Randomized Complexity 6
2.1 Randomized Turing Machine 6
2.2 The Class BPP . 6
2.3 One-sided Error . 8

3 Complexity Classification 9
3.1 Among Randomized Complexity Classes 9
3.2 BPP ⊂ Σp

2 ∩ Πp
2 . 10

References 12

1

1 MOTIVATIONS

1 Motivations

Most programming languages provide a built-in (pseudo-)random number
generator for making random choices during the computation. Although the
existence of true randomness during computation is still being debated by
scientists and philosophers, these random tools does helped us a lot. In the
following of this paragraph we can see two examples about how randomness
can be used in algorithms.

1.1 Polynomial Identity Testing

First, we are going to consider a simple problem: given two polynomials over
Z, determine whether they are the same polynomial. Or we can describe the
problem as, given a polynomial, determine whether it is identical to zero.
Note that the polynomials might be given in implicit form, that mean, given
by result of complicated calculations between polynomials. That makes the
problem much harder since we can not directly compare between the co-
efficients and zero, and actually there has no known efficient deterministic
algorithm for that.[4] Nevertheless, when value of every variable in the poly-
nomial is given, it is not hard to evaluate it even in implicit form. Therefore
we can attack the problem using a very simple algorithm, that we randomly
choose several values of variables in the polynomial, evaluate the polynomial
and see the result is zero or not. However, if our randomly chosen values
coincidentally being the root of the polynomial, we could wrongly recognized
a non-zero polynomial as zero ones. We could pick more values to reduce
the odds of such mistakes, but since the number of roots of a multi-variable
polynomial might be infinite, there is no way to eliminate such situations.
Luckily, we have the following lemma:

Lemma 1 (Schwartz-Zippel’s Lemma). If a polynomial p(x1, · · · , xm) over
F = GF (q) is nonzero and has total degree at most d, then

Pr[p(a1, · · · , am) 6= 0] ≥ 1− d

q

where the probability is over all choice of a1, · · · , am ∈ F .

Proof. We proof the lemma by induction over m.If m = 1, the lemma is true
according to the Fundamental Theorem of Algebra. Suppose it is true for
the number of variables less or equals to m− 1. Then we can write p as

p(x1, · · · , xm) =
d∑
i=0

xi1pi(x2, · · · , xm)

2

1.2 Probabilistic Primality Testing 1 MOTIVATIONS

in which we can see that the degree of pi is at most d − i. Since p is not
identical to zero, at least one pi is nonzero. Therefore we pick i be the largest
index that pi is nonzero. Then by the inductive hypothesis we have

Pra2,··· ,am [pi(a2, · · · , am) 6= 0] ≥ 1− d− i
q

for all pi 6= 0. Since p(x1, a2, · · · , am) is nonzero univariate polynomial of
degree i, we know that it can become 0 for at most i values of x1. Hence

Pr[p(a1, · · · , am) 6= 0] ≥ (1− i

q
)(1− d− i

q
) ≥ 1− d

q

From the lemma we know that, the probability of our algorithm making
mistakes is bounded. Hence we have a polynomial time algorithm that, when
it says no, we know that the original polynomial is definitely non-zero, when
it says yes, there is a small chance that the original polynomial is actually
non-zero, and we can make the probability of error being arbitrarily small
while remaining polynomial running time. Thus we can say although the
algorithm is not perfect, but it is a good enough approach for the problem
compared with naive exponential algorithm, and such improvement is just
came from the usage of random numbers.

1.2 Probabilistic Primality Testing

Now we are going to show another randomized algorithm that is not such
trivial. The problem is also quite fundamental, that is, given a number
n(in the form of binary string), determine whether it is prime. The naive
Eratosthenes’ Algorithm checks all possible primes less than

√
n, thus takes

exponential time since the length of binary string of n is only log n. Recently
there are polynomial algorithm proposed[6], but we are still going to introduce
an efficient randomized algorithm that is also of polynomial time.

The algorithm mainly based on following theorem.

Theorem 2 (Fermat’s Little Theorem). If p is a prime number, and a ∈ Z+
p ,

then we have
ap−1 ≡ 1(mod p)

This theorem provided a method to “test” the prime number, we call it
the Fermat’s Test. Denote that p passes the Fermat’s Test under a means
ap−1 ≡ 1(mod p), and we say a number is a pseudo-prime number if it passes

3

1.2 Probabilistic Primality Testing 1 MOTIVATIONS

Fermat’s Test under all number that is smaller than and relatively prime to
it. From Theorem 2 we know that all prime number is also pseudo-prime.
However, the reverse is not true for some pseudo-prime number that is actu-
ally not prime, called Carmichael’s Numbers. Also it still takes exponential
time to check all possible a to determine if p is pseudo-prime. Therefore we
develop the following lemma.

Lemma 3. For any interger p > 1, if p isn’t pseudo-prime, then p failed at
least half of Fermat’s Test based on numbers in Z+

p .

Proof. We call a a witness for p if ap−1 6≡ 1(mod p). Let Z∗p be all integers
less than and relatively prime to p. If p is not a pseudo-prime, it has a witness
a ∈ Z∗p.

If d ∈ Z∗p is not a witness, we have dp−1 ≡ 1(mod p), and hence (damod p) 6≡
1(mod p), which means (da mod p) is a witness. For non-witness d1, d2 ∈ Z∗p,
we have (d1a mod p) 6= (d2a mod p) since otherwise (d1−d2)a ≡ 0(mod p)⇒
∃c ∈ Z, (d1 − d2)a = cp. But (d1 − d2) < p, so a = cp

d2−d2 and p have a com-
mon factor greater than 1, which is a contradiction since ever number in Z∗p
is relatively prime to p. This shows at lease half of numbers in Z∗p is witness
for p.

Finally we show that, every number b that is in Z+
p but not in Z∗p, which

means not relatively prime to p, is a witness. In fact, for every e > 0, be is
also not relatively prime to p, which means bp−1 6≡ 1(mod p). That proved
our original lemma.

This lemma shows that the probability of a number p that is not pseudo
prime passes the Fermat’s Test under arbitrarily picked a from Z+

p is less
than 1

2
, which means if we pick k numbers from Z+

p , the probability would

be less than 1
2k

. Since ap−1 can be calculated in polynomial time[7], we got
a good enough polynomial time randomized algorithm to determine pseudo-
primality.

To eliminate the effect of Carmichael’s Numbers, we note the following
truth.

Lemma 4. If ∃b ∈ Z+
p , b 6≡ ±1(mod p), b2 ≡ 1(mod p), then p is composite.

Proof. From the condition we have b2 − 1 ≡ 0(mod p), therefore

(b− 1)(b+ 1) ≡ 0(mod p)

hence
∃c ∈ Z, (b− 1)(b+ 1) = cp

4

1.2 Probabilistic Primality Testing 1 MOTIVATIONS

Since b 6≡ 1(mod p), so 0 < b − 1 < p, 0 < b + 1 < p. But the multiple of a
prime number can not be written as product of number that is less than it,
therefore p is composite.

For each a that p passes the Fermat’s Test under it, we have ap−1 ≡
1(mod p). Therefore if we write p − 1 = st where s is a odd number and
t = 2h, we have as·2

0 ≡ 1(mod p), · · · , as·2h ≡ 1(mod p). So if any of these
h numbers have as·2

i 6≡ ±1(mod p), from Lemma 4 we know that p is not
prime.

The following lemma proved the effectiveness of this test.

Lemma 5. If p is a odd composite number, a ∈ Z+
p is an arbitrarily picked

number, then

Pr[a is a witeness] ≥ 1

2

Proof. To proof that, we only need to designate a witness to each non-witness
among Z+

p . For each non-witness, we have the number sequence in previously
described test is all 1s or contains -1. Pick h be a non-witness and let j be the
position of −1 in the sequence, then hs·2

j ≡ −1(mod p). Since p is composite,
it is either a power of some prime or p = qr from some relatively prime q
and r. The Chinese Reminder Theorem implies that ∃t ∈ Z+

p such that

t ≡ h(mod p)

and
t ≡ 1(mod r)

Therefore
ts·2

j ≡ −1(mod q)

and
ts·2

j ≡ 1(mod r)

So t induces a witness of p since ts·2
j 6≡ ±1(mod p) but ts·2

j+1 ≡ 1(mod p).
Then we prove that dt mod p is unique witness for each non-witness d.

In fact, for d1 6= d2, since t · ts·2j+1−1 mod p = 1, therefore if td1 mod p =
td2 mod p, we have

d1 = t · ts·2j+1−1d1 mod p = t · ts·2j+1−1d2 mod p = d2

On the other hand, if p = q2 where q is a prime and e > 1, let t = 1 + qe−1.
By the Binomial Theorem, we have

tp = (1 + qe−1)p = 1 + pqe−1 + multiples of higher power of qe−1

5

2 RANDOMIZED COMPLEXITY

and equivalent to 1 mod p, which means t should fail p in the Fermat’s Test
since tp ≡ t 6≡ 1(mod p) if tp−1 ≡ 1. Then just like previous proof, if d is a
non-witness, we have dp−1 ≡ 1(mod p) then dt mod p is a unique witness for
it. Thus proved that there is more witnesses than non-witnesses in Z+

p if p
is composite, and shows our original lemma.

Finally we have the polynomial time algorithm that, when it says p is
not a prime, p is definitely not, otherwise if we tested p over k numbers, the
probability of the algorithm making mistake is less than 1

2k
, which means can

be arbitrarily small while remaining polynomial time.

2 Randomized Complexity

2.1 Randomized Turing Machine

From the previous two examples, we can see the power of randomness in
designing algorithms. However, the model that we used to describe compu-
tational complexity, the Turing Machine, is not equipped to describe such
algorithms1. Therefore, we are going to define a variant of Turing machine
that able to flip coins or roll dices.

Definition 6. A Probabilistic Turing Machine(PTM) is a Turing Machine
that has two transition functions σ0 and σ1. For a PTM M and a input x,
we choose each step with probability 1

2
to σ0 or σ1. The computation ends

when it reaches an accept status or a reject status. Denote M(x) ∈ {0, 1} be
the random variable generated by PTM M over input x.

2.2 The Class BPP

Having the probabilistic computing model, now we can define complexity
classes over PTM. Like the class P in traditional Turing Machines, we aimed
on capturing the efficient probabilistic computations and define the class
BPP2.

Definition 7 (BPP). For T : N → N and L ⊂ {0, 1}∗ we say that a PTM
M decides L in time T (n) if for every x ∈ {0, 1}∗, M halts in T (|x|) steps
regardless of its random choices, and Pr[M(x) 6= L(x)] < 1

3
.

1Some may argue that in actual practice, all random number generator used in al-
gorithm is still deterministic procedures. But note that we haven’t used any specific
description of a random number generator, but only abstract properties of probability, so
the theoretical model used to analysis such algorithms should also be able to describe such
ideal randomness.

2That means Bounded-error Probabilistic Polynomial time

6

2.2 The Class BPP 2 RANDOMIZED COMPLEXITY

We let BPTIME(T (n)) be the class of languages decided by PTMs in
O(T (n)) time and define BPP = ∪cBPTIME(nc).

The strange part in the definition is the magic number 1
3
. It seems not

good enough, and comes from nowhere. Now we are going to show by follow-
ing lemma that this number is actually irrelevant. In fact, we can imagine
that to run a PTM with higher error probability polynomial many times,
and take the “voted result” among them to reduce the chance of error.

Lemma 8 (Amplification Lemma). Let 0 < ε < 1
2

be a fixed constant. Then
for any polynomial Poly(n), a probablistic polynomial time Turing Machine
M1 that operates with error probability ε has an equivalent probabilistic
polynomial time Turing Machine M2 that operates with an error probability
of 2−Poly(n).

Proof. We construct M2 that calculates x as following:

1. Calculated k as following.

2. Run 2k independent simulations of M1 on input x.

3. If most runs accepted, then accept, otherwise reject.

The correctness of M2 depends on whether most of M1 runs returns the
correct answer. Now we try to bound the probability that at least half of
those runs were wrong.

Let S be any sequence of results that M2 obtained, and let pS be the
probability that M2 obtains S. Suppose S has c correct results and w wrong
result, we call S a bad sequence if c ≤ w. Therefore pS ≤ εw(1 − ε)c, which
is at most εk(1− ε)k since k ≤ w and ε < 1− ε.

The sum of all pS is the probability that M2 goes wrong. We have 22k

possible sequences, therefore we have at most such many bad sequences.
Hence

Pr[M2 outputs incorrectly] =
∑
bad S

pS ≤ 22k · εk(1− ε)k = (4ε(1− ε))k

Since ε < 1
2
, 4ε(1 − ε) < 1 and therefore the probability above decreases

exponentially in k. So, for any given t ≥ 1, we can bound the probability
that M2 goes wrong by letting k ≥ t

α
where α = log2(4ε(1− ε). This shows

we obtained the error probability of 2−Poly(n) within polynomial time.

7

2.3 One-sided Error 2 RANDOMIZED COMPLEXITY

As we did in the deterministic situations, we can then define the reversed
side complexity class co-BPP that contains languages whose complement is
in BPP. It is also natural to define BPP-Completeness, but unfortunately
we haven’t found such problems till now[2].

Similarly to what we have did on defining the class NP, we can give an
alternative definition for the class BPP using the concept of “evidences” or
”proofs” on deterministic computation model, which indicates the sequence
of coin toss.

Definition 9 (BPP-Alternative). A language L is in BPP if there exists a
polynomial-time Turing Machine M and a polynomial p : N → N such that
for every x ∈ {0, 1}∗

Prr∈R{0,1}p(|x|) [M(x, r) 6= L(x)] <
1

3

2.3 One-sided Error

Remind our previously described two probabilistic algorithms, note that they
have a property in common is that when the algorithm says no about some
decision problem, the answer to the problem is definitely being “no‘”. How-
ever, when the algorithm gives a positive answer, it might be wrong. We
define following complexity class to capture such idea.

Definition 10. RTIME(T (n)) contains every language L for which there
is a PTM M running in T (n) time such that

x ∈ L⇒ Pr[M(x) = 1] ≥ 2

3

and
x 6∈ L⇒ Pr[M(x) = 1] = 0

We define RP = ∪c>0RTIME(nc)3

It is easy to see that the the language calculated by the probabilistic pri-
mality testing is in the class RP, which the other on, ZERO-Poly, is in the
complement of it, the co-RP. Such algorithms that computes languages in
RP is often called Las Vegas Algorithms, which means you have to gam-
ble over on side. However, the algorithm corresponding to the class BPP
is also commonly name after a name of gambling resort, the Monte Carlo
Algorithms.

We could hence require that the randomized algorithm makes mistake in
probability zero.

3Where RP means Randomized Polynomial time.

8

3 COMPLEXITY CLASSIFICATION

Definition 11. The class ZTIME(T (b)) contains all the languages L for
which there is a machine M that runs in an expected-time O(T (n)) such
chat for every input x, when ever M halts on x, the output M(x) = L(x).

We define ZPP = ∪c>0ZTIME(nc)4

3 Complexity Classification

3.1 Among Randomized Complexity Classes
[3] Now we are going to discuss about the connections between these random-
ized complexity classes. As we can see, the class BPP is aimed on giving
a “randomized duplicate” of the traditional class P. Therefore we can eas-
ily have BPP = co-BPP from Definition 7, while the relationship between
class RP and co-RP is still remain unknown just like the case of NP and
co-NP. However, we have following theorem that is somehow surprising if
compared with deterministic cases.

Theorem 12. ZPP = RP ∩ co-RP.

Proof. If we have a language L recognized by both a RP algorithm A and a
co-RP algorithm B, then we proposed an algorithm runs over any input x
as following

1. Run A over x. If A return yes, then the answer must be yes and halts.

2. Otherwise run B over x. If it returns no, then the answer must be no
and halts.

3. If neither happens, repeat from Step 1.

From the property of RP and co-RP we know that A and B can not go both
wrong, and the chance of the algorithm returns the wrong answer is less than
1
2
. That means the chance of running k round is exponentially decreasing to

zero by k. Therefore we have our polynomial time Las Vegas Algorithm and
RP ∩ co-RP ⊂ ZPP.

To show the inverse side inclusion, recall the Markov’s Inequality

Pr(|X| > a) ≤ E(|X|)
a

which means if we run our ZPP algorithm double of it’s expecting running
time, the chance we stop it before it actually halts is less than 1

2
. Then we

4ZPP means Zero-error Probabilistic Polynomial time.

9

3.2 BPP ⊂ Σp
2 ∩ Πp

2 3 COMPLEXITY CLASSIFICATION

just answer no for such situation, and from Definition 10 we know it is a
valid RP algorithm. The co-RP side can be proved similarly, which come
our final conclusion.

In the last, we have the obvious conclusion that

RP ⊂ BPP, co-RP ⊂ BPP

3.2 BPP ⊂ Σp
2 ∩ Πp

2

We are now interested in the relationship between randomized complexity
classes and deterministic complexity classes. Note that classical Turing Ma-
chine is actually PTM that flips no coins, thus

P = co-P = BPP = co-BPP

In fact, by the recent development in the research area of derandomization,
many people believes that these classes are actually the same. It is also clear
that

BPP ⊂ EXP

since we can enumerate all exponentially many coin flipping sequences. Also
for the RP classes, we have

P = co-P ⊂ RP,P = co-P ⊂ co-RP

Also we can see that we could “guess” the coin flipping5 sequence using
non-deterministic Turing Machine, which means

RP ⊂ NP, co-RP ⊂ co-NP

Meanwhile the relationship between BPP and NP is still remaining un-
known. However, we have the result for larger complexity classes, where we
know that NP is Σ1.

Theorem 13. BPP ⊂ Σp
2 ∩ Πp

2

Proof. Since BPP is closed under complement, we only have to show that
BPP ⊂ Σp

2.
Suppose a language L ∈ BPP. By the alternative Definition 9 and

Lemma 8, there exists a polynomial-time deterministic Turing Machine M
for L that on input of length n uses m = Poly(n) random bits and satisfies

x ∈ L⇒ Prr[M(x, r) accepts] ≥ 1− 2n

5Or can be said as existence of “proof” or “evidence” for the input if using alternative
definition for NP

10

3.2 BPP ⊂ Σp
2 ∩ Πp

2 3 COMPLEXITY CLASSIFICATION

and
x 6∈ L⇒ Prr[M(x, r) accepts] ≤ 2−n

For x ∈ {0, 1}n, let Sx be the set of r that M accepts the input pair 〈x, r〉.
Then either |Sx| ≥ (1 − 2−n)2m, or |Sx| ≤ 2−n2m for x ∈ L and x 6∈ L
respectively. Now we are going to check using two quantifiers which is true
for two cases.

For a set S ⊂ {0, 1}m and string u ∈ {0, 1}m, define S + u = {x+ u : x ∈
S} where + means bitwise XOR. Let k = dm

n
e + 1, we proof following two

lemmas.

Lemma 14. ∀S ⊂ {0, 1}m, |S| ≤ 2m−n and any k vectors u1, · · · , uk

∪ki=1(S + ui) 6= {0, 1}m

Proof. Since |S + ui| = |S|, we have, for sufficiently large n

| ∪ki=1 (S + ui) ≤ k|S| < 2m

Lemma 15. ∀S ⊂ {0, 1}m, |S| > (1− 2−n)2m, ∃u1, · · · , uk such that

∪ki=1(S + ui) = {0, 1}m

Proof. We proof that if u1, · · · , uk being chosen independently and randomly,
then Pr[∪ki=1(S + ui) = {0, 1}m] > 0. In fact, for r ∈ {0, 1}m, define Br be
the event that r 6∈ ∪ki=1(S + ui), and we want to proof Pr[∃r∈{0,1}mBr] < 1,
which can be implied if we have ∀r, Pr[Br] < 2−m. Since Br = ∩i∈[k]Bi

r where
Bi
r is the event that r 6∈ (S + ui)⇔ (r + ui) 6∈ S,r + ui is a uniform element

in {0, 1}m, therefore in S with probability greater than 1− 2−n. Finally, Bi
r

are independent for different i an d hence

Pr[Br] = Pr[Bi
r]
k ≤ 2nk < 2−m

Having these two lemmas, we have x ∈ L if and only if

∃u1, · · · , uk ∈ {0, 1}m∀r ∈ {0, 1, }m, r ∈ ∪ki=1(Sx + ui)

which means

∃u1, · · · , uk ∈ {0, 1}m,∀r ∈ {0, 1}m,
k∨
i=1

M(x, r ⊕ ui) accepts

Hence L ∈ Σp
2 and thus proved our original statement.

11

REFERENCES REFERENCES

We are also interested in asking is there polynomial hierarchy results on
randomized complexity classes. Unfortunately, the original diagonalization
technique we used is not valid on probabilistic situations. That is because we
can not define the property of BPTIME semantically rather than probabilis-
tically. Determining whether a PTM has the property “error chance less than
1
3
” is undecidable, while we can easily verify the encoding of a general Non-

Deterministic Turing Machine as we did in construction the universal Turing
Machine. This also brings the difficulty to find BPP-Complete problems as
we mentioned above. Such as if try to construct a trivial BPP-Complete
language L by defining it as all tuples 〈M,x, 1t〉 where for input x, M output
1 within t steps with probability at lease 2

3
. This kind of technique is widely

used in the deterministic cases to construct complete language for some com-
plexity class. But, although L is obviously BPP-Hard, but is not known
whether in BPP since for 〈M,x, 1t〉 6∈ L we could have Pr[M(x) = 1] = 1

2
,

which is greater than 1
3
.

In conclusion, the relationship between randomized complexity classes
and others is still full of sandwiched relations and uncertain inclusions and
they could easily collapse only have a few equals between them, just like
other area of complexity theories does. There is still a long way to go for a
proper classification.

References

[1] Donald E. Knuth. The TEXbook, Volume A of Computers and Typeset-
ting, Addison-Wesley, Reading, Massachusetts, 1984.

[2] Michael Sipser. Introduction to the Theory of Computation, Thomson,
2006.

[3] C. Papadimitriou. Computational Complexity, Addison-Wesley, 1995.

[4] Sanjeev Arora, Boaz Barak. Computational Complexity - A Mordern
Approach, Cambridge, 2007.

[5] O. Carton. Langages Formels, Calculabilite et Complexite, Vuibert,
2008.

[6] Manindra Agrawal, Neeraj Kayal, Nitin Saxena. PRIME is in P, Annals
of Mathematics, 2004.

[7] Thomas H. Cormen, Charles E. Leiseison, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithm, MIT Press, 2001.

12

	Motivations
	Polynomial Identity Testing
	Probabilistic Primality Testing

	Randomized Complexity
	Randomized Turing Machine
	The Class BPP
	One-sided Error

	Complexity Classification
	Among Randomized Complexity Classes
	BPP2p2p

	References

