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1. Introduction

The object of study of symbolic dynamics are discrete dynamical systems made of infinite
sequences of symbols with values in a finite alphabet, with the shift map T acting on them:
the shift T maps an infinite word (un)n≥0 onto this infinite word from which the first letter
has been taken away, that is, T ((un)n∈N) = (un+1)n∈N. Symbolic dynamical systems come in
a natural way as codings of trajectories of points in a dynamical system according to a finite
partition. They are used as discretization tools for analyzing such trajectories, but they also
occur in a natural way in arithmetics for instance for the representation of numbers (real,
complex), vectors, or else polynomials or Laurent formal power series with coefficients in a
finite field.
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Symbolic dynamics originates in the work of Jacques Hadamard [23], in 1898, through the
study of geodesics on surfaces of negative curvature (see also [15]). It was then also applied
by Marston Morse in 1921 in [31] to the construction of a nonperiodic recurrent geodesic and
for the symbolic representations of geodesics. The study of combinatorics on words originates
at the same time in papers of Axel Thue from 1906 and 1912 (see [36, pp. 139-158 and 413-
477]), in particular with the study of the Thue-Morse word. Symbolic dynamics and Sturmian
words then were developed by Morse and Hedlund in 1938 in [32, 33]. Substitutions are central
objects of symbolic dynamics. They play a prominent role in the study of aperiodic tilings
and in aperiodic order for the mathematical formalization of quasicrystals.

Acknowledgement. I would like to thank warmly Léonard Brice, Antonin Callard, Clément
Ducros, Thiago Felicissimo Cesar, Simon Jeanteur, Jana Lepsova, Rémi Morvan and Delphine
Salvy for their careful reading and for their constructive additions, and for various proofs for
the exercices in Section 6.

2. General notions

2.1. Discrete dynamical systems. By discrete dynamical system we mean here a map
T : X → X that acts on a space X that will be usually assumed to be compact. The map T
is also usually assumed to be continuous or piecewise continuous.

The (one-sided) orbit of x ∈ X under the action of T is defined as {Tnx | n ∈ N}. If T is
assumed to be invertible (e.g., if T is a homeomorphism), then the two-sided orbit of x ∈ X
under the action of T is defined as {Tnx | n ∈ Z}. Orbits are also called trajectories.

The terminology discrete refers here to the time: we consider trajectories of points of X
under the discrete-time deterministic action of the mapping T . Discrete dynamical systems
can be of a geometric nature (e.g., X = [0, 1]), or of a symbolic nature (e.g., X = {0, 1}N),
such as described below. More precisely, as examples of dynamical systems, let us mention

• symbolic dynamical systems: these are dynamical systems defined on sets of symbols
and words; we consider them in Section 2.4;
• the translation Rα by α on the one-dimensional torus, that is, Rα : x 7→ x+ α mod 1

(see Section 5).

The notion of dynamical system can be considered in a topological context (this is what
we have considered so far), we get topological dynamics, but this notion can be extended
to measurable spaces: we thus get measure-theoretic dynamical systems, that is, dynamical
systems endowed with a probabilistic structure (an invariant measure). We will consider them
in Section 2.5.

2.2. Word combinatorics and factor complexity. An alphabet is a finite set of symbols
(or letters). Let A be an alphabet. A finite word over A is a finite sequence of letters in A
(that is, a word of length n is a map u from {1, · · · , n} to A). We write it as u = u1 · · ·un to
express u as the concatenation of the letters ui.

Let u = u1 · · ·um and v = v1 · · · vn be two words over A. The concatenation of u and v is
the word w = w1 · · ·wm+n defined by wi = ui if 1 ≤ i ≤ m, and wi = vi−m otherwise. We
write u · v or simply uv to express the concatenation of u and v. The set of all (finite) words
over A is denoted by A∗. Endowed with the concatenation of words as product operation, A∗
is a monoid with ε as identity element. It is the free monoid generated by A. We thus have
endowed the set of finite words with an algebraic structure.
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We also consider infinite words, that is, elements of AN, as well as bi-infinite (also called
two-sided) words in AZ. In all that follows we restrict ourselves to infinite words over a finite
alphabet indexed by the set N of non-negative integers. All the notions defined below extend
to two-sided words in AZ.

A factor of the infinite word u = (un)n is a finite block w of consecutive letters of u, say
w = un+1 · · ·un+l for some index n (called an index of occurrence of w in u); l is called the
length of w, denoted by |w|.

Definition 1 (Factors and language). A word w1 · · ·w` is a factor of the word u (finite,
infinite or bi-infinite) if there exists k such that uk · · ·uk+`−1 = w1 · · ·w`. The set of factors
Lu of an infinite word u is called its language. The set of factors of length n is denoted as
Lu(n).

Definition 2 (Recurrence). An infinite word is said to be recurrent if every factor appears
infinitely often.

Note that every factor occurs infinitely often is equivalent to every factor occurs at least
twice.

Definition 3 (Uniform recurrence). An infinite word is said to be uniformly recurrent if every
factor appears infinitely often and with bounded gaps (or, equivalently, if for every integer
n, there exists an integer m such that every factor of u of length m contains every factor of
length n). This gives

∀n ∈ N, ∃m ∈ N,∀w ∈ Lu ∩ Am,Lu ∩ An ⊆ Lw.

Exercise 4. Take A = {a, b} and consider the concatenation of words of A∗ ordered by
length and, when two words are of equal length, ordered by the lexicographic order, i.e.,

ε · a · b · aa · ab · ba · bb · aaa · aab · · · ∈ AN

and show that it is recurrent but not uniformly recurrent.

Definition 5 (Linear recurrence). An infinite word u is said to be linearly recurrent if there
exists C such that every factor of u of length Cn contains every factor of u of length n.

Observe that linear recurrence implies uniform recurrence which also implies recurrence.

Exercise 6. Construct an example of a word that is uniformly recurrent but not linearly
recurrent.

Let us introduce a combinatorial measure of disorder for infinite words over a finite alpha-
bet: this notion is called factor complexity.

Definition 7 (Factor complexity). The (factor) complexity of an infinite word u counts the
number of distinct factors of a given length: there are exactly pu(n) factors of length n in u.

For more on this function, see for instance [4]. The factor complexity is obviously non-
decreasing and for any integer n, one has 1 ≤ pu(n) ≤ dn, where d denotes the cardinality of
the alphabet.

This function can be considered to measure the predictability of an infinite word. Indeed,
the first difference of the factor complexity counts the number of possible extensions in the
infinite word u of factors of a given length.
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Definition 8 (Right and left extensions). We call right extension (respectively left extension)
of a factor w of the infinite word u a letter x such that wx (respectively xw) is a factor of the
infinite word u.

Let u be an infinite word. Let w+ (respectively w−) denote the number of right (respectively
left) extensions of w in u. (One may have w− = 0 but always w+ ≥ 1.) We have

pu(n+ 1) =
∑

w∈Lu(n)

w+ =
∑

w∈Lu(n)

w−,

and thus

pu(n+ 1)− pu(n) =
∑

w∈Lu(n)

(w+ − 1) =
∑

w∈Lu(n)

(w− − 1).

Indeed,∑
w∈Lu(n)

(w+ − 1) =
∑

w∈Lu(n)

w+ −
∑

w∈Lu(n)

1 = pu(n+ 1)−#Lu(n) = pu(n+ 1)− pu(n).

Definition 9 (Periodicity). An infinite word u is periodic if there exists a positive integer
T such that ∀n, un = un+T . It is ultimately periodic if there exist a positive integer T and
n0 ∈ N such that ∀n ≥ n0, un = un+T .

Proposition 10. Let (un)n∈N ∈ AN. The following assertions are equivalent:

(1) (un)n∈N is ultimately periodic;
(2) ∃n, pu(n) ≤ n;
(3) ∃C,∀n, pu(n) ≤ C.

Proof. If pu(1) = 1, then u is constant. Otherwise, we assume pu(1) ≥ 2. Then, pu(n) ≤ n
implies that pu(k + 1) = pu(k) for some k. For each word w of length k occurring in u,
there exists at least one word of the form wa occurring in u, for some letter a ∈ A. As
pu(k+ 1) = pu(k), there can be only one such word. Hence, if ui...ui+k−1 = uj ...uj+k−1, then
ui+k = uj+k. As the set Lu(k) is finite, there exist j > i such that ui...ui+k−1 = uj ...uj+k−1,
and hence ui+p = uj+p for every p ≥ 0, one period being j − i. �

Exercise 11. What happens in the case of a binfinite word defined over Z ?

The complexity function is a measure of disorder connected to the topological entropy: the
topological entropy is defined as the exponential growth rate of the complexity as the length
increases

Htop(u) = lim
n→+∞

logd(pu(n))

n
.

Remember that d stands for the cardinality of the alphabet. It is easy to check that this
limit exists because of the subadditivity of the function n 7→ log(pu(n)). Note that the word
entropy is used here as a measure of randomness or disorder.

Indeed, pu(n + m) ≤ pu(n)pu(m) because a factor of length n + m can be seen as the
concatenation of a factor length n with a factor of length m: consider the map from Lu(m+n)
to Lu(m) × Lu(n) which maps w to (u, v) ∈ Lu(m) × Lu(n), where w = u · v; this map is
clearly injective, which implies that pu(m + n) ≤ pu(m)pu(n). Therefore, log pu(n + m) ≤
log pu(n) + log pu(m). Now, we prove the subadditive lemma. Let (un)n∈N be a subadditive
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sequence: we prove that (un/n) admits a limit in R ∪ {−∞}. To do so, let n and q be two
nonnegative integers. Let n = pq + r be the Euclidean division of n by q. Then we have:

un
n

=
upq+r
n
≤ (p− 1)uq + uq+r

n
≤ n− q − r

n

uq
q

+
max0≤i<q uq+i

n
.

By going to lim sup on n on both sides, we obtain that lim supun/n ≤ uq/q. And then going
to lim inf on q, we obtain that lim supun/n ≤ lim inf uq/q, which means that lim supun/n =
lim inf un/n, which concludes the proof. Because pu(n) ≥ 1 for all n, this limit is non-negative
in the case of log pu(n).

The study of the complexity is mainly concerned with the following three questions.

• How to compute the complexity of an infinite word?
• Which functions can be obtained as the complexity function of some infinite word?
• Can one deduce from the complexity a geometrical representation of infinite words?

We will see how to answer the first question by introducing special factors, in some particular
cases of substitutive words. Although the complexity function is in general not sufficient to
describe an infinite word , we will see that much can be said on the geometrical properties in
the case of lowest complexity, i.e., in the case of Sturmian words: these words are defined to
have exactly n+ 1 factors of length n, for any integer n. By Proposition 10 an infinite word u
with complexity satisfying pu(n) ≤ n for some n is ultimately periodic. Sturmian words have
thus the minimal complexity among all infinite words that are not ultimately periodic.

Exercise 12. Deduce from Proposition 10 that every factor of a Sturmian word appears at
least two times in the infinite word. Deduce that the factors of every Sturmian word appear
infinitely often (we recall that such an infinite word is called recurrent).

Correction. We prove the first point by contradiction: assume that w is a prefix of a Stur-
mian word u that appears only once in u. Decompose u as u = a · u′, where a ∈ A. Obvi-
ously, any factor of u′ is a factor of u, so pu′(n) ≤ pu(n) for all n. Consider now n = |w|:
because w only appears once in u as a prefix, it does not occur in u′, which means that
pu′(n) ≤ pu(n)− 1 = n. This implies that u′ is ultimately periodic by Proposition 1, and so
is u.

Suppose now that a factor w appears only once in the Sturmian word u. Then, there exists
N such that w /∈ LTNu. Then Tnu has at most |w| factors of size |w| (u had |w|+ 1 factors,
w included), so Tnu is ultimately periodic, so u is too, which is a contradiction to u being
aperiodic.

2.3. Frequencies and balance. Let w ∈ A∗, u ∈ AN. Let |uk . . . uk+n|w denote the number
of occurrences of w in uk . . . uk+n (with possibly overlaps).

Example 13. One has |abaaabaaaa|aa = 5.

Definition 14 (Frequencies). Let u be a word in AN. The frequency fi of a letter i ∈ A in u
is defined as the limit when n tends towards infinity, if it exists, of the number of occurrences
of i in u0u1 · · ·un−1 divided by n, i.e.,

fi = lim
n→∞

|u0 . . . un−1|
n

exists. In the case that the limit exists, we say that u admits a frequency for the letter i.
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The word u admits uniform letter frequencies if, for every letter i of u, the number of
occurrences of i in uk · · ·uk+n−1 divided by n has a limit when n tends to infinity, uniformly
in k, i.e., for all letter i, there exists fi such that

∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, ∀k,
∣∣∣∣ 1n |uk . . . uk+n|i − fi

∣∣∣∣ ≤ ε.
Similarly, we can define the frequency fw and the uniform frequency of a factor w, and we

say that u has uniform frequencies if all its factors have uniform frequency, i.e., for all factor
w, there exists fw such that

∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, ∀k,
∣∣∣∣ 1n |uk . . . uk+n|w − fw

∣∣∣∣ ≤ ε.
Definition 15 (Unique ergodicity). An infinite word is said to be uniquely ergodic if it admits
uniform frequencies for all it factors. It implies that it admits a frequency for every factor.

We will revisit this definition in Section 2.5.

Exercise 16. Construct an infinite word for which the frequencies of letters do not exist.

Correction. Consider the infinite word

u = 010212041408 · · ·
The infinite word u admits no frequencies for the letter 0. Indeed, if u is cut after a 1,
|u0···un|0

n = 1
2 , but if it is cut just after a sequence of zeroes, the value changes. For instance,

if we cut after a sequence of N + 2 zeroes, we have n = 2
∑N

k=0 2k + 2N+1 and

|u0 · · ·un−1|0
n

=

∑N
k=0 2k + 2N+1

2
∑N

k=0 2k + 2N+1
=

2N+1 − 1 + 2N+1

2N+2 + 2N+1 − 1
=

1− 2−(N+2)

1 + 1
2 − 2−(N+1)

→ 2

3
.

More generally, on the alphabetA = {0, 1}, define the function f from N to N as f : n 7→ 22n

and:
u = 0f(1) · 1f(2) · 0f(3) · 1f(4) ... 0f(2k+1) · 1f(2k+2) ...

For any n ∈ N, one has:
n∑
k=1

f(k) ≤ n22n ≤ 22n+logn

Hence
f(n+ 1)∑n

k=1 f(k) + f(n+ 1)
→n→+∞ 1

In particular, this implies that the frequencies of both letters 0 and 1 oscillate between 0 and

1 without ever stabilizing (to be more precise, lim supn
|u0···un]|a

n = 1 and lim infn
|u0···un|a

n = 0
for any a ∈ {0, 1}). So u is a word such that the frequencies of letters do not exist.

Definition 17 (Discrepancy). Let u ∈ AN be an infinite word and assume that u admits the
frequency fi for each letter i. The discrepancy of u is

∆(u) = lim sup
i∈A, n∈N

||u0u1 . . . un−1|i − nfi|.

The quantity ∆(u) is considered e.g. in [1, 2]. We also consider

∆n(u) = sup
i∈A
||u0u1 . . . un−1|i − nfi|.
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Definition 18 (Balancedness). An infinite word u ∈ AN is said to be C-balanced if for any
pair v, w of factors of the same length of u, and for any letter i ∈ A, one has ||v|i− |w|i| ≤ C.

It is said balanced if there exists C > 0 such that it is C-balanced.

The vector f whose components are given by the frequencies of the letters is called the
letter frequency vector.

Proposition 19. An infinite word u ∈ AN is balanced if and only if it has uniform letter
frequencies and there exists a constant B such that for any factor w of u, we have ||w|i −
fi|w|| ≤ B for all letter i in A, where fi is the frequency of i. Moreover, if u has letter
frequencies, then u is balanced if and only if its discrepancy ∆(u) is finite.

Proof. Let u be an infinite word with letter frequency vector f and such that ||w|i−fi|w|| ≤ B
for every factor w and every letter i in A. Then, for every pair of factors w1 and w2 with the
same length n, we have by triangular inequality

||w1|i − |w2|i| ≤ ||w1|i − nfi|+ ||w2|i − nfi| ≤ 2B.

Hence L is 2B-balanced (see also [1, Proposition 7]).
Conversely, assume that u is C-balanced for some C > 0. We fix a letter i ∈ A. For every

non-negative integer p, let Np be defined as an integer N such that for every word of length
p of u, the number of occurrences of the letter i belongs to the set {N,N + 1, · · · , N + C}.

We first observe that the sequence (Np/p)p∈N is a Cauchy sequence. Indeed consider a
factor w of length pq, where p, q ∈ N. The number |w|i of occurrences of i in w satisfies

pNq ≤ |w|i ≤ pNq + pC, qNp ≤ |w|i ≤ qNp + qC.

We deduce that −qC ≤ qNp − pNq ≤ pC and thus −C ≤ Np − pNq/q ≤ pC/q, so −C/p ≤
Np/p−Nq/q ≤ C/q.

Let fi stand for limqNq/q. By letting q tend to infinity, one then deduces that −C ≤
Np − pfi ≤ 0. Thus, for any factor w of u we have∣∣∣∣ |w|i|w| − fi

∣∣∣∣ ≤ C

|w|
,

which was to be proved.
If u has letter frequencies, the equivalence between balancedness and finite discrepancy

comes from triangular inequality. �

Sturmian words (see Section 5) are known to be 1-balanced [29]; they even are exactly the
1-balanced infinite words that are not eventually periodic.

2.4. Symbolic dynamical systems. For detailed introductions to symbolic dynamics and
word combinatorics, see [4, 6, 10, 11, 25, 27, 28, 29, 22] and the references therein.

We first endow the set of infinite words AN with a topology. This topology is given by
the usual metric on infinite words: two infinite words are close if they coincide on their first
terms. More precisely, the set AN shall be equipped with the product topology of the discrete
topology on each copy of A. Thus, by Tychonov theorem, this set is a compact space. This
topology is also the topology defined by the following distance:

for u 6= v ∈ AN, d(u, v) = 2−min{n∈N; un 6=vn}.

Then, the sequence of infinite words (u(n))n converges to u ∈ AN if ∀N ∈ N, ∃n0 ∈ N/∀n ≥
n0, u(n) and u share the same prefix of length N .
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Note that the space AN is complete as a compact metric space. Furthermore, it is a Cantor
set, that is, a totally disconnected compact set without isolated points.

Note that the topology extends in a natural way to AN∪A∗. Indeed, let B be a new alphabet
obtained by adding a further letter to the alphabet A; finite words in A∗ can be considered
as infinite words in BN, by extending them by the new letter in B. The set AN ∪ A∗ is thus
metric and compact, as a closed subset of BN.

The mapping T acting on sets of infinite words is the (one-sided) shift map acting on AN,
given by T ((un)n∈N) = (un+1)n∈N. It is continuous.

Definition 20 (Subshift). A subshift (also called shift) is a closed shift invariant set included
in some AN.

If Y is a subshift, there exists a set F ⊂ A∗ of finite words such that an infinite word
u belongs to Y if, and only if, none of its factors belongs to F . This is by definition of
the product topology: if Y is closed, its complement is open, and as such can be written as
a union of cylinders: the words of these cylinders form a familly F of forbidden patterns.
Reciprocally, any family F of words defines a subshift, possibly empty. A subshift X is called
a subshift of finite type if one can choose the set F to be finite. A subshift is said to be sofic
if the set F is a regular language. A subshift X is called a subshift of finite type if one can
choose the set F to be finite. A subshift is said to be sofic if the set F is a regular language.

Definition 21 (Cylinder). For a word w = w0 · · ·wr, the cylinder set [w] is the set {v ∈ Xu |
v0 = w0, · · · , vr = wr}.

The cylinder sets are clopen (open and closed) sets in AN and form a basis of open sets
for the topology of Xu. Indeed, if the cylinder [w] is nonempty and v is a point in it, [w]
is identified with both the open ball {v′ | d(v, v′) < 2−r} and the closed ball {v′ | d(v, v′) ≤
2−r−1}.

Exercise 22. As an exercise, prove that a clopen set is a finite union of cylinders.

As an example of a shift, take the closure in AN of the positive orbit of u = (un)n≥0 under

the action of the shift T , with u being some infinite word in AN. This gives Xu := O(u). One
checks that

O(u) = {v ∈ AN, Lv ⊂ Lu},
where Lv is recalled to be the set of factors of the word v. Indeed, let v ∈ O(u), and let w
be a factor of v. Without any loss of generality, we can assume that w is a prefix of v (if it
is not the case, we can shift v until it is). Then [w] is a cylinder which contains v, so [w] is a

neighborhood of v. Because v ∈ O(u), one has [w] ∩ O(u) 6= ∅. So there exists some n such
that w is a prefix of Tn(u). In other words, w is a factor of u.

Reciprocally, let v be an infinite word such that Lv ⊆ Lu, and consider an open set
containing u. As cylinders form a basis of AN, one can assume that such an open set is of
the form [w] for some w ∈ A∗. Then w is a prefix of v, so w ∈ Lv ⊆ Lu. This implies that
w is a factor of u, so there exists some n such that w is a prefix of Tn(u). This implies that

[w] ∩ O(u) 6= ∅. With this, we conclude that v ∈ O(u).
We can generalize this fact for any shift Y with a language LY = {w ∈ A∗ : ∃v ∈

Y,w is a factor of v}, i.e.

Y = {v ∈ AN, Lv ⊂ LY },
This can be summarized by a claim that every shift is described by its language.
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Let us come back to the general case of a discrete dynamical system T : X → X. In order
to understand the behavior of trajectories, it is natural to partition the set X into a finite
number (say d) of subsets (Xi)1≤i≤d: X = ∪di=1Xi. We then code the trajectory of a point
x ∈ X with respect to the finite partition (Xi)1≤i≤d. One thus associates with each point
x ∈ X an infinite word with values in the finite alphabet {1, . . . , d} defined as follows:

∀n ∈ N, un = i if and only if Tn(x) ∈ Xi.

Coding trajectories allows one to go from dynamical systems (X,T ) defined on ‘geometric’
spaces X to symbolic dynamical systems and backwards, provided the coding has been chosen
in an efficient way. Section 5 devoted to Sturmian words, provides an example of such
a fruitful coding since Sturmian words code discrete lines. If the partition is well-chosen,
these symbolic codings allow the statistical analysis (via ergodic theory) on the underlying
dynamical systems. This is the object of next section.

Consider the (one-sided shift) T defined on AN as T ((un)n) = (un+1)n. The map T is
uniformly continuous, onto but not necessarily one-to-one on AN.

Exercise 23. We recall that an infinite word is recurrent if every factor every factor appears
an infinite number of times in this infinite word.

Prove that an infinite word u is recurrent if and only if there exists a strictly increasing
sequence (nk)k such that

u = lim
k→+∞

Tnku.

Definition 24 (Minimality). Let (X,T ) be a subshift. It is said minimal if the only subsets
of X that are closed and stable by the shift are the empty set and X.

Exercise 25. Prove that (X,T ) is minimal if and only if X = O(u), for every element u of
X.

We recall that an infinite word is said to be uniformly recurrent if every factor appears
infinitely often and with bounded gaps (or, equivalently, if for every integer n, there exists an
integer m such that every factor of u of length m contains every factor of length n).

Proposition 26. An infinite word u is uniformly recurrent if and only if (O(u), T ) is minimal

Proof. The idea is that if w is a factor of u, write

O(u) =
⋃
n∈N

T−n[w],

and conclude by a compactness argument.

• Assume that (O(u), T ) is minimal. Let w ∈ Lu. Let us consider T−n[w] = {v ∈ O(u) |
w is a prefix of Tnv}.

Let v ∈ O(u). Since O(v) = O(u) by minimality, one has Lu = Lv. This implies

that for any w ∈ Lu, if v ∈ O(u), then w must appear somewhere in v. In other
words, one has

O(u) ⊆
⋃
n∈N

T−n[w].

We recall that T is continuous and that w is a clopen set, so T−n[w] is a clopen set
as well. The set

⋃
n∈N T

−n[w] is closed. It is also non-empty (u ∈ T−n0 [w] for some
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n0), shift-invariant, and a subset of O(u). So, by minimality,

O(u) =
⋃
n∈N

T−n[w].

As O(u) is closed in a compact space, it is compact. By compactness, if there is a
cover by open sets, a finite cover can be extracted. Hence there exists some m ∈ N
such that

O(u) ⊆
m⋃
n=0

T−n[w].

Since, for every k ∈ N, T k(u) ∈ O(u), one has

∀k ∈ N, T k(u) ∈
m⋃
n=0

T−n[w].

This means that w appears infinitely often in u, and that the gaps between two of its
occurrences are bounded by m, i.e., u is uniformly recurrent.
• Reciprocally, assume that u is uniformly recurrent. Let v ∈ O(u). Let us show that

for all w ∈ Lu, one has w ∈ Lv. Then, we would have O(u) ⊂ O(v) and since

O(v) ⊂ O(u), we would conclude that O(u) = O(v), which proves the minimality.
Let w ∈ Lu. Since u is uniformly recurrent, there exists N such that every

factor of length N of u contains w. We know that v ∈ O(u) = {Tnu|n ∈ N} ∪
{limk→∞ T

nku|(nk)k an increasing sequence}.
– Suppose that there exists n such that v = Tnu. Then w ∈ Lv.
– Suppose that there exists (nk) such that v = limk→∞ T

nku. We know ∃k0/∀k ≥
k0, T

nku starts with the same prefix of length N as v. This prefix must contain
w, so w ∈ Lv.

�

2.5. More on measure-theoretic dynamical systems. General references on the subject
are [12, 18, 24, 34, 35, 37]. See [19] for connections with number theory and Diophantine
approximation.

A measure-theoretic dynamical system is defined as a system (X,T, µ,B), where µ is a
probability measure defined on the σ-algebra B of subsets of X, and T : X → X is a
measurable map which preserves the measure µ, that is, µ(T−1(B)) = µ(B) for all B ∈ B.
The measure µ is said to be T -invariant.

An invariant probability measure on X is said ergodic if for every set B ∈ B such that
T−1(B) = B, B has either zero or full measure. The system (X,T, µ,B) is then said to be
ergodic. This implies that almost all orbits are dense in X (almost all means that the set of
elements x ∈ X whose orbit is not dense is contained in a set of zero measure). More generally
a property is said to hold almost everywhere (abbreviated as a.e.) if the set of elements for
which the property does not hold has zero measure; this property is said to be generic (the
points that satisfy this property are then also said to be generic). This helps us to give a
meaning to the notion of typical behavior for a dynamical system.

Ergodicity yields furthermore the following striking convergence result. Indeed, measure-
theoretic ergodic dynamical system satisfy the Birkhoff ergodic theorem, also called individual
ergodic theorem, which relates spatial means to temporal means.
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Theorem 27 (Birkhoff Ergodic Theorem). Let (X,T, µ,B) be an ergodic measure-theoretic
dynamical system. Let f ∈ L1(X,R). Then

1

n

n−1∑
k=0

f ◦ T k µ−a.e.−−−−→
n→∞

∫
X
f dµ .

Points for which this convergence property holds for a given f are generic.
In the case of a symbolic dynamical system (O(u), T ) generated by an infinite word u, the

following special case of the Daniell-Kolmogorov consistency theorem (see for instance [37])

provides probability measures on (O(u), T ).

Theorem 28. Let A = {1, . . . , d} and u ∈ AN. Consider a family of maps (pn)n≥1,
where pn is a map from An to R, such that for any word w in An, pn(w) ≥ 0, pn(w) =
d∑
i=1

pn+1(w1 . . . wni), and

d∑
i=1

p1(i) = 1. Then there exists a unique probability measure µ on

AN defined on the cylinders by µ([w1 . . . wn]) = pn(w1 . . . wn).

Furthermore, if for any n and for any word w = w1 . . . wn in An, pn(w) =
d∑
i=1

pn+1(iw1 . . . wn),

then this measure is T -invariant (shift-invariant).

If the frequencies of all factors exist for a given u ∈ AN, then, according to Theorem
28, there exists a unique T -invariant probability measure µ which assigns to each cylinder
[w] the frequency f(w) of the corresponding factor [w], by setting µ[w] := f(w). Thus a
precise knowledge of the frequencies allows a complete description of the measure µ. One
can similarly define a shift-invariant measure for a subshift X ⊂ AN provided that any factor
w in the langage of X (i.e., the set of factors of its elements) has the same frequency in
all the infinite words of X. We have seen the notion of unique ergodicity in Definition 15.
In fact, unique ergodicity is equivalent to the fact that there is a unique invariant measure.
Unique ergodicity corresponds in the case of continuous functions to uniform convergence for
all points (and not only for a.e. point) in ergodic sums, in Birkhoff’s ergodic theorem. For
more details on invariant measures and ergodicity, we refer to [35] and [10, Chap. 7].

Natural questions that can be addressed now concerning discrete dynamical systems are
the following. What is a good coding? How to describe the invariant measures? Can one
find geometric representations of a given symbolic dynamical system? How to measure the
disorder of a dynamical system? The next sections provides some elements of answer.

3. Substitutions

3.1. First properties. We consider a finite set of letters A, called alphabet. A (finite) word
is an element of the free monoid A∗ generated by A. A substitution σ over the alphabet A
is a non-erasing endomorphism of the free monoid A∗ (non-erasing means that the image of
any letter is not equal to the empty word but contains at least one letter).

Let A = [[1, d]]. For i ∈ A and for w ∈ A∗, let |w|i stand for the number of occurrences of
the letter i in the word w. Let σ be a substitution. Its incidence matrix Mσ = (mi,j)1≤i,j≤d
is defined as the square matrix with entries mi,j = |σ(j)|i for all i, j.

Note that if σ and τ are substitutions, then σ◦τ is still a substitution and Mσ◦τ = Mσ ·Mτ .
(Sending a substitution to its incidence matrix defines a monoid homomorphism from the
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monoid of substitutions to the monoid of square matrices equiped with multiplication.) In
particular, Mσn = (Mσ)n for all n ∈ N.

Definition 29 (Primitive substitution). A substitution is said primitive if there exists a
power of its incidence matrix whose entries are all positive.

A fixed point of a substitution σ is an infinite word u = (un)n with σ(u) = u.
Substitutions are very efficient tools for producing infinite words. Let σ be a substitution

over the alphabet A, and a be a letter such that σ(a) begins with a and |σ(a)| ≥ 2. Then
there exists a unique fixed point u of σ beginning with a. This infinite word is obtained as the
limit in A∗ ∪ AN (when n tends toward infinity) of the sequence of words (σn(a))n, which is
easily seen to converge (we recall that the topology on AN is extended to A∗ ∪AN by adding
an extra symbol to the alphabet A).

Example 30 (Fibonacci substitution). We consider the substitution σ on A = {a, b} defined
by σ(a) = ab and σ(b) = a. Its incidence matrix is(

1 1
1 0

)
.

Then, the sequence of finite words (σn(a))n starts with

σ0(a) = a, σ1(a) = ab, σ2(a) = aba, σ3(a) = abaababa, . . .

Each σn(a) is a prefix of σn+1(a), and the limit word in AN is

abaababaabaababaababaabaababaabaababaababaabaababaababaabaab . . .

The above limit word is called the Fibonacci word (for more on the Fibonacci word, see e.g.
[29, 22]).

Definition 31. A substitution is right prolongable if there exists a letter a such that σ(a) = av
with v non-empty word.

Proposition 32. Any primitive substitution admits a power σk that is right prolongable,
that is, there exists a letter a such that σk(a) = av with v non-empty word. One then has
limn σ

kn(a) = +∞. It thus generates a fixed point.

Proof. Let σ be a substitution. Consider the oriented graph having as vertices the letters of
the alphabet and an arrow between a and b if b if the first letter of σ(a). Since the graph is
finite, there exists a letter a and a non-negative integer n such that the first letter of σn(a) is
a. We conclude by using the fact that σ is primitive.

A redaction in more details. If #A = 1, i.e., A = {a}, then for any substitution σ the
configuration aω is a fixed point. In what follows, we assume that #A ≥ 2.

• First, we prove that there exists some n ∈ N and a letter b ∈ A such that σn(b)
starts with b and is of length at least 2. As σ is a primitive substitution, there exists
some k ∈ N such that for every a, b ∈ A, a appears in σk(b). In particular, for every
letter b ∈ A, |σk(b)| ≥ 2. Now, let a ∈ A and consider the sequence (σkp(a))p≥0. It
is a sequence of non-empty words, and because A is a finite set, there exists some
p < p′ such that σkp(a) starts with the same letter b as σkp

′
(a) (by the pigeon-hole

principle). Then we prove that σk(p′−p)(b) is a finite word which starts with the letter

b. Indeed, σk(p′−p)(σkp(a)) = σkp
′
(a) starts with the letter b, and σkp(a) also starts

with the letter b. Define n = k(p′ − p). As σn is a power of σk, we have |σn(b)| ≥ 2
and σn(b) starts with the letter b.
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• The sequence (σnp(b))p≥0 is a converging sequence. Indeed, the sequence of lengths
(|σnp(b)|) tends towards +∞, and for every p ≥ 0 the word σnp(b) is a prefix of

σn(p+1)(b).

�

We recall that an infinite word u = (un)n is uniformly recurrent if every word occurring in
u occurs in an infinite number of positions with bounded gaps, that is, if for every factor w,
there exists s such that for every n, w is a factor of un . . . un+s−1.

Proposition 33. If σ is primitive, then any infinite word u with σk(u) = u for some k > 0
is uniformly recurrent.

Proof. Let p be such an integer that Mp
σ has only positive entries and let k be such an integer

that σk(a) starts with a ∈ A (as σ is primitive, we know there exist such k and a and there
exists a fixed point u = σk(u), u0 = a). As the matrix Mσ has non-negative entries, it

follows that Mp+n
σ has strictly positive entries for every integer n ≥ 1. Also, it holds that

(σk)n(u) = u for any n ≥ 1. Let us take n such that nk ≥ p and let ` := nk. Then,
σ`(u) = σ`(u0)σ`(u1)... and every σ`(ui) contains all the letters from the alphabet. Therefore
the letters appear in u with bounded gaps, where the size of the gap is bounded by the largest
of the numbers σ`(ui). Let us consider a factor w ∈ Lu. Then, w is a factor of σm(u0) for
some m ∈ N. As we can write u = (σ`)m(u) = (σ`)m(u0)(σ`)m(u1)..., every σ`(ui) contains
u0 and therefore every (σ`)m(ui) contains w, w occurs in u with bounded gaps. There are
finitely many of factors of each length and therefore we can take for N the maximum of the
gaps for factors with the same length for proving uniform recurrence. �

According to Perron–Frobenius’ theorem, if a substitution is primitive, then its incidence
matrix admits a dominant eigenvalue λ (it dominates strictly in modulus the other eigen-
values) that is (strictly) positive. It is called its Perron–Frobenius eigenvalue, or else its
expansion factor. Then, for all i, j, there exists ci,j such that Mn

i,j/λ
n → ci,j .

Proposition 34. Let σ be a primitive substitution over the finite alphabet A. Let λ stand
for its Perron–Frobenius eigenvalue. Then, there exist C,C ′ > 0 such that for all letters in A

C ′λn ≤ |σn(a)| ≤ Cλn.

Proof. We use the fact that Mσn = (Mσ)n, and that |σn(a)| =
∑

b∈A |σn(a)|b. In more details.

(1) Let M be the matrix associated to σ, a primitive substitution. Then if a ∈ A is the

ith letter, then |σn(a)| =
∑d

j=1(Mn)i,j .

(2) Let λ be the Perron-Frobenius eigenvalue, and v be an associated Perron eigenvector
(∀1 ≤ j ≤ d, vj > 0). Then:

∀n,
d∑
j=1

(Mn)i,jvj = λnvi

So if M = max vj and m = min vj , one has:

m

M
λn ≤ vi

M
λn =

d∑
j=1

(Mn)i,j
vj
M
≤

d∑
j=1

(Mn)i,j = |σn(a)|
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and

M

m
λn ≥ vi

m
λn =

d∑
j=1

(Mn)i,j
vj
m
≥

d∑
j=1

(Mn)i,j = |σn(a)|

So C ′ = m
M and C = M

m verify the aforementioned inequality.

�

Theorem 35. (1) The factor complexity of a fixed point u of a primitive substitution or
of a fixed point u of a substitution of constant length satisfies

∃C, ∀n, pu(n) ≤ Cn.

(2) The factor complexity of a fixed point u of a substitution satisfies

∃C, ∀n, pu(n) ≤ Cn2.

Proof. Let us prove (1). We show the result for σ primitive. Let n ∈ N and u be a fixed point
of σ. Take k ∈ N satisfying

min
a∈A
|σk−1(a)| ≤ n < min

a∈A
|σk(a)|.

This index exists by Proposition 34 since the sequence (mina∈A |σj(a)|)j≥0 is non-decreasing
and tends towards +∞.

Let w be a factor of length n of u. As σ(u) = u, we write u as

u = σk(u) = σk(u0)σk(u1)σk(u2) · · ·

Now note that a factor w of length n occurs either is some σk(ui) for some i, or in some
σk(ui)σ

k(ui+1), since n < mina∈A |σk(a)|. In both cases we conclude that such a factor occurs
entirely in some σk(uiui+1) for some i. Any factor of size n is thus uniquely determined by
two letters ui, ui+1 and an offset l with 0 ≤ l < maxa∈A |σk(a)|, i.e., the number of factors of
length n is bounded by the number of possibilities for the choice of two letters and a starting
position. We therefore have the inequality

pn(u) ≤ |A|2 max
a∈A
|σk(a)| .

We now would like to bound maxa∈A |σk(a)| by a linear factor. First note that maxa∈A |σk(a)| ≤
maxa∈A |σ(a)| ·maxa∈A |σk−1(a)| and thus

pn(u) ≤ |A|2 max
a∈A
|σk(a)| ≤ |A|2 max

a∈A
|σ(a)|max

a∈A
|σk−1(a)| .

By Proposition 34, there are C,C ′ such that for all a ∈ A,

C ′λk−1 ≤ |σk−1(a)| ≤ Cλk−1 ,

where λ is the Perron Frobenius eigenvalue. This inequality implies

C ′λk−1 ≤ min
a∈A
|σk−1(a)| ≤ max

a∈A
|σk−1(a)| ≤ Cλk−1

and an easy manipulation gives

max
a∈A
|σk−1(a)| ≤ Cλk−1 =

C

C ′
C ′λk−1 ≤ C

C ′
min
a∈A
|σk−1(a)| .
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Finally, remember that we have taken k satisfying mina∈A |σk−1(a)| ≤ n, and therefore we
also have

max
a∈A
|σk−1(a)| ≤ C

C ′
min
a∈A
|σk−1(a)| ≤ C

C ′
n .

By putting all of this together,

pn(u) ≤ |A|2 max
a∈A
|σ(a)|max

a∈A
|σk−1(a)| ≤ |A|2 max

a∈A
|σ(a)| C

C ′
n

and as |A|2 maxa∈A |σ(a)| CC′ does not depend on n, we have shown the result.
�

We associate a symbolic dynamical system (Xσ, T ) with the primitive substitution σ over
A. Let u ∈ AN be such that σk(u) = u for some k ≥ 1. We recall that such an infinite
word exists by primitivity of σ. Indeed, there exist a letter a and a positive integer k such
that σk(a) begins with a and |σk(a)| ≥ 2; consider as first letter of u this letter a; take

u = limn→∞ σ
kn(a). Such an infinite word exists by primitivity of σ. Let again O(u) be the

positive orbit closure of the infinite word u under the action of the shift T , i.e., the closure
of the set O(u) = {Tn(u) | n ≥ 0}. The substitutive symbolic dynamical system (Xσ, T )

generated by σ is defined as Xσ := O(u).
One checks by primitivity that (Xσ, T ) does not depend on the choice of the infinite word

u fixed by some power of σ. For more details, see e.g. [35]. Indeed, first, one should note that
because σ is primitive, if u is fixed by some power k of σ, then every letter of A appears in
u. Indeed, let N be a non-negative integer such that MN

σ is positive; then every letter must
appear in σkN (u) = u. Now, assume that u and v are fixed by some power k of σ (we can
assume that they are fixed by the same power; otherwise, take their product). We have that
Lu ⊆ Lv: indeed, if w is a factor of u, we can assume that it is a prefix of u (otherwise, shift u
enough); then if a denotes the first letter of u, there exists some n ∈ N such that |σn(a)| ≥ |w|,
and then σnk(u) = u and |σnk(a)| ≥ w. This means that w is a factor of σnk(a). Because by
our first consideration, a must appear in v, and that σnk(v) = v, we obtain that w is a factor

of v. Finally, by symmetry, Lu = Lv, which leads to O(u) = O(v).
The dynamical system (Xσ, T ) associated with a primitive substitution σ can be en-

dowed with a Borel probability measure µ invariant under the action of the shift T , that
is, µ(T−1B) = µ(B), for every Borel set B. Indeed, this measure is uniquely defined by its
values on the cylinders. For a given (finite) word w of the language of Xσ, the cylinder [w] is
the set of infinite words in Xσ that have w as a prefix. We can define a measure by defining
the measure of the cylinder [w] as the frequency of the finite word w in any element of Xσ,
which does exist (by primitivity of σ).

Before we proceed to the next statement about primitive substitutions, let us summarize
what we know about them so far. If a substitution σ is primitive, there exists k ∈ N such
that the k-th power of σ admits a fixed point u. The fixed point u is uniformly recurrent and
this is equivalent to the fact that the dynamical system (O(u), T ) is minimal. We define a

dynamical system Xσ as Xσ = O(u) and this term is well-defined because O(u) = O(v) for
any u, v fixed points of any of the powers of σ. We also know that the incidence matrix Mσ

has a Perron-Frobenius eigenvalue λ which dominates all the other eigenvalues (|λ′| < λ for
all other eigenvalues λ′) and there exist constants C,C ′ > 0 such that for every letter a ∈ A
we have C ′λn ≤ |σn(a)| ≤ Cλn. Finally, we have that there exists a constant C > 0 such that
pu(n) ≤ Cn for all integers n.
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Theorem 36. Let σ be a primitive substitution. Then for any infinite word u which is a
fixed point of some σk, for some k ≥ 1, the frequencies of all the factors exist in u. Moreover,
(Xσ, T ) is minimal and uniquely ergodic. Any of its elements has at most linear factor
complexity and it is linearly recurrent.

Proof. Let us prove the linear recurrence. We assume w.l.o.g. that σ(u) = u. Let n, k as in
the proof of Theorem 35. A factor of u of length n is contained in some σk(a) or some σk(ab)
since n < mina∈A |σk(a)|. Let R be an upper bound on gaps between successive occurences
for any letter and any factor of size 2 (it exists by uniforme recurrence). Then, using the
same method as in proof of Theorem 35

Ru(n) = min{N | every factor of length N contains every factor of length n} ≤ R C

C ′
λn.

Therefore, every factor of length R C
C′λn contains all the factors of length n.

In more details.

• First, we prove that if u is fixed by σk, then u is linearly recurrent. Let w be a factor
of length n in u, and let p be an integer such that:

min
a∈A
|σk(p−1)(a)| ≤ n ≤ min

a∈A
|σkp(a)|.

Then similarly to the proof of Theorem 35, there exist two letters a, b ∈ A such that
w is a factor of σkp(ab). Additionally, since u is uniformly recurrent, there exists
some m ≥ 0 such that every factor of length 2 belongs in every factor of u of length
≥ m. Consider now the length between two occurrences of the word w. As the
length between two occurrences of ab is bounded by m, we conclude that the length
of between two occurrences of w is bounded by m · supa∈A |σkp(a)|.
There exist C,C ′, λ > 0 such that:

sup
a∈A
|σkp(a)| ≤ Cλkp = λk

C

C ′

(
C ′λk(p−1)

)
≤ λk C

C ′
inf
a∈A
|σk(p−1)(a)| ≤

(
λk
C

C ′

)
n.

We conclude that if w′ is a factor of u of length ≥
(
mλk CC′

)
n, then every factor of u

of length n appears in w′. This means that u is linearly recurrent.
• We conclude by minimality. Let v ∈ Xσ. There exists some fixed point u of σk such

that Xσ = O(u). By minimality, O(v) = O(u), which is equivalent to Lv = Lu.
Consider w′ a factor of v of length ≥

(
mλk CC′

)
n. Then w′ is also a factor of u: by

the first point, it contains every factor of u of length n, which are exactly the factors
of v of length n.

�

Exercise 37. Let A = {a, b} and let σ : A → A∗ be the Fibonacci substitution defined by
σ(a) = ab and σ(b) = a.

Prove the following decomposition property: every factor w of u can be written in a unique
way as

w = r1σ(v)r2

where v is a factor of u (possibly empty), r1 ∈ {ε, b}, and r2 = a if the last letter of w is a,
and r2 = ε, otherwise.

Prove that if w is a non-empty left special factor of u, then there exists a unique non-empty
left special factor v of u such that w = σ(v)r2, where r2 = a if the last letter of w is a, and
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r2 = ε, otherwise. Give a description of left special factors. Deduce that this infinite word is
Sturmian.

Exercise 38. Let u be the Thue-Morse word defined as the fixed point beginning by 0 of the
following substitution: σ(0) = 01 and σ(1) = 10.

Prove that every factor w can be written as follows: w = r1σ(x)r2, where x is a factor of
u (possibly empty) and ri ∈ {ε, 0, 1}. If |w| ≥ 5, then this decomposition is unique.

Prove that p(2n) = p(n) + p(n + 1) and that p(2n + 1) = 2p(n + 1), for n ≥ 2. Give an
expression for the complexity function.

3.2. More on Pisot substitutions. An algebraic integer λ is a root of a polynomial whose
leading coefficient is 1 (it is said monic) with integer coefficients. Its algebraic conjugates
are the roots of the unique monic polynomial with integer coefficients with lowest degree
having λ as a root (it is called the minimal polynomial of λ). An algebraic integer λ > 1
is a Pisot-Vijayaraghavan number or a Pisot number if all its algebraic conjugates λ′ other
than λ itself satisfy |λ′| < 1. This class of numbers has been intensively studied and has some
special Diophantine properties.

Example 39. The largest roots of X2−X−1, X3−X2−X−1, X3−X−1 or else X3−X2−1
are Pisot numbers.

A primitive substitution is said to be Pisot if its expansion number (i.e., its Perron–
Frobenius eingenvalue) is a Pisot number.

Example 40. The Fibonacci substitution is a Pisot irreducible substitution.

Theorem 41. Primitive Pisot substitutions are balanced, and have finite discrepancy.

Proof. The proof follows the proof of [2, Proposition 11] and uses the Dumont-Thomas prefix-
suffix numeration [20].

Let σ be a primitive Pisot substitution over the alphabet A. Let us prove that σ has finite
discrepancy. Let (fi)i stand for its letter frequency vector. One has in particular

∑
i fi = 1.

We consider the abelianization map1 l defined as the map

l : A∗ → Nd, w 7→ (|w|1, |w|2, · · · , |w|d).
Note that

l(σ(w)) = Mσl(w),

for any word w.
We first consider a fixed word w of the form w = σn(j), for j letter in A. If i is a fixed letter

in A, the sequence (|σn(j)|i)n satisfies a linear recurrence whose coefficients are provided by
the minimal polynomial of Mσ. Hence, there exists Ci,j such that

|σn(j)|i = Ci,jfiλ
n +O(nα2 |λ2|n).

By applying the Perron–Frobenius Theorem, one checks that there exists Cj such that Ci,j =
Cjfi for all i, hence

|σn(j)|i = Cjfiλ
n +O(nα2 |λ2|n).

We then deduce from
∑

i fi = 1 that

|σn(j)|i − fi|σn(j)| = O(nα2 |λ2|n).

1Abelianization comes from the fact that Nd is the greatest abelian monoid contained in A∗ in the sense that
if M is an abelian monoid, every morphism f : A∗ →M can be uniquely factored as f̄ ◦ l where f̄ : Nd →M .
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The conclusion follows from |λ2| < 1 since σ is a Pisot substitution.
It remains to check that this result also holds for all the prefixes of the fixpoint w, and not

only for prefixes of the form σn(a). Indeed, it is easy to prove that any prefix w of u can be
expanded as:

w = σk(wk)σ
k−1(wk−1) . . . w0,

where the wi belong to a finite set of words. (This corresponds to a “numeration system”
on words; there are some admissibility conditions on the possible sequences (wi), which can
be worked out explicitly: they are given by a finite automaton.) This numeration is called
Dumont-Thomas numeration. �

In fact, more can be said concerning balance properties of primitive substitutions. Let
σ be a primitive substitution and λ be its Perron–Frobenius eigenvalue. Consider the set
of eigenvalues of Mσ whose modulus is strictly smaller than λ. Let λ2 be one of those
eigenvalues with maximal multiplicity α2 + 1 in the minimal polynomial of Mσ. Note that
several eigenvalues might satisfy this condition.

Theorem 42 ([1, 2]). Let σ be a primitive substitution. Let u be a fixed point of σ.

• If |λ2| < 1, then the discrepancy ∆(u) is finite.

• If |λ2| > 1, then ∆n(u) = (O ∩ Ω)((log n)α2n(logλ |λ2])).
• If |λ2| = 1, and λ2 is not a root of unity2 , then

∆n(u) = (O ∩ Ω)((log n)α2+1).

If λ2 is a root of unity, then either

∆n(u) = (O ∩ Ω)((log n)α2+1), or ∆n(u) = (O ∩ Ω)((log n)α2).

In particular there exist balanced fixed points of substitutions for which |θ2| = 1. All
eigenvalues of modulus one of the incidence matrix have to be roots of unity.

Observe that the Thue-Morse word is 2-balanced, but if one considers generalized balances
with respect to factors of length 2 instead of letters, then it is not balanced anymore.

4. Graphs of Words

4.1. First definitions.

Definition 43 (Graphs of words). Let u be an infinite word over the finite alphabet A (of
cardinality d). The Rauzy graph Γn of words of length n of the infinite word u is an oriented
graph which is a subgraph of the de Bruijn graph of words3. Its vertices are the factors of
length n of the infinite word u and the edges are defined as follows: there is an edge from U to
V if V follows U in u, i.e., if there exists a word W and two letters x and y such that U = xW ,
V = Wy and xWy is a factor of the infinite word. Hence, it is the graph Γn = (V,E) such
that: {

V = Lu ∩ An

E = {(U, V ), ∃W, ∃x, y ∈ A, U = xW, V = Wy and xWy ∈ Lu} .
There are pu(n+ 1) edges and pu(n) vertices, where pu(n) denotes the factor complexity.

2A root of unity α is such that there exists n such that λn = 1.
3The de Bruijn graph of words corresponds to the graph of words of an infinite word of maximal complexity

(∀n, p(n) = dn) and was introduced by de Bruijn in order to construct circular finite words of length dn

with values in {0, 1, . . . , d − 1} such that every factor of length n appears once and only once: such a word
corresponds to a Hamiltonian closed path in de Bruijn graph.
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Exercise 44. Prove that the graphs of words of an infinite word are always connected. Prove
the following equivalence:

• the infinite word u is recurrent,
• every factor of u appears at least twice,
• the graphs of words are strongly connected.

Let u be an infinite word over the finite alphabet A (of cardinality d). Let U be a vertex
of the graph Γn, for some n. Denote by U+ the number of edges of Γn with origin U and
by U− the number of edges of Γn with end vertex U . In other words, U+ (respectively U−)
counts the number of right (respectively left) extensions of U . Recall that

pu(n+ 1) =
∑
|U |=n

U+ =
∑
|U |=n

U−,

and thus

pu(n+ 1)− pu(n) =
∑
|U |=n

(U+ − 1) =
∑
|U |=n

(U− − 1).

Exercise 45. Recall that a Sturmian word u is defined as an infinite word of factor complexity
pu(n) = n+ 1, for every positive integer n, and that it is recurrent (Exercise 12).

• For any positive integer n, prove that there exists a unique factor of length n having
two right (respectively left) extensions: such a factor is called a right (respectively
left) special factor and is denoted from now on by Rn (respectively Ln).
• Prove that the graph of words Γn of a Sturmian word has the two following possible

forms.

' $�

& %
-

�

Ln Rn Ln = Rn

�

�

�
�

�
�

�
�

�
�

• Deduce from the morphology of the graph of words Γn that every Sturmian word is
uniformly recurrent. One can first prove that every factor of a Sturmian word is a
subfactor of a factor of the form Rn and then deduce from the morphology of the
graph Γn that Rn appears with bounded gaps.

Exercise 46. • Prove that if the infinite word u is uniformly recurrent and non-constant,
then the graph Γn has no edge of the form U → U , for n large enough.
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• Suppose that the infinite word u is uniformly recurrent. Prove that if the graph of
words Γn+1 is Hamiltonian (i.e., there exists a closed oriented path passing exactly
once through every vertex), then the graph Γn is Eulerian (there exists a closed path
passing exactly once through every edge) and that U+ = U−, for every vertex of Γn.
Is the converse true?
• Give the graphs of words of order 1, 2, 3, 4 for the Thue-Morse word.

4.2. More on graphs of words and frequencies. Let us see how to deduce from the
morphology of the graphs of words results concerning the frequencies of factors.

In this section we restrict ourselves to infinite words for which the frequencies exist. Observe
that the function which associates to an edge labelled by xWy the frequency of the factor
xWy is a flow. Indeed, it satisfies Kirchhoff’s current law: the total current flowing into each
vertex is equal to the total current leaving the vertex. This common value is equal to the
frequency of the word corresponding to this vertex.

Lemma 47. Let u be an infinite word which admits all frequencies of words, i.e., all the
frequencies of words exist. Let U and V be two vertices linked by an edge such that U+ = 1
and V − = 1. Then the two factors U and V have the same frequency.

Proof. Write U = xW and V = Wy, where x and y are letters. As U+ = 1, U has a unique
right extension y. Similarly, V has a unique left extension x. Thus fU = fUy = fxWy =
fxV = fV , where f denotes the frequency. �

A branch of the graph Γn is a sequence of maximal length (U1, . . . , Um) of connected edges
of Γn, possibly empty, satisfying

U+
i = 1, for i < m, U−i = 1, for i > 1.

Therefore, the edges of a branch have the same frequency and the number of frequencies of
factors of given length is bounded by the number of branches of the corresponding graph, as
expressed below (see [13]).

Theorem 48. For a recurrent word of factor complexity pu(n), the frequencies of factors of
given length, say n, take at most 3(pu(n+ 1)− pu(n)) values.

Proof. Let V1 denote the set of factors of length n having more than one extension. In other
words V1 is the subset of vertices of the graph Γn defined as follows: U ∈ V1 if and only if
U+ ≥ 2. The cardinality of V1 satisfies

card(V1) =
∑

|U |=n, U+≥2

1 ≤
∑
|U |=n

(U+ − 1) = pu(n+ 1)− pu(n).

Let V2 denote the subset of vertices of the graph Γn defined as follows: U ∈ V2 if and only
if U+ = 1 and if V denotes the unique vertex such that there is an edge from U to V in Γn,
then V − ≥ 2. In other words, U belongs to V2 if and only if U = xW , where x is a letter and
where the factor W of the infinite word u has a unique right extension but at least two left
extensions. The cardinality of V2 satisfies:

card(V2) ≤
∑
V −≥2

V − =
∑
V −≥2

(V − − 1) +
∑
V −≥2

1 ≤ 2(pu(n+ 1)− pu(n)).

Thus there are at most 3(pu(n+ 1)− pu(n)) factors in V1 ∪ V2.
Let U be a factor of length n belonging neither to V1 nor to V2: U+ = 1 and the unique

word V such that there is an edge from U to V in Γn satisfies V − = 1. The two factors U
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and V thus have the same frequency. Now consider the path of the graph beginning at U
and consisting of vertices which do not belong to V1 nor to V2. The last vertex of this path
belongs to either V1 or to V2, and has the same frequency as U . �

Remark 49. In fact we have proved that the frequencies of factors of length n take at most
pu(n + 1) − pu(n) + rn + ln values, where rn (respectively ln) denotes the number of factors
having more than one right (respectively left) extension.

We deduce from this result that if pu(n + 1) − pu(n) is uniformly bounded with n, the
frequencies of factors of given length take a finite number of values. Indeed, using a theorem
of Cassaigne quoted below (see [16]), we can easily state the following corollary.

Theorem 50. If the complexity pu(n) of an infinite word u on a finite alphabet is sub-affine,
i.e.,

∃(a, b), ∀n, pu(n) ≤ an+ b,

then pu(n+ 1)− pu(n) is bounded.

Corollary 51. If an infinite word has a sub-affine complexity then the frequencies of its
factors of given length take a uniform (with respect to the length) finite number of values.

Note that this does not hold anymore for the second-difference of the complexity pu(n +
2) + pu(n)− 2pu(n+ 1) in the case of a sub-quadratic complexity (see the counterexample in
[21]).

5. Sturmian words

Sturmian words provide symbolic codings of translations Rα of the unit circle (that is, the
one-dimensional torus T = R/Z) with

Rα : R/Z→ R/Z, x 7→ x+ α mod 1.

They have been introduced in [33] and widely studied. For more on Sturmian words, see the
corresponding chapters in [29, 22] and the references therein.

Definition 52. A word u ∈ {0, 1}N is Sturmian if and only if it has exactly n+ 1 factors of
length n.

Theorem 53. The infinite word u = (un)n∈N ∈ {0, 1}N is a Sturmian word if there exist
α ∈ (0, 1), α 6∈ Q, x ∈ R such that

∀n ∈ N, un = i⇐⇒ Rnα(x) = nα+ x ∈ Ii (mod 1),

with either I0 = [0, 1− α[, I1 = [1− α, 1[, or I0 =]0, 1− α], I1 =]1− α, 1].

A Sturmian word is thus a coding of the dynamical system (T, Rα) with respect either to
the two-interval partition {I0 = [0, 1−α[, I1 = [1−α, 1[} or to {I0 =]0, 1−α], I1 =]1−α, 1]}.

Sturmian sequences are also characterized by the following properties.

• Sturmian sequences are exactly the non-ultimately periodic balanced sequences over
a two-letter alphabet.
• Sturmian sequences are codings of trajectories of irrational initial slope in a square

billiard obtained by coding horizontal sides by the letter 0 and vertical sides by the
letter 1.
• One can also consider Sturmian sequences as approximations of a line of irrational

slope in the upper half-plane.
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5.1. Factors and intervals. The following lemma is crucial for the study of Sturmian words.

Lemma 54 (Factors lemma). The word w = w1 · · ·wn over the alphabet {0, 1} is a factor of
the Sturmian word u if and only if Iw := Iw1 ∩R−1

α Iw2 ∩ · · ·R−n+1
α Iwn 6= ∅.

Proof. By definition, one has

∀i ∈ N, un = i⇐⇒ nα+ x ∈ Ii (mod 1).

One first notes that ukuk+1 · · ·un+k−1 = w1 · · ·wn if and only if
kα+ x ∈ Iw1(mod 1)
(k + 1)α+ x ∈ Iw2(mod 1)
...
(k + n− 1)α+ x ∈ Iwn(mod 1).

One then applies the density of (nα)n∈N in Z/R (recall that α is assumed to be an irrational
number). �

We use here the fact that the sets Iw1 ∩R−1
α Iw2 ∩ · · ·R−n+1

α Iwn are intervals.

Lemma 55. The sets Iw1 ∩R−1
α Iw2 ∩ · · ·R−n+1

α Iwn are intervals of T = R/Z.

Proof. We prove by induction on n that any intersection Iw1 ∩R−1
α Iw2 ∩ · · ·R−n+1

α Iwn which
is not empty is an interval, for w1 · · ·wn ∈ {0, 1}∗. This is true for n = 1. We assume that
the induction property holds for n. Consider some intersection Iw1 ∩ R−1

α Iw2 ∩ · · ·R−nα Iwn+1

and assume by contradiction that it is not connected. By induction, I := Iw1 ∩ R−1
α Iw2 ∩

· · ·R−n+1
α Iwn is an interval. This implies that |I| + |Iwn+1 | > 1 and all letters are equal to

wn+1.We assume α < 1/2 without loss of generality. One has wn+1 = 0 = wn = · · · = w1.
But one checks that I0k is an interval for every k; it is either empty or of the form [0, 1− kα)
for k such that 0 < α < 1/k. We deduce that Iw1 ∩ R−1

α Iw2 ∩ · · ·R−nα Iwn+1 = I0n+1 is an
interval. We get the desired since contradiction. �

One first notes that the condition of Lemma 54 does not depend on the point x whose orbit
is coded but only on α. Also, it does not depend on the partition I0 = [0, 1−α[, I1 = [1−α, 1[,
or I0 =]0, 1− α], I1 =]1− α, 1].

Furthermore, the factors of u of length n are in one-to-one correspondence with the n+ 1
intervals of T whose end-points are given by −kα mod 1, for 0 ≤ k ≤ n. This implies that
two Sturmian words coding the same rotation Rα have the same factors.

One thus can define the Sturmian shift (Xα, T ) as the closure in {0, 1}N of the orbit of
any Sturmian word coding Rα (and also as the closure in {0, 1}N of the orbit of all Sturmian
words coding Rα). Indeed, since two Sturmian words coding the same rotation have the same
set of factors, then one checks that the symbolic dynamical system generated by a Sturmian
word coding the rotation Rα consists of all the Sturmian words that code the same rotation.
The system (Xα, T ) is minimal: it admits no non-trivial closed and shift-invariant subset.

By Proposition 10, Sturmian words are non-periodic words of smallest factor complexity.
This explains why Sturmian words are widely studied and occur in various contexts as models
of aperiodic order, for quasiperidoic structures such as quasicrystals (see the books [5]), or else
in discrete geometry, as (Freeman) coding discrete lines in discrete geometry. More generally,
for references on discrete lines, see the surveys [26, 14].
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5.2. Frequencies of factors. We now consider properties of frequencies of factors of Stur-
mian sequences.

One deduces from Lemma 54 not only properties of a topological nature on the number
of factors, but also information of a measure-theoretical nature, such as the expression of
frequencies of factors [8], that can be deduced from the equidistribution of the sequence
(nα)n∈N. Indeed, the frequency of occurrence of the word w in the Sturmian word u is equal
to the length of the interval Iw.

Remark 56. Note that we have seen in Section 2.5 that it allows the expression of a shift-
invariant measure. Moreover, one checks that Sturmian words are uniquely ergodic: the
convergence to frequencies is uniform. Frequencies of factors thus provides the unique shift-
invariant measure of the Sturmian shift (Xα, T ). We also deduce from the expression of
the complexity function that it has zero topological entropy. Moreover, one checks that the
systems (Rα,T) and (Xα, T ) are measure-theoretically isomorphic, and even semi-conjugate.
We thus can consider that the chosen partition provides a good coding. One has the following
commutative diagram:

R/Z Rα−→ R/Zy y
Xα −→

S
Xα

The frequency of the factor w1 . . . wn exists and is equal to the density of the set

{k | {x+ kα} ∈ Iw1···wn},
which is equal to the length of Iw1···wn , by uniform distribution of the sequence ({x+ nα})n.
The lengths of these intervals are equal to the frequencies of factors of length n. We deduce
from Theorem 48 the following result.

Theorem 57. The frequencies of factors of given length of a Sturmian sequence take at most
three values.

Theorem 57 implies that the lengths of the intervals Iw1···wn , and thus the lengths of the
intervals obtained by placing the points 0, {1 − α}, . . . , {n(1 − α)} on the unit circle, take
at most three values. We thus have proved the following classical result in Diophantine
approximation, called the three-distance theorem (see the survey [3]). In fact, this point of
view and more precisely, the study of the evolution of the graphs of words with respect to
the length n of the factors, allows us to give a proof of the most complete version of the
three distance theorem, i.e., to express the exact number of factors having each of the three
frequencies and the frequencies themselves.

The three distance theorem was initially conjectured by Steinhaus and proved by V. T.
Sós.

Theorem 58. Let 0 < α < 1 be an irrational number and n a positive integer. The points
{iα}, for 0 ≤ i ≤ n, partition the unit circle into n+ 1 intervals, the lengths of which take at
most three values, one being the sum of the other two.

More precisely, let (pkqk )k and (ck)k be the sequences of the convergents and partial quo-

tients associated to α in its continued fraction expansion (if α = [0, c1, c2, . . .], then pn
qn

=

[0, c1, . . . , cn]). Let ηk = (−1)k(qkα − pk). Let n be a positive integer. There exists a unique
expression for n of the form

n = mqk + qk−1 + r,
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with 1 ≤ m ≤ ck+1 and 0 ≤ r < qk. Then, the circle is divided by the points 0, {α}, {2α}, . . . , {nα}
into n+ 1 intervals which satisfy:

• n+ 1− qk of them have length ηk (which is the largest of the three lengths),
• r + 1 have length ηk−1 −mηk,
• qk − (r + 1) have length ηk−1 − (m− 1)ηk.

5.3. More on Sturmian words and substitutions. Let us consider now a combinatorial
way of generating Sturmian words.

Let us see how to generate all the Sturmian shifts with substitutions. We work now on the
alphabet {a, b}. We consider the substitutions τa and τb defined over the alphabet A = {a, b}
by τa : a 7→ a, b 7→ ab and τb : a 7→ ba, b 7→ b. Let (in) ∈ {a, b}N. The following limits

(1) u = lim
n→∞

τi0τi1 · · · τin−1(a) = lim
n→∞

τi0τi1 · · · τin−1(b)

exist and coincide whenever the directive sequence (in)n is not ultimately constant (it is easily
shown that the shortest of the two images by τi0τi1 . . . τin−1 is a prefix of the other). One
checks that the infinite words thus produced are all Sturmian words: indeed, it suffices to
consider and compute their factor complexity. More generally, one can prove that a Sturmian
word is an infinite word whose set of factors coincides with the set of factors of a sequence u of
the form (1), with the sequence (in)n≥0 being not ultimately constant (that is, it is an element
of the symbolic dynamical system Xu generated by u, since (Xu, T ) is minimal). The proof
relies on the fact that in a Sturmian language, either aa (the letter b occurs as an isolated
letter) or bb (a is isolated) occurs: one cannot have simultaneously aa and bb since there are
3 factors of length 2. One then desubstitutes according to the isolated letter: if b is isolated
in u, then one can write u as u = σa(v) (one reduces the ranges of successive occurrences
of a’ by 1). One checks that v (possibly up to a prefix letter) is again a Sturmian word
(associated with a different α). If one wants to generate a specific Sturmian word (not only a
Sturmian language/shift), one can use four substitutions. One striking property of Sturmian
words is the following: the way one iterates the substitutions is governed by the continued
fraction expansion of α. This method can be used for the generation of discrete lines and
planes in discrete geometry, as well as for the recognition of discrete planes. More generally
shifts with at most linear factor complexity can also be generated in terms of composition of
substitutions, see e.g. the survey [9] and the references therein.

6. Hints and corrections for exercices

Exercise 11 Consider the bi-infinite word · · · 0 · · · 010 · · · 0 · · · . It is ultimately periodic on
the right and on the left but its factor complexity is n+ 1.

Exercise 22 Consider a clopen set C. Since it is open and cylinders form a basis of the
topology, C can be written as a union of cylinders. On the other hand, because C is closed
in a compact space, C is itself compact. So from the possibly infinite union of cylinders, one
can extract a finite union that still covers C. As the union not only covered C, but was also
equal to C, we conclude that C is the union of this finite family of cylinders.

Exercise 23

• Let u be a recurrent infinite word. Let u[: n] be the prefix of size n of u. Take n1 = 0,
and assume that (nk)k≤K defines a finite and strictly increasing sequence such that
u[: k] is a prefix of Tnk(u) for any k ≤ K. Then u[: K + 1] is a factor of u, so it
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appears infinitely many times in u (because u is recurrent). In particular, there exists
some nK+1 > nK such that u[: K + 1] is a prefix of TnK+1(u).
By induction, we conclude that there exists a strictly increasing sequence of positive
integers (nk)k∈N such that u[: k] is a prefix of Tnk(u) for any k ∈ N. In other words,
(Tnk(u))k∈N is a converging sequence, and it converges towards u.
• Reciprocally, assume that u = limk→+∞ T

nk(u) for some strictly increasing sequence
(nk)k∈N. And let w be a factor of u. There exists some N ∈ N such that w is a
prefix of TN (u). By continuity of TN , one has TN (u) = limk→+∞ T

N+nk(u). And by
definition of convergence, there exists some K ∈ N such that for any k ≥ K, the first
|w| letters of TN+nk(u) are the same; and as such they are then equal to w.
In particular, w appears infinitely many times in u.

Exercise 25 Suppose X minimal. Let u ∈ X. Then O(u) ⊂ X, with O(u) a subset both

closed and stable by the shift. So, since O(u) is not empty (it contains u), by minimality,

X = O(u). Suppose now that ∀u ∈ X,O(u) = X. Let Y ⊂ X such that it is non-empty,

closed, and shift-invariant. Let v ∈ Y . Then, since Y is closed and shift-invariant, O(v) ⊂ Y .

But O(v) = X, which yields Y = X. So X is minimal.
Another redaction.

• Let u ∈ X. O(u) is a closed, non-empty and shift-invariant subset of X. If O(u) 6= X,
then X is not minimal.
• Reciprocally, assume that X is not minimal: there exists some Y such that Y is a

proper, closed, non-empty and shift-invariant subset of X. Consider then some u ∈ Y .
One has O(u) ⊆ Y , because Y is closed, and then Y ( X: in particular, O(u) 6= X.

Exercise 37 Consider first the existence. As σ(u) = u, and w is a factor of u, we can look
for the “antecedents” of w under σ. We reason by induction.

(1) Initialisation. If w = a, then r2 = a, r1 = ε = v works ; if w = b, r1 = b, v = r2 = ε
works.

(2) Induction. Let w = xw′, where x is the first letter of w. By induction hypothesis,
there exists some r′1, v

′, r′2 such that w′ = r′1σ(v′)r′2. We take r2 = r′2, and:
• If r′1 = ε. If x = a, define v = bv′ and r1 = ε. If x = b, define v = v′ and r1 = b.
• If r′1 = b. If x = a, define v = av′ and r1 = ε. And x cannot be equal to b,

otherwise there would be a factor bb in u, which is impossible.
Then w = r1σ(v)r2 is a valid decomposition.

Consider now the unicity. Assume that w = r1σ(v)r2 = r′1σ(v′)r′2 as above. Then r2 = r′2
because the value of r2 is determined by the last letter of w. Assume r1 6= r′1, then without
any loss of generality we can assume that r1 = b: this would imply that r′1 = ε, and that b has
an antecedent under σ, which is impossible. So r1 = r′1. This proves that this decomposition
is unique.

Prove that if w is a non-empty left special factor of u, then there exists a unique non-empty
left special factor v of u such that w = σ(v)r2, where r2 = a if the last letter of w is a, and
r2 = ε, otherwise. Give a description of left special factors. Deduce that this infinite word is
Sturmian.

By definition, a non-empty left special factor w of u has two left extensions. Because the
alphabet has two letters, and that u has no factor bb, this means that w starts with the letter
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a. In the previous proof, one can then take r1 = ε, and the decomposition is unique, which
concludes the proof.

By an easy induction, we prove that all the σn(a) are left special factors (indeed, σ0(a) = a
is a left special factor, and σn+1(a) = σ(σn(a)); by induction, σn(a) is a left special factor,
which implies that both σ(aσn(a)) and σ(bσn(a)) are factors of σ(u) = u, which proves that
both aσn+1(a) and bσn+1(b) are factors of u). We now prove by induction on |w| all left
special factors are prefixes of the words σn(a).

• |w| = 1: then a is the only left special factor of size 1 (because bb is not a factor of
u), and a = σ0(a).
• Let w be a left special factor of length at least 2. Then by the decomposition lemma,

there exists a left special factor w′ such that w = σ(w′)r2, where r2 = a if w ends
with an a, and r2 = ε otherwise.
First, |w′| < |w|. Indeed, because w is a left special factor, the first letter of w must
be a; and because aaa is not a factor of u, the second letter of w must be b, which
implies that the first letter of w′ is an a: the existence of an a in w′ proves that
|w| ≥ |σ(w′)| > |w′|.
By induction hypothesis, because w′ is a left special factor of size < |w|, w′ is a prefix
of some σj(a):

– If r2 = ε, then w is a prefix of σj+1(a).
– If r2 = a, then because w′ is right-extensible by a letter x, that w′ is a prefix

of some σj(a) (and that σj(a) is a prefix of σj+1(a)), w′x is a prefix of some
σj+1(a): which implies that w is a prefix of σ(w′x) which is a prefix of σj+2(a).

With this, we conclude that there is a single left special factor of any given left (for n ∈ N, it
is the prefix of size n of any σj(a) such that |σj(a)| ≥ n). As there is exactly one left special
factor of any given length, we conclude by an easy induction that pu(n+1) = (pu(n)−1)+2 =
pu(n) + 1, and p1(u) = 2, which proves that u is Sturmian.

Exercise 38 A factor w appearing in u Thue-Morse word is either an image of a single
factor x (w = σ(x)), in which case ri = ε, i = 1, 2, or it consists of σ(x) which is prolonged
either to the left by one letter r1 or to the right by one letter r2 or both. It cannot be
prolonged by two letters to neither side because then x could have been chosen larger.

If |w| = 1, x = ε and one of ri is equal to w (therefore this decomposition is not unique).
If |w| ∈ 1, 2, 3, 4, the decomposition is unique if and only if the choice of x is unique, and we
can find examples of factors where x can be chosen in two ways (e.g. 01, 101, 0101).

However, if |w| ≥ 5, the choice of x is unique. Let us have the decomposition w = r1σ(x)r2.
Taking a subfactor x̃ of x into the decomposition would lead to a decomposition w = s1σ(x̃)s2

where the length of at least one of si would be at least 2, and therefore it does not fulfill the
conditions of the decomposition we chose. On the other hand, choosing a larger x̃ than x
(e.g. x̃ = ax for some a ∈ A, the procedure would be analogical for x̃ = xa) would lead to

σ(x̃)r2 = σ(a)︸︷︷︸
length≥2

σ(x)r2

having larger length than w and therefore not being the decomposition of w at all.
Let us state the factors for n = 1, 2, 3, 4:

• n = 1: 0, 1
• n = 2: 01, 10, 00, 11
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• n = 3: 001, 010, 011, 100, 101, 110
• n = 4: 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1011, 1100, 1101

Factor complexity for even numbers: When n = 2, we can see that p(4) = p(2) + p(3). Let
us prove the relation p(2n) = p(n)+p(n+1) for n ≥ 3. A factor w of length 2n is decomposed
uniquely as r1σ(x)r2 and we can find there are two types of w.

Either ri = ε and therefore |x| = n. There are p(n) factors of length n and each of them
creates one factor of length 2n.

Or, there is i that ri 6= ε and the even length of w implies that ri 6= ε, i = 1, 2. Then,
|σ(x)| = 2n− 2, therefore |x| = n− 1 and each factor w of this type is inside of an image of
axb, a, b ∈ A for all factors in the language of length 1 + (n− 1) + n, i.e. there are p(n+ 1)
factors w of this type.

On the whole, we have p(n) + p(n+ 1) factors of length 2n which proves the relation.
Factor complexity for odd numbers: Let us prove p(2n + 1) = 2p(n + 1) for n ≥ 2. Then

a factor w of length 2n + 1 is decomposed uniquely as r1σ(x)r2 and the odd length of w
implies that exactly one of ri will be non-empty. Therefore any factor of length 2n + 1 can
be decomposed either as aσ(x) or σ(x)a for some a ∈ A where |x| = n and the amount of w
will be exactly the amount of factors of length n + 1 multiplied by 2 because for each y of
length (n + 1) we create w by dropping either leftmost or rightmost letter in σ(y). Let the
reader think about why it cannot happen that dropping letters from two different factors y
create the same factor w.

A second redaction. Existence:
First, once again, u = σ(u). So if w is a factor of u, and that σ maps each letter to words of
size 2, there is some factor x of u such that σ(x) is contained in w, and such that w = r1σ(x)r2,
for r1, r2 ∈ {ε, 0, 1}.
Unicity:
If w is of length at least 5, then a factor 00 or 11 must appear in w. Indeed, σ(u) = u, and
the words 000 and 111 cannot be factors of u. Then, if w is a factor of length at least 5, the
decomposition is unique because 11 and 00 cannot be in the image of σ (in other words, there
is only one way to split w into pairs of letters, modulo the first and the last one).

Prove that p(2n) = p(n) + p(n + 1) and that p(2n + 1) = 2p(n + 1), for n ≥ 2. Give an
expression for the complexity function. First, p(4) = 10 and p(5) = 12, so the formula works
(see OEIS A005942). Now, let n ≥ 3: we can use the decomposition lemma above:

• Compute p(2n): let w be a factor of u of length 2n. There are two possibilities (which
are disjoint, by unicity of the decomposition):

– w = σ(x) for x of factor of u of length n. Because σ is injective, we obtain the
term p(n) in the expression p(2n) = p(n) + p(n+ 1).

– w = r1σ(x)r2 for r1, r2 6= ε, with x a factor of u of length n− 1. Consider x′ an
extension of x of length n+ 1, x′ = axb for a, b ∈ A (it necessarily exists because
factors appear infinitely often in u). Then w is σ(x′) without its first and its last
letter, and the map (x′ ∈ Lu(n + 1) 7→ σ(x′)[1 : 2n]) is bijective. We obtain the
term p(n+ 1) in the expression p(2n) = p(n) + p(n+ 1).

• Compute p(2n + 1): let w be a factor of u of length 2n. There are two possibilities
(which are disjoint, by unicity of the decomposition):

– w = r1σ(x) for x ∈ Lu(n). Then similarly, we consider the extension x′ = ax
of x and x′ ∈ Lu(n + 1) 7→ σ(x′)[1 : 2n] (forget the first letter of σ(x′)), which
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is bijective. From there comes one term p(n + 1) in the expression p(2n + 1) =
2p(n+ 1).

– w = σ(x)r2 for x ∈ Lu(n). This case is completely symmetric, and there comes
the other term p(n+ 1) in p(2n+ 1) = 2p(n+ 1).

We conclude that p(2n) = p(n) + p(n+ 1) and p(2n+ 1) = 2p(n+ 1) for n ≥ 2.
We now prove by recurrence that if n− 1 = 2j + r, with −2j−2 ≤ r ≤ 2j−1, then one has:

p(n) = 3(n− 1) + |r|
(In other words, |r| is the distance between n− 1 and the nearest power of 2)

• Initialization: 3 · 2 + 0 = 6 = p(3) and 3 · 3 + 1 = 10 = p(4).
• Assume that for any k ≤ 2n, p(k) is equal to the form above.

– Computation of p(2n + 1). We write n = 2j + r with −2j−2 ≤ r ≤ 2j−1. Then
2n = 2j+1 + 2r, obviously −2j−1 ≤ 2r ≤ 2j and:

p(2n+ 1) = 2p(n+ 1)

= 2 · (3 · ((n+ 1)− 1) + r)

= 3 · ((2n+ 1)− 1) + 2r

– Computation of p(2n+ 2). We write n = 2j + r, with −2j−2 ≤ r ≤ 2j−1. There
are now two possibilities.
First, if r = 2j−1, then n+ 1 = 2j+1 − (2j−1 − 1) and

p(2n+ 2) = p(n+ 1) + p(n+ 2)

=
(
3 · ((n+ 1)− 1) + 2j−1

)
+
(
3 · ((n+ 2)− 1) + 2j−1 − 1

)
= 3 · ((2n+ 2)− 1) + (2j − 1)

and 2n+ 1 = 2(n+ 1)− 1 = 2j+2 − (2j − 2)− 1 = 2j+2 − (2j − 1).
Second, if 0 ≤ r < 2j−1, then n+ 2 = 2j + r + 1 and

p(2n+ 2) = p(n+ 1) + p(n+ 2)

= (3 · ((n+ 1)− 1) + r) + (3 · ((n+ 2)− 1) + (r + 1))

= 3 · ((2n+ 2)− 1) + (2r + 1)

and 2n+ 1 = 2n+ 1 = 2j+1 + 2r + 1 with 0 ≤ 2r + 1 ≤ 2j .
Lastly, if 2j−2 < r < 0, then n+ 2 = 2j + r + 1 and

p(2n+ 2) = p(n+ 1) + p(n+ 2)

= (3 · ((n+ 1)− 1)− r) + (3 · ((n+ 2)− 1)− (r + 1))

= 3 · ((2n+ 2)− 1)− (2r + 1)

and 2n+ 1 = 2(n+ 1)− 1 = 2j+1 + (2r + 1), with 2j−1 < 2r + 1 ≤ 0.
In all the previous cases, the formula holds.

So we conclude that that for n ≥ 3, if n− 1 = 2j + r, with −2j−2 ≤ r ≤ 2j−1, then one has:

p(n) = 3(n− 1) + |r|.

Exercise 44 The equivalence between (1) and (2) is immediate.
(2)⇒ (3) : It is clear that a graph of words of an infinite word is connected. If there exists

n such that Γn is not strongly connected, it means that there is a vertex U which does not
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have an ingoing edge. But then the factor corresponding to U only appears in the word u
once and that is a contradiction.

(3) ⇒ (2) : If there is a factor in u appearing only once, the corresponding vertex U in
the graph of words has no ingoing edge. This is a contradiction to all graphs of words being
strongly connected.

Let u be an infinite word over the finite alphabet A (of cardinality d). Let U be a ver-
tex of the graph Γn, for some n. Denote by U+ the number of edges of Γn with origin U and
by U− the number of edges of Γn with end vertex U . In other words, U+ (respectively U−)
counts the number of right (respectively left) extensions of U . Recall that

pu(n+ 1) =
∑
|U |=n

U+ =
∑
|U |=n

U−,

and thus

pu(n+ 1)− pu(n) =
∑
|U |=n

(U+ − 1) =
∑
|U |=n

(U− − 1).

Another redaction.

• The graphs of an infinite word are always connected: consider some n ∈ N. Then
from the prefix of size n of u, you can access any other factor of size n, ie. there is a
path from the prefix of size n to any other vertex of Γn.
• Assume that u is recurrent: we prove that every graph of word is strongly connected.

Indeed, consider Γn. Because u is recurrent, if w and w′ are two factors of u of length
n, there exists a finite word v such that wvw′ is a factor of u. In particular, if we
label the edges of Γn with letters (if xW →Wy exists in Γn, then label it with y), we
can start in vertex w, read vw′ in the automaton, and we end up in the vertice w′ in
Γn. This proves that Γn is strongly connected.
• Assume that the graphs are strongly connected: we prove that every factor of u

appears at least twice.
Let w be a factor of u, and n be an integer such that w appears in the prefix of u of
size n. In Γn, the prefix u[: n] is a vertex which has an incoming arrow (by strong
connectivity). So u[: n] must appear somewhere else in u. This implies that w appears
at least twice.
• Assume that every factor of u appears at least twice: we prove that u is recurrent.

Let w0 = w be a factor of u. Because it appears at least twice, there exists a word
v0 such that w1 = wv0w is a factor of u. Because w1 is a factor of u, it must appear
at least twice: there exists a word v1 such that w2 = w1v1w1 is a factor of u. Etc...
By induction, we prove that for every k ∈ N, w must appear at least 2k times. This
proves that w appears infinitely often.

Exercise 45
Let n be a positive integer, and sn be the number of right special factors of size n. Then

pu(n+1) = (pu(n)−sn)+2sn = pu(n)+sn; so we obtain that sn = 1 (because u is Sturmian).
(The very same proof applies for left special factors).

First, L−n = 2 and R+
n = 2; for every other vertex, U+ = U− = 1. There is a single left

(resp. right) special factor of length n, and because Sturmian words are recurrent, the graphs
must be strongly connected. This nearly proves that Γn is of these two possible forms: the
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only thing left to prove is that there is no path from Rn to itself (or Ln to itself) that does
not contain Ln (resp Rn) [Remark: this statement does not assume that Rn 6= Ln].

Let Rn →+ Rn be a path between Rn and itself. If its length is smaller that n, iterate
this path again until its length becomes large enough. Consider then L, the nth vertex of
this path. Because Rn is right special, L must be left special. As there is a single left special
vertex (ie. Ln), one has L = Ln. So Ln appears in the original path.

Deduce from the morphology of the graph of words Γn that every Sturmian word is uniformly
recurrent. One can first prove that every factor of a Sturmian word is a subfactor of a factor
of the form Rn and then deduce from the morphology of the graph Γn that Rn appears with
bounded gaps.

Consider w a factor of length n. Because Γn is strongly connected, there exists a path from
w to Rn in Γn: in other words, there exists a finite word v such that wv is a right special
factor of u. This proves that w is a subfactor of some RN . We then prove that each Rn
appears with bounded gaps: consider the graph Γn, and let ln be the length of the longest
path from Rn to itself which does not contain Rn as an intermediary vertex. Then Rn occurs
with gaps bounded by ln. Combining the two considerations, we obtain that any Sturmian
word is uniformly recurrent.

Exercise 46

• Prove that if the infinite word u is uniformly recurrent and non-constant, then the
graph Γn has no edge of the form U → U , for n large enough.

Because u is non-constant, there exist two letters a and b which appear in u. Then
by uniform recurrence, there exists some m ∈ N such that any factor of u of length
≥ m necessarily contains both letters a and b. Then for any n ≥ m, there is no edge
U → U in Γn (because all the vertices in such a Γn contain a subfactor xy for x, y two
different letters, so each vertex represents a factor that is not shift-invariant).
• Suppose that the infinite word u is uniformly recurrent. Prove that if the graph of

words Γn+1 is Hamiltonian (i.e., there exists a closed oriented path passing exactly
once through every vertex), then the graph Γn is Eulerian (there exists a closed path
passing exactly once through every edge) and that U+ = U−, for every vertex of Γn.

Once again, we label the edges of the graphs of words. Let

x1w1
a1−→ x2w2

a2−→ ...
a|Γn+1|−−−−→ x|Γn+1|w|Γn+1| = x1w1

be an Hamiltonian circuit of Γn+1. We prove that

w1
a1−→ w2

a2−→ ...
a|Γn+1|−−−−→ w|Γn+1| = w1

is an Eulerian path of Γn. Indeed, it is clearly a path of Γn. Assume now that there

exists some i < j < |Γn+1| such that wi
ai−→ wi+1 = wj

aj−→ wj+1 (i.e., we assume that
this path is not Eulerian). Then define a = ai = aj , w = wi = wj . In Γn+1, we have

some xiw
a−→ wa at the ith step of the Hamiltonian path, and xjw

a−→ wa at the jth

step of the Hamiltonian path: this is absurd, because the vertex wa is visited twice
(and it is not the vertex we start from). So this path is Eulerian, which means that
Γn is Eulerian. And in particular, in an Eulerian graph, for any vertex U we have
U+ = U− (for example, assume U+ < U−: then a path that visits only once each
edge must get stuck in U at some point, because it enters it more than it exits it; and
if U− < U+, then you cannot visit all the exiting edges of U).
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Is the converse true?
No. See the counter-example on the infinite word: u = (10011001000)ω.
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