
CHAPTER 2

Sturmian Words

2.0. Introdu
tion

Sturmian words are in�nite words over a binary alphabet that have exa
tly

n + 1 fa
tors of length n for ea
h n � 0. It appears that these words admit

several equivalent de�nitions, and 
an even be des
ribed expli
itly in arithmeti


form. This arithmeti
 des
ription is a bridge between 
ombinatori
s and number

theory. Moreover, the de�nition by fa
tors makes that Sturmian words de�ne

symboli
 dynami
al systems. The �rst detailed investigations of these words

were done from this point of view. Their numerous properties and equivalent

de�nitions, and also the fa
t that the Fibona

i word is Sturmian, has lead to

a great development, under various terminologies, of the resear
h.

The aim of this 
hapter is to present basi
 properties of Sturmian words and

of their transformation by morphisms. The style of exposition relies basi
ally

on 
ombinatorial arguments.

The �rst se
tion is devoted to the proof of the Morse-Hedlund theorem

stating the equivalen
e of Sturmian words with the set of balan
ed aperiodi


word and the set of me
hani
al words of irrational slope. We also mention several

other formulations of me
hani
al words, su
h as rotations and 
utting sequen
es.

We next give properties of the set of fa
tors of one Sturmian word, su
h as


losure under reversal, the minimality of the asso
iated dynami
al system, the

fa
t that the set depends only on the slope, and we give the des
ription of spe
ial

words.

In the se
ond se
tion, we give a systemati
 exposition of standard pairs

and standard words. We prove the 
hara
terization by the double palindrome

property, des
ribe the 
onne
tion with Fine and Wilf's theorem. Then, standard

sequen
es are introdu
ed to 
onne
t standard words to 
hara
teristi
 Sturmian

words. The relation to Beatty sequen
es is in the exer
ises. This se
tion also


ontains the enumeration formula for �nite Sturmian words. It ends with a

short des
ription of frequen
ies.

The third se
tion starts by proving that the monoid of Sturmian morphisms

is generated by three well-known morphisms. Then, standard morphisms are

investigated. A des
ription of all Sturmian morphisms in terms of standard

morphisms is given next. The se
tion ends with the 
hara
terization of those

algebrai
 numbers that yield �xed points by standard morphisms.
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2.1. Equivalent de�nitions 41

Some problems are just exer
ises, but most 
ontain additional properties of

Sturmian words, with appropriate referen
es. It is diÆ
ult to tra
e ba
k many of

the properties of Sturmian words, be
ause of the s
attered origins, terminology

and notation. When we quote a referen
e in the Notes se
tion, we are only

relatively 
ertain that it is the sour
e of the result.

In this 
hapter, words will be over a binary alphabet A = f0; 1g.

2.1. Equivalent de�nitions

This se
tion is devoted to the proof of a theorem (Theorem 2.1.13) stating the

equivalen
e of three properties, all de�ning what we 
all Sturmian words. We

start by de�ning Sturmian words to have minimal 
omplexity among aperiodi


in�nite words. We �rst prove that Sturmian words are exa
tly the aperiodi


balan
ed words. We then introdu
e so 
alled me
hani
al words and prove that

these yield another 
hara
terization of Sturmian words. Other formulations of

the me
hani
al de�nition, by rotation and 
utting sequen
es, are given in the

se
ond paragraph. The third paragraph 
ontains several properties 
on
erning

the set of fa
tors of a Sturmian word.

2.1.1. Complexity and balan
e

The 
omplexity fun
tion of an in�nite word x over some alphabet A was de�ned

in Chapter 1. It is the fun
tion that 
ounts, for ea
h integer n � 0, the number

P (x; n) of fa
tors of length n in x:

P (x; n) = Card(F

n

(x)) :

A Sturmian word is an in�nite word s su
h that P (s; n) = n+1 for any integer

n � 0. A

ording to Theorem 1.3.13, Sturmian words are aperiodi
 in�nite

words of minimal 
omplexity. Sin
e P (s; 1) = 2, any Sturmian word is over two

letters. A right spe
ial fa
tor of a word x is a word u su
h that u0 and u1 are

fa
tors of x. Thus, s is a Sturmian word if and only if it has exa
tly one right

spe
ial fa
tor of ea
h length.

A suÆx of a Sturmian word is a Sturmian word.

Example 2.1.1. We show that the Fibona

i word

f = 0100101001001010010100100101001001 � � �

de�ned in Chapter 1 is Sturmian. It will be 
onvenient, in this 
hapter, to start

the numeration of �nite Fibona

i words di�erently, and to set f

�1

= 1, f

0

= 0.

Sin
e f = '(f), it is a produ
t of words 01 and 0. Thus, the word 11 is not

a fa
tor of f and 
onsequently P (f; 2) = 3. The word 000 is not a fa
tor of

'(f), sin
e otherwise it is a pre�x of some '(x) for a fa
tor x of f , and x has

to start with 11.

To show that f is Sturmian, we prove that f has exa
tly one right spe
ial

fa
tor of ea
h length.
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We start by showing that, for no word x, both 0x0 and 1x1 are fa
tors of

f . This is 
lear if x is the empty word and if x is a single letter. Arguing by

indu
tion on the length, assume that 0x0 and 1x1 are in F (f). Then x starts

and ends with 0, and x = 0y0 for some y. Sin
e 00y00 and 10y01 have to be

fa
tors of '(f), there exists a fa
tor z of f su
h that '(z) = 0y. Moreover,

00y0 = '(1z1) and 010y01 = '(0z0), showing that 1z1 and 0z0 are fa
tors of

f . This is a 
ontradi
tion be
ause jzj � j'(z)j < jxj.

We show now that f has at most one right spe
ial fa
tor of ea
h length.

Assume indeed that u and v are right spe
ial fa
tors of the same length, and

let x be the longest 
ommon suÆx of u and v. Then the four words 0x0, 0x1,

1x0, 1x1 are fa
tors of f , whi
h 
ontradi
ts our previous observation.

To show that f has at least one right spe
ial fa
tor of ea
h length, we use

the relation

f

n+2

= g

n

~

f

n

~

f

n

t

n

(n � 2) (2.1.1)

where g

2

= " and for n � 3

g

n

= f

n�3

� � � f

1

f

0

; t

n

=

�

01 if n is odd,

10 otherwise.

Observe that the �rst letter of

~

f

n

is the opposite of the �rst letter of t

n

. This

proves that

~

f

n

is a right spe
ial fa
tor for ea
h n � 2. Sin
e a suÆx of a right

spe
ial fa
tor is itself a right spe
ial fa
tor, this proves that right spe
ial fa
tors

of any length exist.

Equation (2.1.1) is proved by indu
tion. Indeed, f

4

= "(010)(010)10 and

f

5

= 0(10010)(10010)01. Next, is it easily 
he
ked by indu
tion that

'(~u)0 = 0('(u))

�

(2.1.2)

for any word u. It follows that '(

~

f

n

t

n

) = 0

~

f

n+1

t

n+1

and sin
e '(g

n

)0 = g

n+1

,

one gets (2.1.1).

We now start to give another des
ription of Sturmian words, namely as

balan
ed words. The height of a word x is the number h(x) of letters equal to

1 in x. Given two words x and y of the same length, their balan
e Æ(x; y) is the

number

Æ(x; y) =

�

�

h(x) � h(y)j

A set of words X is balan
ed if

x; y 2 X; jxj = jyj ) Æ(x; y) � 1

A �nite or in�nite word is itself balan
ed if the set of its fa
tors is balan
ed.

Proposition 2.1.2. Let X be a fa
torial set of words. If X is balan
ed, then

for all n � 0,

Card(X \ A

n

) � n+ 1 :
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Proof. The 
on
lusion is 
lear for n = 0; 1, and it holds for n = 2 be
ause

X 
annot 
ontain both 00 and 11. Arguing by 
ontradi
tion, let n � 3 be

the smallest integer for whi
h the statement is false. Set Y = X \ A

n�1

and

Z = X \ A

n

. Then Card(Y ) � n and Card(Z) � n + 2. For ea
h z 2 Z,

its suÆx of length n � 1 is in Y . By the pigeon-hole prin
iple, there exist two

distin
t words y; y

0

2 Y su
h that all four words 0y; 1y; 0y

0

; 1y

0

are in Z. Sin
e

y 6= y

0

there exists a word x su
h that x0 and x1 are pre�xes of y and y

0

. But

then, both 0x0 and 1x1 are words in X , showing that X is unbalan
ed.

The argument used in the proof 
an be re�ned as follows.

Proposition 2.1.3. Let X be a fa
torial set of words. The set X is unbal-

an
ed if and only if there exists a palindrome word w su
h that 0w0 and 1w1

are in X .

Proof. The 
ondition is 
learly suÆ
ient. Conversely, assume that X is unbal-

an
ed. Consider two words u; v 2 X of the same length n su
h that Æ(u; v) � 2,

and take them of minimal length. The �rst letters of u and v are distin
t, and

so are the last letters. Assuming that u starts with 0 and v with 1, there are

fa
torizations u = 0wau

0

and v = 1wbv

0

for some words w; u

0

; v

0

and letters

a 6= b. In fa
t a = 0 and b = 1 sin
e otherwise Æ(u

0

; v

0

) = Æ(u; v), 
ontradi
ting

the minimality of n. Thus, again by minimality, u = 0w0 and v = 1w1.

Assume next that w is not a palindrome. Then there is a pre�x z of w and

a letter a su
h that za is a pre�x of w, ~z is a suÆx of w but a~z is not a suÆx

of w. Then of 
ourse b~z is a suÆx of w, where b is the other letter. This gives

a proper pre�x 0za of u and a proper suÆx b~z1 of v. If a = 0 and b = 1,

then Æ(0z0; 1~z1) = 2, 
ontradi
ting the minimality of n. But then u = 0z1u

00

and v = v

00

1~z0 for two words with Æ(u

00

; v

00

) = Æ(u; v), 
ontradi
ting again the

minimality. Thus w is a palindrome.

Remark 2.1.4. In the proof that the Fibona

i word f is Sturmian given in

Example 2.1.1, we a
tually started by showing that f is balan
ed.

Theorem 2.1.5. Let x be an in�nite word. The following 
onditions are equiv-

alent.

(i) x is Sturmian,

(ii) x is balan
ed and aperiodi
.

Proof. If x is aperiodi
, then P (x; n) � n + 1 for all n by Theorem 1.3.13. If

x is balan
ed, then by Proposition 2.1.2, P (x; n) � n + 1 for all n. Thus x is

Sturmian.

To prove the 
onverse, we assume x is Sturmian and unbalan
ed, and show

that x is eventually periodi
. Sin
e x is unbalan
ed, there is a palindrome word

w su
h that 0w0, 1w1 are fa
tors of x. This shows that w is right spe
ial. Set

n = jwj+1. Sin
e x is Sturmian, there is a unique right spe
ial fa
tor of length

n, whi
h is either 0w or 1w. We suppose that 0w is right spe
ial, so 1w is not,

and 0w1 is a fa
tor of x and 1w0 is not.
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Any o

urren
e of 1w in x is followed by the letter 1. Let v be a word of

length n�1 su
h that u = 1w1v is in F (x). The word u has length 2n. We prove

that all fa
tors of length n of u are 
onservative. In view of Proposition 1.3.14,

x is eventually periodi
.

To show the 
laim, it suÆ
es to prove that the only right spe
ial fa
tor of

length n, that is 0w, is not a fa
tor of u. Assume the 
ontrary. Then there exist

fa
torizations w = s0t; v = yz; w = t1y.

u

1 w 1 v

0 w

1 s 0 t 1 y z

Sin
e w is a palindrome, the �rst fa
torization implies w =

~

t0~s, and the letter

following the pre�x t in w is both a 0 and a 1.

The slope of a nonempty word x is the number �(x) =

h(x)

jxj

.

Example 2.1.6. The height of x = 0100101 is 3, and its slope is 3=7. The

word x 
an be drawn on a grid by representing a 0 (resp. a 1) as a horizontal

(resp. a diagonal) unit segment. This gives a polygonal line from the origin to

the point (jxj; h(x)), and the line from the origin to this point has slope �(x).

See Figure 2.1.

r r�

�

r r r�

�

r r�

�

r

0 1 0 0 1 0 1

(7,3)

Figure 2.1. Height and slope of the word 0100101.

It is easily 
he
ked that

�(xy) =

jxj

jxyj

�(x) +

jyj

jxyj

�(y)

Proposition 2.1.7. A fa
torial set of words X is balan
ed if and only if, for

all x; y 2 X , x; y 6= ",

�

�

�(x) � �(y)

�

�

<

1

jxj

+

1

jyj

: (2.1.3)
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Proof. Assume �rst that (2.1.3) holds. For x; y 2 X of the same length, the

equation gives

�

�

h(x)� h(y)

�

�

< 2

showing that X is balan
ed.

Conversely, assume that X is balan
ed, and let x; y be in X . If jxj = jyj,

then (2.1.3) holds. Assume jxj > jyj, and set x = zt, with jzj = jyj. Arguing by

indu
tion on jxj+ jyj, we have

�

�

�(t) � �(y)

�

�

<

1

jtj

+

1

jyj

and sin
e X is fa
torial, jh(z)� h(y)j � 1, when
e

�

�

�(z)� �(y)

�

�

�

1

jyj

. Next,

�(x) � �(y) =

jzj

jxj

�(z) +

jtj

jxj

�(t) � �(y)

=

jzj

jxj

�

�(z)� �(y)

�

+

jtj

jxj

�

�(t)� �(y)

�

thus

�

�

�(x)� �(y)

�

�

<

1

jxj

+

jtj

jxj

�

1

jyj

+

1

jtj

�

=

1

jxj

+

1

jyj

:

Corollary 2.1.8. Let x be an in�nite balan
ed word, and for ea
h n � 1,

let x

n

be the pre�x of length n of x. The sequen
e (�(x

n

))

n�1


onverges for

n!1.

Proof. Indeed, (2.1.3) shows that (�(x

n

))

n�1

is a Cau
hy sequen
e.

The limit

� = lim

n!1

�(x

n

)

is the slope of the in�nite word x.

Example 2.1.9. To 
ompute the slope of an in�nite balan
ed word, it suÆ
es

to 
ompute the limit of the slopes of an in
reasing sequen
e of pre�xes (or even

fa
tors, as shown by the next proposition). For the Fibona

i in�nite word, the

slopes of the �nite Fibona

i words f

n

are easily 
omputed. Indeed, jf

n

j = F

n

and h(f

n

) = F

n�2

, when
e

�(f) = lim

n!1

F

n�2

F

n

=

1

�

2

;

where � = (1 +

p

5)=2.

Proposition 2.1.10. Let x be an in�nite balan
ed word with slope �. For

every nonempty fa
tor u of x, one has

�

�

�(u)� �

�

�

�

1

juj

: (2.1.4)
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More pre
isely, one of the following holds: either

�juj � 1 < h(u) � �juj+ 1 for all u 2 F (x) (2.1.5)

or

�juj � 1 � h(u) < �juj+ 1 for all u 2 F (x) (2.1.6)

Of 
ourse, the inequalities in (2.1.5) and (2.1.6) are stri
t if � is irrational.

Proof. Let x

n

be the pre�x of length n of x. Given some ", 
onsider n

0

su
h

that for all n � n

0

,

�

�

�(x

n

)� �

�

�

� " :

Then, using (2.1.3),

�

�

�(u)� �

�

�

�

�

�

�(u)� �(x

n

)

�

�

+

�

�

�(x

n

)� �

�

�

<

1

juj

+

1

n

+ "

For n!1 and then "! 0, the inequality follows. Equation (2.1.4) means that

�juj � 1 � h(u) � �juj+ 1

If the se
ond 
laim were wrong, there would exist u; v in F (x) su
h that �juj �

1 = h(u) and �jvj + 1 = h(v). But then j�(u) � �(v)j = 1=juj + 1=jvj, in


ontradi
tion with (2.1.3).

Proposition 2.1.11. Let x be an in�nite balan
ed word. The slope � of x is

a rational number if and only if x is eventually periodi
.

Proof. If x = uy

!

, then

�(uy

n

) =

h(u) + nh(y)

juj+ njyj

! �(y)

for n!1, showing that the slope is rational.

For the 
onverse, we suppose that (2.1.5) holds. The other 
ase is symmetri
.

The slope of x is a rational number � = q=p with q and p relatively prime. By

(2.1.5), any fa
tor u of x of length p has height q or q+1. There are only �nitely

many o

urren
es of fa
tors of length p and height q + 1, sin
e otherwise there

is a fa
tor w = uzv of x with juj = jvj = p and h(u) = h(v) = q + 1. In view of

(2.1.5)

2 + 2q + h(z) = h(uzv) � 1 + �p+ �jzj+ �p = 1 + 2q + �jzj

when
e h(z) � �jzj � 1, in 
ontradi
tion with (2.1.5).

By the pre
eding observation, there is a fa
torization x = ty su
h that every

word in F

p

(y) has the same height. Consider now an o

urren
e azb of a fa
tor

in y of length p + 1, with a and b letters. Sin
e h(az) = h(zb), one has a = b.

This means that y is periodi
 with period p. Consequently, x is eventually

periodi
.
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2.1.2. Me
hani
al words, rotations

Given two real numbers � and � with 0 � � � 1, we de�ne two in�nite words

s

�;�

: N ! A; s

0

�;�

: N ! A

by

s

�;�

(n) = b�(n+ 1) + �
 � b�n+ �


s

0

�;�

(n) = d�(n+ 1) + �e � d�n+ �e

(n � 0)

It is easy to 
he
k that s

�;�

(n) and s

0

�;�

(n) indeed are in f0; 1g. The word s

�;�

is the lower me
hani
al word and s

0

�;�

is the upper me
hani
al word with slope

� and inter
ept �. (This slope will be shown in a moment to be the same as the

slope of a balan
ed word.) It is 
lear that if ���

0

is an integer, then s

�;�

= s

�;�

0

and s

0

�;�

= s

0

�;�

0

. Thus we may assume 0 � � < 1 or 0 < � � 1 (both will be

useful).

r r�

�

r
r r�

�

r r r

r
r�

�

r r r�

�

r r r

0 1 0 0 1 0 0

y = �x + �

P

n

P

0

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2.2. Me
hani
al words asso
iated with the line y = �x+ �.

The terminology stems from the following graphi
al interpretation (see Fig-

ure 2.2). Consider the straight line with equation y = �x+ �. The points with

integer 
oordinates just below this line are P

n

= (n; b�n+ �
). Two 
onse
utive

points P

n

and P

n+1

are joined by a straight line segment that is horizontal if

s

�;�

(n) = 0 and diagonal if s

�;�

(n) = 1.

The same observation holds for the points P

0

n

= (n; d�n + �e) lo
ated just

above the line.

r
r�

�

r
r r�

�

r

r
r r�

�

r
r�

�

r

s

�;�

s

0

�;�

n

0 1 0 0

0 0 1 0

y = �x+ �

!

!

!

!

!

!

!

!

!

!

!

!

Figure 2.3. Me
hani
al words with an integral point.



48 Sturmian Words 2.1

Clearly,

s

0;�

= s

0

0;�

= 0

!

; s

1;�

= s

0

1;�

= 1

!

Let 0 < � < 1. Sin
e 1 + b�n+ �
 = d�n+ �e whenever �n + � is not an

integer, one has s

�;�

= s

0

�;�

ex
epted when �n+ � is an integer for some n � 0.

In this 
ase (see Figure 2.3),

s

�;�

(n) = 0; s

0

�;�

(n) = 1

and, if n > 0,

s

�;�

(n� 1) = 1; s

0

�;�

(n� 1) = 0

Thus, if � is irrational, s

�;�

and s

0

�;�

di�er by at most one fa
tor of length 2.

A me
hani
al word is irrational or rational a

ording to its slope is rational or

irrational.

A spe
ial 
ase deserves 
onsideration, namely when 0 < � < 1 and � = 0.

In this 
ase, s

�;0

(0) = b�
 = 0, s

0

�;0

(0) = d�e = 1, and if � is irrational

s

�;0

= 0


�

; s

0

�;0

= 1


�

where the in�nite word 


�

is 
alled the 
hara
teristi
 word of �.

Remark 2.1.12. The 
ondition 0 � � � 1 in the de�nition of me
hani
al

words is not a restri
tion, but a simpli�
ation. One 
ould indeed use the same

de�nition of s

�;�

without any 
ondition on �. Sin
e b�
 � s

�;�

(n) � 1 + b�
,

the numbers s

�;�

(n) then 
an have the two values k and k + 1 where k = b�
.

Thus the words s

�;�

and s

0

�;�

are over the two letter alphabet fk; k + 1g. This

alphabet 
an be transformed ba
k into f0; 1g by using the formula

s

�;�

(n) = b�(n+ 1) + �
 � b�n+ �
 � b�


Me
hani
al words 
an be interpreted in several other ways. Consider again

a straight line y = �x + �, for some � > 0 not restri
ted to be less than 1,

and � not restri
ted to be positive. Consider the interse
tions of this line with

the lines of the grid with nonnegative integer 
oordinates. We get a sequen
e

Q

0

; Q

1

; : : : of interse
tion points. We 
all Q

n

= (x

n

; y

n

) horizontal if y

n

is an

integer, and verti
al if x

n

is an integer. If both are integers, we insert before Q

n

a sibling Q

n�1

of Q

n

with the same 
oordinates, and we agree that the �rst is

horizontal and the se
ond is verti
al (or vi
e-versa, but we do always the same


hoi
e). In Figure 2.4 below, Q

0

is verti
al, be
ause � is positive.

Writing a 0 for ea
h verti
al point and a 1 for ea
h horizontal point, we

obtain an in�nite word K

�;�

that is 
alled the (lower) 
utting sequen
e (with

the other 
hoi
e for labeling siblings, one gets an upper 
utting sequen
e K

0

�;�

).

To ea
h Q

n

= (x

n

; y

n

), we asso
iate a point I

n

= (u

n

; v

n

) with integer


oordinates. The point I

n

is the point below (below and to the right of) Q

n

if

Q

n

is verti
al (horizontal). Formally,

(u

n

; v

n

) =

�

(dx

n

e ; y

n

� 1) if Q

n

is horizontal,

(x

n

; by

n


) if Q

n

is verti
al
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Figure 2.4. Cutting sequen
e and 
orresponding me
hani
al sequen
e.

Similar points J

n

are de�ned above the line (see Figure 2.4). It is easy to 
he
k

that u

n

+ v

n

= n for n � 0, and that

K

�;�

(n) = v

n+1

� v

n

= 1 + u

n

� u

n+1

In the spe
ial 
ase � = 0 and � irrational, we again get the same in�nite word

up to the �rst letter. There is a word C

�

su
h that

K

�;0

= 0C

�

; K

0

�;0

= 1C

�

Observe that Q

n

is horizontal if and only if

1 + v

n

� u

n

� + � < 1 + �+ v

n

(2.1.7)

and Q

n

is verti
al if and only if

v

n

� u

n

� + � < 1 + v

n

(2.1.8)

We now 
he
k that

K

�;�

= s

�=(1+�);�=(1+�)

Indeed, the transformation (x; y) 7! (x + y; x) of the plane maps the line y =

�x+ � to y = �=(1+�)x+ �=(1+�), and a point I

n

= (u

n

; v

n

) to I

0

n

= (n; v

n

).

It remains to show that

v

n

=

�

�

1 + �

n+

�

1 + �

�

(2.1.9)
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Using u

n

+ v

n

= n, we get from (2:1:7) that

v

n

+ 1=(1 + �) � �=(1 + �)n+ �=(1 + �) < 1 + v

n

and from (2:1:8) that

v

n

� �=(1 + �)n+ �=(1 + �) < v

n

+ 1=(1 + �)

Thus, (2:1:9) holds for horizontal and for verti
al steps. Thus, 
utting sequen
es

are just another formulation of me
hani
al words.

Me
hani
al words 
an also be generated by rotations. Let 0 < � < 1. The

rotation of angle � is the mapping R = R

�

from [0; 1[ into itself de�ned by

R(z) = fz + �g

where fzg = z � bz
 is the fra
tional part of z. Iterating R, one gets

R

n

(�) = fn�+ �g

Moreover, a straightforward 
omputation shows that

b(n+ 1)�+ �
 = 1 + bn�+ �
 () fn�+ �g � 1� �

Thus, de�ning a partition of [0; 1[ by

I

0

= [0; 1� �[; I

1

= [1� �; 1[ ;

one gets

s

�;�

(n) =

�

0 if R

n

(�) 2 I

0

1 if R

n

(�) 2 I

1

(2.1.10)

It will be 
onvenient to identify [0; 1[ with the torus (or the unit 
ir
le). For 0 �

b < a < 1, the set [a; 1℄ [ [0; b[ is 
onsidered as an interval denoted [a; b[. Then,

for any subinterval I of [0; 1[, the sets R(I) and R

�1

(I) are always intervals

(even when overlapping the point 0).

As an example of the use of rotations, 
onsider a word w = b

0

b

1

� � � b

m�1

,

with b

0

; b

1

; : : : letters. We want to know whether w is a fa
tor of some s

�;�

=

a

0

a

1

� � �, with a

0

; a

1

; : : : letters. By (2.1.10), a

n+k

= b

i

if and only if R

n+i

(�) 2

I

b

i

, or equivalently, if and only if R

n

(�) 2 R

�i

(I

b

i

). Thus, for n � 0,

w = a

n

a

n+1

� � �a

n+m�1

() R

n

(�) 2 I

w

(2.1.11)

where I

w

is the interval

I

w

= I

b

0

\ R

�1

(I

b

1

) \ � � � \R

�m+1

(I

b

m�1

)

The interval I

w

is non empty if and only if w is a fa
tor of s

�;�

. Observe that

this property is independent of �, and thus words s

�;�

and s

�;�

0

have the same

set of fa
tors. A 
ombinatorial proof will be given later (Proposition 2.1.18).

Me
hani
al words are quite naturally de�ned as two-sided in�nite words.

However, it appears that several properties, su
h as Theorem 2.1.13 below, only

hold with some restri
tions (see Problem 2.1.1).
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Theorem 2.1.13. Let s be an in�nite word. The following are equivalent:

(i) s is Sturmian;

(ii) s is balan
ed and aperiodi
;

(iii) s is irrational me
hani
al.

The proof will be a simple 
onsequen
e of two lemmas. In the proofs, we

will use several times the formula

x

0

� x� 1 < bx

0


 � bx
 < x

0

� x+ 1 :

Lemma 2.1.14. Let s be a me
hani
al word with slope �. Then s is balan
ed

of slope �. If � is rational, then s is purely periodi
. If � is irrational, then s is

aperiodi
.

Proof. Let s = s

�;�

be a lower me
hani
al word. The proof is similar for upper

me
hani
al words. The height of a fa
tor u = s(n) � � � s(n+p�1) is the number

h(u) = b�(n+ p) + �
 � b�n+ �
, thus

�juj � 1 < h(u) < �juj+ 1 (2.1.12)

This implies b�juj
 � h(u) � 1 + b�juj
, and shows that h(u) takes only two


onse
utive values, when u ranges over the fa
tors of a �xed length of s. Thus,

s is balan
ed. Moreover, by (2.1.12)

�

�

�(u)� �

�

�

<

1

juj

Thus �(u)! � for juj ! 1 and � is the slope of s as it was de�ned for balan
ed

words. This proves the �rst statement.

If � is irrational, the word s is aperiodi
 by Proposition 2.1.11. If � = q=p is

rational, then b�(n+ p) + �
 = q+b�n+ �
, for all n � 0. Thus s(n+p) = s(n)

for all n, showing that s is purely periodi
.

Lemma 2.1.15. Let s be a balan
ed in�nite word. If s is aperiodi
, then s is

irrational me
hani
al. If s is purely periodi
, then s is rational me
hani
al.

Proof. In view of Corollary 2.1.8, s has a slope, say �. Denote by h

n

the height

of the pre�x of length n of s.

For every real number � , one at least of the following holds:

{ h

n

� b�n+ �
 for all n;

{ h

n

� b�n+ �
 for all n.

Indeed, on the 
ontrary there exist a real number � and two integers n; n+k su
h

that h

n

< b�n+ �
 and h

n+k

> b�(n+ k) + �
 (or the symmetri
 relation).

This implies that h

n+k

� h

n

� 2 + b�(n+ k) + �
 � b�n+ �
 > 1 + �k, in


ontradi
tion with (2.1.4).

Set

� = inff� j h

n

� b�n+ �
 for all ng
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By Proposition 2.1.10, one has � � 1, and � < 1 if � is irrational. Observe that

for all n � 0

h

n

� �n+ � � h

n

+ 1 (2.1.13)

sin
e otherwise there is an integer n su
h that h

n

+ 1 < �n + �, and setting

� = h

n

+ 1 � �n, one has � < � and �n + � = h

n

+ 1 > h

n

, in 
ontradi
tion

with the de�nition of �.

If s is aperiodi
, then � is irrational by Proposition 2.1.11, and �n+ � is an

integer for at most one n. By (2.1.13), either h

n

= b�n+ �
 for all n, and then

s = s

�;�

, or h

n

= b�n+ �
 for all but one n

0

, and h

n

0

+ 1 = �n

0

+ �. In this


ase, one has h

n

= d�n+ �� 1e for all n and s = s

0

�;��1

.

If s = u

!

is purely periodi
 with period juj = p, then � = q=p with q =

h(u) = h

p

. Again h

n

= b�n+ �
 if �n+ � is never an integer (this depends on

�).

If h

n

= �n+ � for some n, we 
laim that h

n

= b�n+ �
 for all n. Assume

the 
ontrary. Then by (2.1.13), 1 + h

m

= �m + �, for some m and we may

assume n < m < n + p. Consider the words y = s(n + 1) � � � s(m) and z =

s(m+ 1) � � � s(n+ p). Then �(y) = (h

m

� h

n

)=(m� n) = �� 1=jyj and �(z) =

(h

n+p

� h

m

)=(n+ p�m) = �+ 1=jzj, when
e

�

�

�(y)� �(z)

�

�

= 1=jyj+ 1=jzj, in


ontradi
tion with Proposition 2.1.7. Similarly, if 1 + h

n

= �n+ � for some n,

then h

n

= d�n+ �e for all n.

Proof of theorem 2.1.13. We know already by Theorem 2.1.5 that (i) and (ii)

are equivalent. Assume that s is irrational me
hani
al. Then s is balan
ed

aperiodi
 by Lemma 2.1.14. Conversely, if s is balan
ed and aperiodi
, then by

the Lemma 2.1.15 s is irrational me
hani
al.

Example 2.1.16. To show that a balan
ed in�nite word is not always me-


hani
al when the slope is rational (so the 
onverse is false in Lemma 2.1.14),


onsider the in�nite balan
ed word 01

!

. It is not a me
hani
al word. Indeed,

it has slope 1, and all me
hani
al words s

1;�

are equal to 1

!

.

Let us 
onsider me
hani
al words with rational slope in some more detail.

For a rational number � = p=q with 0 � � � 1 and p; q relatively prime, the

in�nite words s

�;0

and s

0

�;0

are purely periodi
. De�ne �nite words

t

p;q

= a

0

� � � a

q�1

; t

0

p;q

= a

0

0

� � � a

0

q�1

by

a

i

=

�

(i+ 1)

p

q

�

�

�

i

p

q

�

; a

0

i

=

�

(i+ 1)

p

q

�

�

�

i

p

q

�

Clearly, t

p;q

and t

0

p;q

have height p. They are primitive words be
ause (p; q) = 1.

In parti
ular, t

0;1

= 0 and t

1;1

= 1. These words are 
alled Christo�el words.

In any 
ase, s

p=q;0

= t

!

p;q

and s

0

p=q;0

= t

0

p;q

!

. Moreover, if 0 < p=q < 1, the

word t

p;q

starts with 0 and ends with 1 (and t

0

p;q

starts with 1 and ends with

0). There is a word z

p;q

su
h that

t

p;q

= 0z

p;q

1; t

0

p;q

= 1z

p;q

0 (2.1.14)
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The word z

p;q

is easily seen to be a palindrome. Later, we will see that these

words, 
alled 
entral words, have remarkable 
ombinatorial properties.

The following result deals with �nite words.

Proposition 2.1.17. A �nite word w is a fa
tor of some Sturmian word if

and only if it is balan
ed.

Proof. Clearly a fa
tor of a Sturmian word is balan
ed. For the 
onverse,


onsider a balan
ed word w, and de�ne

�

0

= max(�(u)� 1=juj); �

00

= min(�(u) + 1=juj)

where the maximum and the minimum is taken over all non empty fa
tors u of

w. Sin
e w is balan
ed, one gets from Proposition 2.1.10 that

�(u)� 1=juj < �(v) + 1=jvj

for all nonempty fa
tors u and v of w. Thus �

0

< �

00

.

Take any irrational number � with �

0

< � < �

00

. Then by 
onstru
tion, for

every nonempty fa
tor u of w,

�

�

�(u)� �

�

�

< 1 (2.1.15)

Let w

n

be the pre�x of length n of w. By (2.1.15), there exists a real �

n

su
h that

h(w

n

) = n�+ �

n

; j�

n

j < 1

Moreover, for n > m, setting w

n

= w

m

u, one gets h(w

n

) � h(w

m

) = h(u) =

(n�m)�+ (�

n

� �

m

), showing that j�

n

� �

m

j < 1. Set

� = max

1�n�jwj

�

n

:

Then

n�+ � � h(w

n

) = n�+ �+ (�

n

� �) > n�+ �� 1

when
e h(w

n

) = bn�+ �
. This proves that w is a pre�x of the Sturmian word

s

�;�

.

2.1.3. The fa
tors of one Sturmian word

The aim of this paragraph is to give properties of the set of fa
tors of a single

Sturmian word.

Proposition 2.1.18. Let s and t be Sturmian words.

1. If s and t have same slope, then F (s) = F (t).

2. If s and t have distin
t slopes, then F (s) \ F (t) is �nite.
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Proof. Let � be the 
ommon slope of s and t. By Proposition 2.1.10, every

fa
tor u of s veri�es

j�(u)� �j <

1

juj

(indeed, equality is impossible be
ause � is irrational). Next, for every fa
tor v

of t,

j�(v)� �j <

1

jvj

Let X = F (s) [ F (t). The set X is fa
torial. It is also balan
ed sin
e

j�(u)� �(v)j � j�(u)� �j+ j�(v)� �j <

1

juj

+

1

jvj

In view of Proposition 2.1.2

Card(X \A

n

) � n+ 1

for every n. Thus F (s) = X = F (t).

Let now � be the slope of s and � be the slope of t. We may suppose that

� > �. For any fa
tor u of s su
h that (���) � 2=juj, one has �(u)�� > �1=juj

by Proposition 2.1.10 when
e �(u)� � = (�(u)� �) + (� � �) � 1=juj showing

that u is not a fa
tor of t.

Proposition 2.1.19. The set F (s) of fa
tors of a Sturmian word s is 
losed

under reversal.

Proof. Set

~

F (s) = f~x j x 2 F (s)g. The set X = F (s) [

~

F (s) is balan
ed.

In view of Proposition 2.1.2, Card(X \ A

n

) � n + 1, for ea
h n, and sin
e

Card(F (s) \ A

n

) = n+ 1, one has X = F (s). Thus

~

F (s) = F (s).

We now 
ompare Sturmian words, with respe
t to their slope and inter
ept.

The lexi
ographi
 order de�ned in Chapter 1 extends to in�nite words as follows,

with the assumption that 0 < 1. Given two in�nite words x = a

0

� � � a

n

� � � and

y = b

0

� � � b

n

� � �, we say that x is lexi
ographi
ally less than y, and we write

x < y if there is an integer n su
h that a

i

= b

i

for i = 0; : : : ; n� 1 and a

n

= 0,

b

n

= 1.

Proposition 2.1.20. Let 0 < � < 1 be an irrational number and let �; �

0

be

real numbers with 0 � �; �

0

< 1. Then

s

�;�

< s

�;�

0

() � < �

0

:

Proof. Sin
e � is irrational, the set of fra
tional parts f�ng for n � 0 is dense in

the interval [0; 1[. Thus � < �

0

if and only if there exists an integer n � 1 su
h

that 1� �

0

� f�ng < 1� �, and this is equivalent to b�n+ �

0


 = 1+ b�n+ �
.

If n is the smallest integer for whi
h this equality holds, then s

�;�

(n � 1) = 0

and s

�;�

0

(n� 1) = 1 and s

�;�

0

(k) = s

�;�

(k) for k < n� 1.

Observe that this proposition does not hold for rational slopes, sin
e indeed

s

0;�

= 0

!

for all �.
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Lemma 2.1.21. Let 0 < �;�

0

< 1 be irrational numbers and let �; �

0

be real

numbers. Any of the equalities s

�;�

= s

�

0

;�

0

, s

�;�

= s

0

�

0

;�

0

or s

0

�;�

= s

0

�

0

;�

0

implies

� = �

0

and � � �

0

mod 1.

Proof. Any of the equalities implies that � = �

0

be
ause equal words have the

same slope. Next, s

�;�

= s

�;�

0

implies � � �

0

mod 1 by the previous proposition.

Finally, 
onsider the equality s

�;�

= s

0

�;�

0

. If �n + �

0

is not an integer for all

n � 1, then s

0

�;�

0

= s

�;�

0

and the 
on
lusion holds. Otherwise, let n be the

unique integer su
h that �n+�

0

is an integer. Then s

�;�+(1+n)�

= s

0

�;�

0

+(1+n)�

,

showing again that � � �

0

mod 1.

Sturmian words with inter
ept 0 have many interesting properties. We ob-

served already that, for an irrational number 0 < � < 1, the words s

�;0

and

s

0

�;0

di�er only by their �rst letter, and that

s

�;0

= 0


�

; s

0

�;0

= 1


�

where 


�

is the 
hara
teristi
 word of slope �. Equivalently,




�

= s

�;�

= s

0

�;�

The following proposition states a 
ombinatorial 
hara
terization of 
hara
ter-

isti
 words among Sturmian words.

Proposition 2.1.22. For every Sturmian word s, either 0s or 1s is Sturmian.

A Sturmian word s is 
hara
teristi
 if and only if 0s and 1s are both Sturmian.

Proof. The �rst 
laim follows from the fa
t that s

�;���

= as

�;�

, for some

a 2 f0; 1g.

If s = s

�;�

= s

0

�;�

is the 
hara
teristi
 word of slope �, then 0s = s

�;0

and

1s = s

0

�;0

are Sturmian.

Conversely, the Sturmian words 0s and 1s have same slope, say �. Denote

by � and �

0

their inter
ept. Then their 
ommon shift s has inter
ept � + � =

�

0

+ �, and by Lemma 2.1.21, � � �

0

mod 1 and we may take 0 � � = �

0

< 1.

Thus 0s = s

�;�

and 1s = s

0

�;�

. Assume � > 0. The �rst letter of 0s is gives

0 = b�+ �
�b�
 = b�+ �
 and the �rst letter of 1s is 1 = d�+ �e�d�e. Then

2 = d�+ �e, a 
ontradi
tion. Thus � = 0.

We are now able to des
ribe right spe
ial fa
tors.

Proposition 2.1.23. The set of right spe
ial fa
tors of a Sturmian word is

the set of reversals of the pre�xes of the 
hara
teristi
 word of same slope.

Call a fa
tor w of a Sturmian word s left spe
ial if both 0w and 1w are fa
tors of

s. Clearly, w is left spe
ial if and only if ~w is right spe
ial. Thus the proposition

states that the set of left spe
ial fa
tors of a Sturmian word is the set of pre�xes

of the 
hara
teristi
 word of same slope.
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Proof. Let s be a Sturmian word of slope �. By Proposition 2.1.22, the in�nite

words 0


�

and 1


�

are Sturmian and 
learly have slope �. Thus

F (s) = F (


�

) = F (0


�

) = F (1


�

)

by Proposition 2.1.18. Consequently, for ea
h pre�x p of 


�

, 0p and 1p are

fa
tors of s. Sin
e F (s) is 
losed under reversal, this shows that ~p is right

spe
ial. Thus ~p is the unique right spe
ial fa
tor of length jpj.

Example 2.1.24. Consider again the Fibona

i word f . We have seen in

Example 2.1.1 that its right spe
ial fa
tors are the reversals of its pre�xes.

Thus ea
h pre�x of f is left spe
ial. This shows that F (f) = F (0f) = F (1f).

Consequently, f is 
hara
teristi
 of slope 1=�

2

.

Proposition 2.1.25. The dynami
al system generated by a Sturmian word

is minimal.

Proof. Let s be a Sturmian word, and let x be an in�nite word su
h that F (x) �

F (s). Clearly, x is balan
ed. Also, x has the same irrational slope as s. Thus x

is aperiodi
 and therefore is Sturmian. By Proposition 2.1.18(1), F (x) = F (s).

This shows that s and x generate the same dynami
al system.

Observe that Proposition 2.1.18(2) is a 
onsequen
e of Proposition 2.1.25.

Indeed, the interse
tion of two distin
t minimal dynami
al systems is the trivial

system.

2.2. Standard words

This se
tion is 
on
erned with a family of �nite words that are basi
 bri
ks for


onstru
ting 
hara
teristi
 Sturmian words, in the sense that every 
hara
ter-

isti
 Sturmian word is the limit of a sequen
e of standard words. This will be

shown in Se
tion 2.2.2.

2.2.1. Standard words and palindrome words

After basi
 de�nitions, we give two 
hara
terizations of standard words. The

�rst is by a spe
ial de
omposition into palindrome words (Theorem 2.2.4), the

se
ond (Theorem 2.2.11) by an extremal property on the periods of the word

that is 
losely related to Fine and Wilf's theorem. We give then a \me
hani
al"


hara
terization of 
entral and standard words (Proposition 2.2.15). We end

with an enumeration formula for standard words.

Consider two fun
tions � and � from f0; 1g

�

� f0; 1g

�

into itself de�ned by

�(u; v) = (u; uv); �(u; v) = (vu; v)

The set of standard pairs is the smallest set of pairs of words 
ontaining the

pair (0; 1) and 
losed under � and �. A standard word is any 
omponent of a

standard pair.
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(0; 1)

(0; 01) (10; 1)

(0; 001) (010; 01) (10; 101) (110; 1)

�

�

(0; 0001) (0010; 001) (010; 01001)(01010; 01) (10; 10101)

(01001010; 01001)

Figure 2.5. The tree of standard pairs.

Example 2.2.1. Figure 2.5 shows the beginning of the tree of standard pairs.

Considering the leftmost and rightmost paths, one gets the pairs

(0; 0

n

1); (1

n

0; 1) (n � 1)

Next to them are the pairs

(0(10)

n

; 01); (10; (10)

n

1) (n � 1)

These are the pairs with one 
omponent of length 1 or 2.

Finite Fibona

i words are standard, sin
e (f

0

; f

�1

) = (0; 1), and for n � 1,

(f

2n+2

; f

2n+1

) = ��(f

2n

; f

2n�1

).

Every standard word whi
h is not a letter is a produ
t of two standard words

whi
h are the 
omponents of some standard pair. The next proposition states

some elementary fa
ts.

Proposition 2.2.2. Let r = (x; y) be a standard pair.

1. If r 6= (0; 1) then one of x or y is a proper pre�x of the other.

2. If x (resp. y) is not a letter, then x ends with 10 (resp. y ends with 01).

3. Only the last two letters of xy and yx are di�erent.

Proof . We prove the last 
laim by indu
tion on jxyj. Assume indeed that xy =

p01 and yx = p10. Then �(r) = (x; xy) and xxy = xp01, (xy)x = x(yx) = xp10,

so the 
laim is true for �(r). The same holds for �(r).

Every standard pair is obtained in a unique way from (0; 1) by iterated use

of � and �. Indeed, if (x; y) is a standard pair, then it is an image through

� (resp. �) if and only if jxj < jyj (resp. jxj > jyj). Thus, there is a unique

produ
t W = �

1

Æ : : : Æ �

n

, with �

i

2 f�;�g su
h that

(x; y) =W (0; 1)
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Consider two matri
es

L =

�

1 0

1 1

�

; R =

�

1 1

0 1

�

and de�ne a morphism � from the monoid generated by � and � into the set

of 2� 2 matri
es by

�(�) = L; �(�) = R;

and �(�

1

Æ: : :Æ�

n

) = �(�

1

) � � ��(�

n

). If (x; y) =W (0; 1), then a straightforward

indu
tion shows that

�(W ) =

�

jxj

0

jxj

1

jyj

0

jyj

1

�

(2.2.1)

Observe that every matrix �(W ) has determinant 1. Thus if (x; y) is a standard

pair,

jxj

0

jyj

1

� jxj

1

jyj

0

= 1 (2.2.2)

showing that the entries in the same row (
olumn) of �(W ) are relatively prime.

From (2.2.2), one gets

h(y)jxj � h(x)jyj = 1 : (2.2.3)

(re
all that h(w) = jwj

1

is the height of w). This shows also that jxj and jyj are

relatively prime. A simple 
onsequen
e is the following property.

Proposition 2.2.3. A standard word is primitive.

Proof. Let w be a standard word whi
h is not a letter. Then w = x or w = y

for some standard pair (x; y). From (2.2.3), one gets that h(w) and jwj are

relatively prime. This implies that w is primitive.

The operations � and � 
an be explained through three morphisms E, G,

D on f0; 1g

�

whi
h we introdu
e now. These will be used also in the sequel. Let

E :

0 7! 1

1 7! 0

; G :

0 7! 0

1 7! 01

; D :

0 7! 10

1 7! 1

It is easily 
he
ked that E Æ D = G Æ E = '. We observe that, for every

morphism f ,

�(f(0); f(1)) = (fG(0); fG(1)); �(f(0); f(1)) = (fD(0); fD(1))

For W = �

1

Æ : : : Æ�

n

, with �

i

2 f�;�g, de�ne

^

W =

^

�

n

Æ : : : Æ

^

�

1

, with

^

� = G,

^

� = D. Then

W (0; 1) = (

^

W (0);

^

W (1)) : (2.2.4)

Standard words have the following des
ription.

Theorem 2.2.4. A word w is standard if and only if it is a letter or there exist

palindrome words p, q and r su
h that

w = pab = qr (2.2.5)

where fa; bg = f0; 1g. Moreover, the fa
torization w = qr is unique if q 6= ".
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Example 2.2.5. The word 01001010 is standard (see Figure 2.5) and

01001010 = (010010)10 = (010)(01010) :

We start the proof with a lemma of independent interest.

Lemma 2.2.6. If a primitive word is a produ
t of two nonempty palindrome

words, then this fa
torization is unique.

Proof. Let w be a primitive word and assume w = pq = p

0

q

0

for palindrome

words p; q; p

0

; q

0

. We suppose jpj > jp

0

j, so that p = p

0

s(= ~sp

0

), sq = q

0

(= q~s)

for some nonempty word s. Thus ~sp

0

q = pq = p

0

q

0

= p

0

q~s, showing that p

0

q and

~s are powers of some word z. But then w = pq = ~sp

0

q = z

n

for some n � 2,


ontradi
ting primitivity.

Observe that (2.2.5) implies the following relations.

Lemma 2.2.7. If w = pab = qr for palindrome words p, q, r, and letters a 6= b,

then one of the following holds

(i) r = ", p = (ba)

n

b, q = (ba)

n+1

b = w for some n � 0;

(ii) r = b, p = a

n

, q = a

n+1

, w = a

n+1

b for some n � 0;

(iii) r = bab, p = b

n+1

, q = b

n

, w = b

n+1

ab for some n � 0;

(iv) r = basab, p = qbas, w = qbasab for some palindrome word s.

We need another lemma.

Lemma 2.2.8. Let x; y be words with jxj; jyj � 2. The pair (x; y) is a standard

pair if and only if there exist palindrome words p, q, r su
h that

x = p10 = qr and y = q01 (2.2.6)

or

x = q10 and y = p01 = qr : (2.2.7)

Proof. Assume that (2.2.6) holds (the other 
ase is symmetri
). If r is the empty

word, then by the previous lemma

(x; y) = ((01)

n+1

0; (01)

n+1

001) = �((01)

n+1

0; 01)

showing that the pair (x; y) is standard.

If r = 0, then (x; y) = (1

n

0; 1

n

01) = �(1

n

0; 1), and if r = 010, then (x; y) =

(0

n

10; 0

n

1) = �(0; 0

n

1).

Thus, we may assume that r = 01s10 for some palindrome word s. By

(2.2.6), if follows that y is a pre�x of x, so x = yz for some word z. We show

that (z; y) is standard. From p = q01s = s10q it follows that q 6= s. Assume

jqj < jsj (the other 
ase is symmetri
). Then s = qt for some word t, and the

equation p = qt10q shows that the word r

0

= t10 is a palindrome. Thus

y = q01; z = qr

0

= s10
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and (z; y) satis�es (2.2.6).

Conversely, let (x; y) be a standard pair, and assume (x; y) = �(x; z), that

is y = xz. If z is a letter, then (x; z) = (1

n

0; 1) for some n � 1 and

x = q10; y = p01 = qr

for q = 1

n�1

, p = 1

n

, r = 101.

Thus we may assume that for some palindrome words p, q, r, either

x = p10 = qr; z = q01

or

x = q10; z = p01 = qr :

In the �rst 
ase,

x = p10; y = xz = (qrq)01 = p(10q01)

In the se
ond 
ase,

x = q10; y = xz = q(10p01) = (qrq)01

be
ause 10p = rq. Thus (2.2.7) holds.

Proof of Theorem 2.2.4. Let w be a standard word, jwj � 2. Then there exists

a standard pair (x; y) su
h that w = xy (or symmetri
ally w = yx). If x = 0,

then y = 0

n

1 for some n � 0, and xy = 0

n+1

1 has the desired fa
torization.

A similar argument holds for y = 1. Otherwise, either (2.2.6) or (2.2.7) of

Lemma 2.2.8 holds. In the �rst 
ase, xy = p(10q01) = qrq01 and in the se
ond


ase, xy = q(10p01) = qrq01 be
ause 10p = rq. The fa
torization is unique by

Lemma 2.2.6 be
ause a standard word is primitive.

Conversely, if w = p10 = qr (or w = p01 = qr) for palindrome words p, q, r,

then by Lemma 2.2.8, the word w is a 
omponent of some standard pair, and

thus is a standard word.

A word w is 
entral if w01 (or equivalently w10) is a standard word. As we

shall see, 
entral words play indeed a 
entral role.

Corollary 2.2.9. A word is 
entral if and only if it is in the set

0

�

[ 1

�

[ (P \ P10P )

where P is the set of palindrome words. The fa
torization of a 
entral word w

as w = p10q with p; q palindrome words is unique.

Observe that P \ P10P = P \ P01P .

Proof. Let w 2 0

�

[ 1

�

[ (P \ P10P ). By the previous 
hara
terization, w01

is a standard word, so w is 
entral. Conversely, if w01 is standard, then w

is a palindrome and w01 = qr for some palindrome words q and r. Either

w 2 0

�

[ 1

�

, or by Lemma 2.2.7, r = " and w = (10)

n

1 for some n � 1, or

w = q10s for some palindrome s, as required.

As a simple 
onsequen
e, we obtain.
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Corollary 2.2.10. A palindrome pre�x (suÆx) of a 
entral word is 
entral.

Proof. We 
onsider the 
ase of a pre�x. Let p be a 
entral word. If p 2 0

�

[1

�

, the

result is 
lear. Let x be a standard word su
h that x = pab, with fa; bg = f0; 1g.

Then x = yz for a standard pair (y; z) or (z; y). Set y = qba and z = rab, where

q; r are 
entral words. Then p = qbar = rabq and by symmetry we may assume

that jrj < jqj.

Let w be a palindrome pre�x of p. If jwj � jqj, the result holds by indu
tion.

If w = qb then w is a power of b. Thus set w = qbat where t is a pre�x of r.

Sin
e r is a pre�x of q, the word t is a pre�x of q, and sin
e w =

~

tabq, one has

t =

~

t. Thus, by Corollary 2.2.9, w = qbat is 
entral.

The next 
hara
terization relates 
entral words to periods in words. Re
all

from Chapter 1 that given a word w = a

1

� � � a

n

, where a

1

; : : : ; a

n

are letters,

an integer k is a period of w if k � 1 and a

i

= a

i+k

for all 1 � i � n� k. Any

integer k � n is a period with this de�nition.

An integer k with 1 � k � jwj is a period of w if and only if there exist

words x, y, and z su
h that

w = xy = zx; jyj = jzj = k :

Fine and Wilf's theorem states that if a word w has two periods k and `, and

jwj � k + ` � g
d(k; `), then g
d(k; `) is also a period of w. In parti
ular, if k

and ` are relatively prime, and jwj � k + `� 1, then w is the power of a single

letter. The bound is sharp, and the question arises to des
ribe the words w of

length jwj = k + ` � 2 having periods k and `. This is the obje
t of the next

theorem.

Theorem 2.2.11. A word w is 
entral if and only if it has two periods k and

` su
h that g
d(k; `) = 1 and jwj = k + ` � 2. Moreover, if w =2 0

�

[ 1

�

, and

w = p10q with p, q palindrome words, then fk; `g = fjpj + 2; jqj + 2g and the

pair fk; `g is unique.

The proof will show that any word w having two periods k and ` su
h that

g
d(k; `) = 1 and jwj = k + `� 2 is over an alphabet with at most two letters.

Proof. Let w be a 
entral word. Then w01 is a standard word, and there is

a standard pair (x; y) su
h that w01 = xy. If x = 0 or y = 1, then w is a

power of 0 resp. of 1, and w has periods k = 1 and ` = jwj + 1. Otherwise,

x = p10 and y = q01 for some palindrome words p, q, and w = p10q = q01p

has two periods k = jxj and ` = jyj whi
h are relatively prime by Equation

(2.2.3). Assume that w has also periods fk

0

; `

0

g, with k

0

+ `

0

� 2 = jwj. We

may suppose k < k

0

< `

0

< `. Sin
e k + `

0

� 1 � jwj, Fine and Wilf's theorem

applies. So w has also the period d = g
d(k; `

0

). Similarly, w has also the period

d

0

= g
d(k; k

0

). So it has the period g
d(d; d

0

) = 1. This proves that the pair

fk; `g is unique.

Conversely, if w is a power of a letter, the result is trivial. Thus we assume

that w 
ontains two distin
t letters. Sin
e k; ` 6= 1, we assume 2 � k < `.
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Sin
e w has period k, there is a word x of length jxj = `� 2 that is both a

pre�x and a suÆx of w. Similarly, there is a word y of length jyj = k� 2 that is

both a pre�x and a suÆx of w. Consequently, there exist words u and v, both

of length 2, su
h that

w = yux = xvy

We prove by indu
tion on jwj that x, y, w are palindrome words, that u and

v are 
omposed of distin
t letters, and that no other letters than those of u

appear in w (that is w is over an alphabet of two letters).

If k = 2, then y is the empty word. Thus ux = xv, and ` is odd. Therefore

u = ab, v = ba, x = (ab)

n

a, w = (ab)

n+1

a for letters a 6= b and some n � 0.

The result holds in this 
ase.

If k = `� 1, then x = ya = by for letters a and b. But then a = b and w is

a power of a letter, a 
ase that we have ex
luded.

Thus we assume k � `� 2. Then yu is a pre�x of x. De�ne z by yuz = x.

Then

x = yuz = zvy

showing that x has periods jyuj = k and juzj = ` � k. Sin
e g
d(k; ` � k) = 1

and jxj = k + (`� k)� 2, we get by indu
tion that x is a palindrome, and that

its pre�x of length k � 2, that is y, and its suÆx of length ` � k � 2, that is z

also are palindromes. Moreover, u = ab for letters a 6= b, and ~u = v be
ause

yuz = z~uy = zvy. Also, the word x (and y, and therefore also w) is 
omposed

only of a's and b's. Thus w is 
entral.

Theorem 2.2.11 asso
iates, to every 
entral word of length m, a pair fk; `g

of relatively prime integers su
h that k + ` � 2 = m. We now show that, for

ea
h pair fk; `g of relatively prime integers, there exists indeed a 
entral word

of length k + `� 2 and periods k and `.

Let h;m be relatively prime integers with 1 � h < m. De�ne a word

z

h;m

= a

1

a

2

� � � a

m�2

(a

n

2 f0; 1g)

by

a

n

=

�

(n+ 1)

h

m

�

�

�

n

h

m

�

:

These words have already been mentioned in our dis
ussion of rational me
han-

i
al words (Equation 2.1.14). Ea
h word z

h;m

has length m � 2 and height

h� 1.

Proposition 2.2.12. For every 
ouple 1 � h < m of relatively prime integers,

the word z

h;m

is 
entral. It has the periods k and ` where k + ` = m and

kh � 1 mod m.

Proof . De�ne k by 1 � k � m� 1, and set kh = 1+ �m. Observe that k exists

be
ause h and m are relatively prime. Let ` = m � k. Then `h � �1 mod m,

and ` is the unique integer in the interval [0 : : : ;m�1℄ with this property. Next

�

(n+ k)

h

m

�

= �+

�

nh+ 1

m

�
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Sin
e nh 6� �1 mod m for 1 � n � `� 1, it follows that

�

nh+ 1

m

�

=

�

nh

m

�

(1 � n � `� 1)

Consequently, a

n+k

= a

n

for 1 � n � `� 2. A similar argument holds when k

is repla
ed by ` and �1 is 
hanged into 1.

Assume that some integer d divides k and `. Then d divides also m. But

k and ` are relatively prime to m, so d = 1 and g
d(k; `) = 1. This proves, by

Theorem 2.2.11, that z

h;m

is 
entral.

Example 2.2.13. The words z

1;m

= 0

m�2

and z

m�1;m

= 1

m�2

are 
entral.

In parti
ular, z

1;2

= ".

Example 2.2.14. For h = 5, m = 18, one gets z

5;18

= 0010001001000100, a

word of length 16. By inspe
tion, one �nds the periods 7 and 11. The previous

proposition allows to 
ompute them, sin
e 11 � 5 � 1 mod 18.

Proposition 2.2.15. Let h;m be relatively prime integers with 1 � h < m.

There exist exa
tly two standard words of height h and lengthm, namely z

h;m

10

and z

h;m

01. These words are balan
ed.

Proof. By Proposition 2.2.12, the words z

h;m

10 and z

h;m

01 are standard words

of height h and length m. They are fa
tors of the Sturmian words s

h=m;0

and

s

0

h=m;0

and therefore are balan
ed. We prove that there exists only one standard

word of height h and length m ending in 10. Assume there are two, say w and

w

0

. Then

w = xy; w

0

= x

0

y

0

for some standard pairs (x; y), (x

0

; y

0

). By formula (2.2.3),

h(x)jyj � h(y)jxj = 1; h(x

0

)jy

0

j � h(y

0

)jx

0

j = 1

Sin
e m = jxj+ jyj and h = h(x) + h(y), this gives

h(x)m� jxjh = 1; h(x

0

)m� jx

0

jh = 1

when
e

(h(x) � h(x

0

))m = (jx

0

j � jxj)h

Sin
e g
d(m;h) = 1, m divides jx

0

j � jxj. Thus jxj = jx

0

j, that is x = x

0

and

y = y

0

.

Re
all that Euler's totient fun
tion � is de�ned for m � 1 as the number

�(m) of positive integers less than m and relatively prime to m

Corollary 2.2.16. The number of standard words of length m is 2�(m), the

number of 
entral words of length m is �(m + 2), where � is Euler's totient

fun
tion.
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2.2.2. Standard sequen
es and 
hara
teristi
 words

In this se
tion, we use parti
ular morphisms that will also be 
onsidered in the

next se
tion. Three of them, namely E, G, and D, were already introdu
ed

earlier. Here, these morphisms are used to relate standard words to 
hara
-

teristi
 words, and both to the 
ontinued fra
tion expansion of the slope of a


hara
teristi
 word. Consider the morphisms

E :

0 7! 1

1 7! 0

; ' :

0 7! 01

1 7! 0

; ~' :

0 7! 10

1 7! 0

From these, we get other morphisms, denoted G,

~

G, D,

~

D and de�ned by

G = ' ÆE :

0 7! 0

1 7! 01

;

~

G = ~' ÆE :

0 7! 0

1 7! 10

D = E Æ ' :

0 7! 10

1 7! 1

;

~

D = E Æ ~' :

0 7! 01

1 7! 1

Of 
ourse, ' = G ÆE = E ÆD and ~' =

~

G ÆE = E Æ

~

D.

Lemma 2.2.17. For any real number �, the following relations hold: E(s

�;�

) =

s

0

1��;1��

and E(s

0

�;�

) = s

1��;1��

.

Proof . For n � 0,

s

0

1��;1��

(n) = d(1� �)(n+ 1) + 1� �e � d(1� �)n+ 1� �e

= 1� (d��n� �e � d��(n+ 1)� �e) = 1� s

�;�

(n)

be
ause �d�re = br
 for every real number r. This proves the �rst equality,

and the se
ond is symmetri
.

Lemma 2.2.18. Let 0 < � < 1. For 0 � � < 1,

G(s

�;�

) = s

�

1+�

;

�

1+�

;

~

G(s

�;�

) = s

�

1+�

;

�+�

1+�

; '(s

�;�

) = s

0

1��

2��

;

1��

2��

and for 0 < � � 1,

G(s

0

�;�

) = s

0

�

1+�

;

�

1+�

;

~

G(s

0

�;�

) = s

0

�

1+�

;

�+�

1+�

; '(s

0

�;�

) = s 1��

2��

;

1��

2��

:

Proof . Let s = a

0

a

1

� � � a

n

� � � be an in�nite word, the a

i

being letters. An integer

n is the index of the k-th o

urren
e of the letter 1 in s if a

0

� � � a

n


ontains k

letters 1 and a

0

� � �a

n�1


ontains k� 1 letters 1. If s = s

�;�

and 0 � � < 1, this

means that

b�(n+ 1) + �
 = k; b�n+ �
 = k � 1

whi
h implies �n+ � < k � �(n+ 1) + �, that is

n =

�

k � �

�

� 1

�

:
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Similarly, if s = s

0

�;�

and 0 < � � 1, then

d�(n+ 1) + �e = k + 1; d�n+ �e = k

and n =

j

k��

�

k

.

Set G(s

�;�

) = b

0

b

1

� � � b

i

� � �, with b

i

2 f0; 1g. Sin
e every letter 1 in s

�;�

is

mapped to 01 in G(s

�;�

), the pre�x a

0

� � �a

n

of s

�;�

(where n is the index of

the k-th letter 1) is mapped onto the pre�x b

0

b

1

� � � b

n+k

of G(s

�;�

). Thus the

index of the k-th letter 1 in G(s

�;�

) is

n+ k =

&

k �

�

1+�

�

1+�

� 1

'

This proves the �rst formula.

Next, we observe that, for any in�nite word x, one has

G(x) = 0

~

G(x)

Indeed, the formula G(w)0 = 0

~

G(w) is easily shown to hold for �nite words w

by indu
tion. Furthermore, if a Sturmian word s

�;�

starts with 0 and setting

s

�;�

= 0t, one gets t = s

�;�+�

. Altogether

~

G(s

�;�

) = s

�=(1+�);(�+�)=(1+�)

for

0 � � < 1. The proof of the other formula is similar. Finally, sin
e ' = G Æ E,

'(s

�;�

) = G(s

0

1��;1��

) = s

0

(1��)=(2��);(1��)=(2��)

.

Corollary 2.2.19. For any Sturmian word s, the in�nite words E(s), G(s)

~

G(s), '(s), ~'(s), D(s)

~

D(s) are Sturmian.

Formulas similar to those of Lemma 2.2.18 hold for ~';D;

~

D (Problem 2.2.6).

Re
all that the 
hara
teristi
 word of irrational slope � is de�ned by




�

= s

�;�

= s

0

�;�

:

The previous lemmas imply

Corollary 2.2.20. For any irrational � with 0 < � < 1, one has

E(


�

) = 


1��

; G(


�

) = 


�=(1+�)

For m � 1, de�ne a morphism �

m

by

�

m

:

0 7! 0

m�1

1

1 7! 0

m�1

10

It is easily 
he
ked that

�

m

= G

m�1

ÆE ÆG :

Corollary 2.2.21. For m � 1, one has �

m

(


�

) = 


1=(m+�)

.
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Proof . Sin
e E Æ G(


�

) = 


1=(1+�)

, the formula holds for m = 1. Next,

G(


1=(k+�)

) = 


1=(1+k+�)

, so the 
laim is true by indu
tion.

We use this 
orollary for 
onne
ting 
ontinued fra
tions to 
hara
teristi


words. Re
all that every irrational number 
 admits a unique expansion as a


ontinued fra
tion


 = m

0

+

1

m

1

+

1

m

2

+

1

� � �

(2.2.8)

where m

0

;m

1

; : : : are integers, m

0

� 0, m

i

> 0 for i � 1. If (2.2.8) holds, we

write


 = [m

0

;m

1

;m

2

; : : :℄ :

The integers m

i

are 
alled the partial quotients of 
. If the sequen
e (m

i

) is

eventually periodi
, and m

i

= m

k+i

for i � h, this is reported by overlining the

purely periodi
 part, as in


 = [m

0

;m

1

;m

2

; : : : ;m

h�1

;m

h

; : : : ;m

h+k�1

℄ :

Let � = [0;m

1

;m

2

; : : :℄ be the 
ontinued fra
tion expansion of an irrational �

with 0 < � < 1. If, for some � with 0 < � < 1,

� = [0;m

i+1

;m

i+2

; : : :℄

we agree to write

� = [0;m

1

;m

2

; : : : ;m

i

+ �℄ :

Corollary 2.2.22. If � = [0;m

1

;m

2

; : : : ;m

i

+ �℄ for some irrational � and

0 < �; � < 1, then




�

= �

m

1

Æ �

m

2

Æ � � � Æ �

m

i

(


�

)

Let (d

1

; d

2

; : : : ; d

n

; : : :) be a sequen
e of integers, with d

1

� 0 and d

n

> 0 for

n > 1. To su
h a sequen
e, we asso
iate a sequen
e (s

n

)

n��1

of words by

s

�1

= 1; s

0

= 0; s

n

= s

d

n

n�1

s

n�2

(n � 1) (2.2.9)

The sequen
e (s

n

)

n��1

is a standard sequen
e, and the sequen
e (d

1

; d

2

; : : :) is

its dire
tive sequen
e. Observe that if d

1

> 0, then any s

n

(n � 0) starts with

0; on the 
ontrary, if d

1

= 0, then s

1

= s

�1

= 1, and s

n

starts with 1 for n 6= 0.

Every s

2n

ends with 0, every s

2n+1

ends with 1.

Example 2.2.23. The dire
tive sequen
e (1; 1; : : :) gives the standard sequen-


e de�ned by s

n

= s

n�1

s

n�2

, that is the sequen
e of �nite Fibona

i words.

Observe that the dire
tive sequen
e (0; 1; 1; : : :) results in the sequen
e of words

obtained from Fibona

i words by ex
hanging 0 and 1.
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Every standard word o

urs in some standard sequen
e, and every word

o

urring in a standard sequen
e is a standard word. This results by indu
tion

from the fa
t that, for s

n

= s

d

n

n�1

s

n�2

, one has

(s

n

; s

n�1

) = �

d

n

(s

n�2

; s

n�1

); (s

n�1

; s

n

) = �

d

n

(s

n�1

; s

n�2

)

Thus

(s

2n

; s

2n�1

) = �

d

2n

Æ �

d

2n�1

Æ � � � Æ �

d

1

(0; 1)

(s

2n

; s

2n+1

) = �

d

2n+1

Æ�

d

2n

Æ �

d

2n�1

Æ � � � Æ �

d

1

(0; 1)

By Equation 2.2.4, this gives the expressions

s

2n

= G

d

1

ÆD

d

2

Æ � � � ÆD

d

2n

(0) = G

d

1

Æ � � � ÆD

d

2n

ÆG

d

2n+1

(0)

s

2n+1

= G

d

1

ÆD

d

2

Æ � � � ÆD

d

2n+2

(1) = G

d

1

Æ � � � ÆD

d

2n

ÆG

d

2n+1

(1)

Proposition 2.2.24. Let � = [0; 1 + d

1

; d

2

; : : :℄ be the 
ontinued fra
tion ex-

pansion of some irrational � with 0 < � < 1, and let (s

n

) be the standard

sequen
e asso
iated to (d

1

; d

2

; : : :). Then every s

n

is a pre�x of 


�

and




�

= lim

n!1

s

n

:

Proof. By de�nition, s

n

= s

d

n

n�1

s

n�2

for n � 1. De�ne morphisms h

n

by

h

n

= �

1+d

1

Æ �

d

2

Æ � � � Æ �

d

n

:

We 
laim that

s

n

= h

n

(0); s

n

s

n�1

= h

n

(1); n � 1

This holds for n = 1 sin
e h

1

(0) = 0

d

1

1 = s

1

and h

1

(1) = 0

d

1

10 = s

1

s

0

. Next,

for n � 2,

h

n

(0) = h

n�1

(�

d

n

(0)) = h

n�1

(0

d

n

�1

1) = s

d

n

�1

n�1

s

n�1

s

n�2

= s

n

and

h

n

(1) = h

n�1

(0

d

n

�1

10) = s

n

s

n�1

For any in�nite word x, the in�nite word h

n

(x) starts with s

n

be
ause both

h

n

(0) and h

n

(1) start with s

n

. Thus, setting �

n

= [0; d

n+1

; d

n+2

; : : :℄, one has




�

= h

n

(


�

n

) by Corollary 2.2.22 and thus 


�

starts with s

n

. This proves the

�rst 
laim. The se
ond is an immediate 
onsequen
e.

It is easily 
he
ked that

�

1+d

1

Æ �

d

2

Æ � � � Æ �

d

r

= G

d

1

ÆE ÆG

d

2

ÆE Æ � � � ÆG

d

r

ÆE ÆG

=

�

G

d

1

ÆD

d

2

Æ � � � ÆD

d

r

ÆG if r is even,

G

d

1

ÆD

d

2

Æ � � � ÆD

d

r

ÆD ÆE otherwise.

Example 2.2.25. The dire
tive sequen
e for the Fibona

i word is (1; 1; : : :).

The 
orresponding irrational is 1=�

2

= [0; 2; 1; 1; : : :℄, and indeed the in�nite

Fibona

i word is the 
hara
teristi
 word of slope 1=�

2

.
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Example 2.2.26. Sin
e 1=� = [0; 1; 1; 1; : : :℄, the 
orresponding standard se-

quen
e is s

1

= 1, s

2

= 10, s

3

= 101,. . . . The sequen
e is obtained from the Fi-

bona

i sequen
e by ex
hanging 0's and 1's, in 
on
ordan
e with Lemma 2.2.17,

sin
e indeed 1=� + 1=�

2

= 1.

Example 2.2.27. Consider � = (

p

3 � 1)=2 = [0; 2; 1; 2; 1; : : :℄. The dire
tive

sequen
e is (1; 1; 2; 1; 2; 1; : : :), and the standard sequen
e starts with s

1

= 01,

s

2

= 010, s

3

= 01001001, . . . , when
e




(

p

3�1)=2

= 010010010100100100101001001001 � � �

Due to the periodi
ity of the development, we get for n � 2 that s

n+2

= s

2

n+1

s

n

if n is odd, and s

n+2

= s

n+1

s

n

if n is even.

Corollary 2.2.28. Every standard word is a pre�x of some 
hara
teristi


word.

Thus, every standard word is left spe
ial.

Corollary 2.2.29. A word is 
entral if and only if it is a palindrome pre�x

of some 
hara
teristi
 word.

Proof. A 
entral word is a pre�x of some standard word, so also of some 
hara
-

teristi
 word. Conversely, a palindrome pre�x of a 
hara
teristi
 word is a pre�x

of any suÆ
iently long word in its standard sequen
e, so also of some suÆ
iently

long 
entral word. Thus the result follows from Proposition 2.2.10.

Proposition 2.2.24 has several interesting 
onsequen
es. The relation to �x-

points is left to se
tion 2.3.6. We fo
us on two properties, �rst the powers that

may appear in a Sturmian word, and then the 
omputation of the number of

fa
tors of Sturmian words.

Let x be an in�nite word. For w 2 F (x), the index of w in x is the greatest

integer d su
h that w

d

2 F (x), if su
h an integer exists. Otherwise, w is said to

have in�nite index.

Proposition 2.2.30. Every nonempty fa
tor of a Sturmian word s has �nite

index in s.

Proof. Assume the 
ontrary. There exist a Sturmian word s and a nonempty

fa
tor u of s su
h that u

n

is a fa
tor of s for every n � 1. Consequently, the

periodi
 word u

!

is in the dynami
al system generated by s. Sin
e this system

is minimal, F (s) = F (u

!

), a 
ontradi
tion.

An in�nite word x has bounded index if there exists an integer d su
h that

every nonempty fa
tor of x has an index less than or equal to d.

Theorem 2.2.31. A Sturmian word has bounded index if and only if the 
on-

tinued fra
tion expansion of its slope has bounded partial quotients.
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We start with a lemma.

Lemma 2.2.32. Let (s

n

)

n��1

be the standard sequen
e of the 
hara
teristi


word 


�

, with � = [0; 1 + d

1

; d

2

; : : :℄. For n � 3, the word s

1+d

n+1

n

is a pre�x of




�

, and s

2+d

n+1

n

is not a pre�x. If d

1

� 1, this holds also for n = 2.

Example 2.2.33. For the Fibona

i word f = 0100101001001 � � �, we have

s

n

= f

n

and d

n

= 1 for all n. The lemma 
laims that for n � 2, the word f

2

n

is

a pre�x of the in�nite word f , and that f

3

n

is not. As an example, f

2

2

= 010010

is a pre�x and f

3

2

= 010010010 is not. Observe also that f

2

1

= 0101 is not a

pre�x of f .

Proof. We show that for n � 3 (and for n � 2 if d

1

� 1), one has

s

n�1

s

n

= s

n

t

n�1

; with t

n

= s

d

n

�1

n�1

s

n�2

s

n�1

Indeed

s

n�1

s

n

= s

n�1

s

d

n

n�1

s

n�2

= s

d

n

n�1

s

d

n�1

n�2

s

n�3

s

n�2

= s

d

n

n�1

s

n�2

s

d

n�1

�1

n�2

s

n�3

s

n�2

= s

n

t

n�1

provided d

n�1

� 1. Observe that t

n�1

is not a pre�x of s

n

, sin
e otherwise

s

n

= t

n�1

u for some word u, and s

n�1

s

n

u = s

2

n

and s

n

is not primitive.

Clearly, s

n+1

s

n

is a pre�x of the 
hara
teristi
 word 


�

. Sin
e

s

n+1

s

n

= s

d

n+1

n

s

n�1

s

n

= s

1+d

n+1

n

t

n�1

the word s

1+d

n+1

n

is a pre�x of 


�

, and sin
e t

n�1

is not a pre�x of s

n

, the word

s

2+d

n+1

n

is not a pre�x of 


�

.

Proof of Theorem 2.2.31. Sin
e a Sturmian word has the same fa
tors as the


hara
teristi
 word of same slope, it suÆ
es to prove the result for 
hara
teristi


words. Let 
 be the 
hara
teristi
 word of slope � = [0; 1 + d

1

; d

2

; : : :℄. Let

(s

n

)

n��1

be the asso
iated standard sequen
e.

To prove that the 
ondition is ne
essary, observe that s

d

n+1

n

is a pre�x of


 for ea
h n � 1. Consequently, if the sequen
e (d

n

) of partial quotients is

unbounded, the in�nite word 
 has fa
tors of arbitrarily great exponent.

Conversely, assume that the partial quotients (d

n

) are bounded by some D

and arguing by 
ontradi
tion, suppose that 
 has unbounded index. Let r be

some integer su
h that F (
) 
ontains a primitive word of length r with index

greater than D+4. Among those words, let w be a word of length r of maximal

index. Let d+1 be the index of w. Then d � D+3. The proof is in three steps.

(1) The 
hara
teristi
 word 
 has pre�xes of the form w

d

, with d � D + 3.

Indeed, if w

d+1

is a pre�x of 
, we are done. Otherwise, 
onsider an o

urren
e

of w

d+1

. Set w = za with a a letter, and let b be the letter pre
eding the

o

urren
e of w

d+1

. If b = a, repla
e w by az and pro
eed. The pro
ess will

stop after at most jwj�1 steps be
ause either a pre�x of 
 is obtained, or be
ause

otherwise w would o

ur in 
 at the power d+ 2. Thus, we may assume b 6= a.
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Thus b(za)

d+1

is a fa
tor of 
. This implies that a(za)

d

and b(za)

d

are fa
tors,

so w

d

is a right spe
ial fa
tor, and therefore it is a pre�x of 
.

(2) If w

d

is a pre�x of the 
hara
teristi
 word 
, then w is one of the standard

words s

n

. Indeed, set e = d�2, so that e � D+1. Let n be the greatest integer

su
h that s

n

is a pre�x of w

e+1

. Then w

e+1

is a pre�x of s

n+1

= s

d

n+1

n

s

n�1

,

thus also of s

1+d

n+1

n

. This shows that

(1 +D)jwj � (1 + e)jwj � (1 + d

n+1

)js

n

j � (1 +D)js

n

j

when
e jwj � js

n

j. Now, sin
e both w

e+2

and s

1+d

n+1

n

are pre�xes of 
, one

is a pre�x of the other. If w

e+2

is the shorter one, then jw

e+2

j = jw

e+1

j +

jwj � js

n

j + jwj. Thus, w

e+2

and s

1+d

n+1

n

share a 
ommon pre�x of length

� js

n

j + jwj. Consequently, w and s

n

are powers of the same word, and sin
e

they are primitive, they are equal.

If s

1+d

n+1

n

is the shorter one then, sin
e (1 + e)jwj � (1 + d

n+1

)js

n

j,

�

�

s

1+d

n+1

n

�

�

= js

n

j+ d

n+1

js

n

j � js

n

j+

d

n+1

1 + d

n+1

(1 + e)jwj � js

n

j+ jwj

and the same 
on
lusion holds.

(3) If follows that s

1+e

n

is a pre�x of 
 and, sin
e e � D+1 � d

n+1

+1, also

s

2+d

n+1

n

is a pre�x of 
, 
ontradi
ting Lemma 2.2.32.

We 
on
lude this se
tion with the 
omputation of the number of fa
tors of

Sturmian words. Another 
hara
terization of 
entral words will help. Re
all

that a �nite word is balan
ed if and only if it is a fa
tor of some Sturmian

word. Moreover, every balan
ed word w, as a fa
tor of some uniformly re
urrent

in�nite word, 
an be extended to the right and to the left, that is wa and bw

are balan
ed for some letters a; b.

Proposition 2.2.34. For any word w, the following are equivalent:

(i) the word w is 
entral;

(ii) the words 0w0, 0w1, 1w0, 1w1 are balan
ed;

(iii) the words 0w1 and 1w0 are balan
ed.

Proof . (i) ) (ii). The words w01 and w10 are standard, and therefore are

pre�xes of some 
hara
teristi
 words 
 and 


0

. By Proposition 2.1.22 the four

in�nite words 0
, 1
, 0


0

and 1


0

are Sturmian, and 
onsequently their pre�xes

0w0, 0w1, 1w0, 1w1 are balan
ed. (ii)) (iii) is trivial.

(iii)) (i). We prove �rst that w is a palindrome word. Assume the 
ontrary.

Then there are words u,v, v

0

and letters a 6= b su
h that w = uav = v

0

b~u. But

then awb = auavb = av

0

b~ub has fa
tors aua and b~ub with height satisfying

jh(aua)� h(b~ub)j = 2, 
ontradi
tion.

Let 
 be a 
hara
teristi
 word su
h that 0w1 2 F (
). Sin
e F (
) is 
losed

under reversal (Proposition 2.1.19), and w is a palindrome, 1w0 2 F (
), showing

that w is a right spe
ial fa
tor of 
. Thus its reversal (that is w itself) is a pre�x

of 
. In view of Corollary 2.2.29, the word w is 
entral.
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Words satisfying 
ondition (ii) are sometimes 
alled stri
tly bispe
ial.

We now want to 
ount the number of balan
ed words of length n. We need

a lemma.

Lemma 2.2.35. Let w be a word. If w0 and w1 are balan
ed, then there is a

letter a su
h that aw0 and aw1 are balan
ed.

Before giving the proof, let us observe that there seems to be a di�eren
e, for a

word w, to be right spe
ial or have both extensions w0 and w1 balan
ed. Indeed,

a word w 
an only be right spe
ial with respe
t to some Sturmian word s that


ontains both fa
tors w0 and w1. On the 
ontrary, if w0 and w1 are balan
ed,

then there exist Sturmian words x an y su
h that w0 2 F (x) and w1 2 F (y),

but x and y need not be the same. In fa
t, one 
an show (Problem 2.2.7) that

both notions 
oin
ide.

Proof of Lemma 2.2.35. Sin
e w0 and w1 are fa
tors of Sturmian words, there

exist letters a and b su
h that aw0 and bw1 are balan
ed. If a = b, we get

the 
laim. If a = 1 and b = 0, then w is 
entral by Proposition 2.2.34, and

therefore is balan
ed. Thus suppose a = 0, b = 1. Then 0w0 and 1w1 are

balan
ed, but neither 1w0 nor 0w1 are. A

ording to Proposition 2.1.3, there

exists a palindrome word u su
h that 1u1 and 0u0 are fa
tors of 1w0. However,

sin
e 1w and w0 are balan
ed, 1u1 is a pre�x of 1w0 and 0u0 is a suÆx of

1w0. Thus there exist words p; s su
h that 1w0 = 1u1s0 = 1p0u0, when
e w =

u1s = p0u. Similarly, there exist words u

0

; p

0

; s

0

su
h that w = u

0

0s

0

= p

0

1u

0

.

We may assume juj < ju

0

j and set u

0

= u1x = y0u for some words x; y. Then

w = y0u0s

0

= p

0

1u1x, showing that w is unbalan
ed, a 
ontradi
tion.

Theorem 2.2.36. The number of balan
ed words of length n is

1 +

n

X

i=1

(n+ 1� i)�(i)

where � is Euler's totient fun
tion.

Proof. Let R(n) be the set of words w of length n su
h that 0w and 1w are

balan
ed, and set r(n) = Card R(n). Then r(0) = 1 = �(1) and

r(n+ 1) = r(n) + �(n+ 2)

Indeed, for ea
h w 2 R(n), one has 0w 2 R(n + 1) or 1w 2 R(n + 1) by

Lemma 2.2.35, and both 0w; 1w 2 R(n + 1) if and only if w 2 R(n) and 0w1

and 1w0 are balan
ed, that is if and only if w is 
entral, by Proposition 2.2.34.

Thus r(n+ 1)� r(n) is the number of 
entral words of length n, whi
h in turn

is �(n+ 2) by Corollary 2.2.16. It follows that

r(n) =

n+1

X

i=1

�(n) :
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Let g(n) be the number of balan
ed words of length n. Then

g(n+ 1) = g(n) + r(n)

sin
e for ea
h balan
ed word w, the word w0 or w1 is balan
ed, and both are

balan
ed if and only if w 2 R(n). Sin
e g(0) = 1, it follows that

g(n) = 1+

n�1

X

k=0

r(k) = 1+

n�1

X

k=0

k+1

X

i=1

�(i) = 1+

n

X

k=1

k

X

i=1

�(i) = 1+

n

X

i=1

(n+1� i)�(i)

as required.

2.2.3. Frequen
ies

Let x be an in�nite word. Re
all from Chapter 1 that the fa
tor graph G

n

(x)

of order n is the graph with vertex set F

n

(x) and domain F

n+1

(x). A triple

(p; a; s) is an edge if and only if pa = bs 2 F

n+1

(x) for some letter b.

01 10

00

010

101

100001

0100 1001 0010

01011010

01001 10010

00100

00101

01010

10100

Figure 2.6. Fa
tor graphs for the Fibona

i word.

If x is a Sturmian word, then there is exa
tly one vertex in G

n

(x) with out-

degree 2. This is the right spe
ial fa
tor d

n

of length n. The edges leaving d

n

are (d

n

; 0; d

n�1

0) and (d

n

; 1; d

n�1

1), be
ause d

n�1

is a suÆx of d

n

. Similarly,

there is exa
tly one vertex with in-degree 2. This is the left spe
ial fa
tor g

n

of

length n. Let a be the letter su
h that g

n

= g

n�1

a. Then the edges entering g

n

are (0g

n�1

; a; g

n

) and (1g

n�1

; a; g

n

). Observe that d

n

= g

n

if and only if d

n

is a

palindrome word. See Figure 2.6 for the word graphs of the Fibona

i word.

The fa
tor graph of order n of a Sturmian word x is 
omposed of three

paths: the �rst is from g

n

to d

n

, both verti
es in
luded. This path is never

empty. There are two other paths, from d

n

to g

n

, one through vertex d

n�1

0 the
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other through d

n�1

1. We 
onsider that the endpoints d

n

and g

n

are not part

of these paths. Then su
h a path may be empty. This happens if and only if

d

n�1

0 = g

n

or d

n�1

1 = g

n

whi
h in turn is the 
ase if and only if d

n�1

= g

n�1

be
ause g

n�1

is a pre�x of g

n

.

Let s = s

�;�

be a Sturmian word of slope �. We have seen how to asso
iate

to s a rotation R on the unit 
ir
le. Also (Equation 2.1.11), a word w is a fa
tor

of s if and only if the interval I

w

of the unit 
ir
le is non empty. Moreover,

an integer n � 0 is the starting index of an o

urren
e of w in s if and only if

R

n

(�) 2 I

w

.

Let �

N

(w) be the number of o

urren
es of w in the pre�x of length N +

jwj�1 of s. This is exa
tly the number of integers n, with 0 � n < N , su
h that

R

n

(�) 2 I

w

. It is known from number theory that the numbers R

n

(�), (n � 1)

are uniformly distributed in the interval [0; 1[. As a 
onsequen
e, the limit

�(w) = lim

N!1

�

N

(w)

always exists and is equal to the length of the interval I

w

. The number �(w) is

the frequen
y of w in s. Of 
ourse, �(w) = 0 if and only if w =2 F (s). It is easily

seen that, for any word w, one has �(0w) + �(1w) = �(w) and symmetri
ally

�(w) = �(w0) + �(w1).

Theorem 2.2.37. Let s be a Sturmian word. For ea
h n, the frequen
ies of

the fa
tors of length n take at most three values. If they take three values, then

one is the sum of the two others.

Lemma 2.2.38. Let s be a Sturmian word. Let (p; a; q) be an edge in G

n

(s).

If p is not right spe
ial and q is not left spe
ial, then �(p) = �(q).

Proof. There exists a letter b su
h that pa = bq 2 F

n+1

(s). Sin
e pb; aq =2 F

n+1

,

one has �(p) = �(pa) = �(bq) = �(q).

Proof of Theorem 2.2.37. By the lemma, the frequen
ies are 
onstant on ea
h

of the three paths in the fa
tor graph G

n

(s). Thus there are at most three

frequen
ies. Assume that none of the three paths in the fa
tor graph is empty.

A

ording to our dis
ussion, this happens if and only if d

n�1

6= g

n�1

. Moreover,

the frequen
ies are those of any set of verti
es taken in the paths, e.g. �(d

n

),

�(d

n�1

0), and �(d

n�1

1). Set d

n

= 0d

n�1

. Sin
e d

n�1

is not left spe
ial, 1d

n�1

is not a fa
tor of s. Thus

�(d

n

) = �(0d

n�1

) = �(d

n�1

) = �(d

n�1

0) + �(d

n�1

1)

showing the se
ond part of the theorem.

2.3. Sturmian morphisms

All morphisms will be endomorphisms of f0; 1g

�

. The identity morphism Id

and the morphism E that ex
hanges the letters 0 and 1 will be 
alled trivial

morphisms.
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A morphism f is Sturmian if f(s) is a Sturmian word for every Sturmian

word s. Sin
e an erasing morphism 
an never be Sturmian, all morphisms


onsidered here are assumed to be nonerasing. The trivial morphisms Id and

E are Sturmian. The set of Sturmian morphisms is 
losed under 
omposition,

and 
onsequently is a submonoid of the monoid of endomorphisms of f0; 1g

�

.

2.3.1. A set of generators

The main result of this se
tion is the 
hara
terization of Sturmian morphisms

(Theorem 2.3.7). Consider the morphisms

' :

0 7! 01

1 7! 0

~' :

0 7! 10

1 7! 0

Re
all from Chapter 1 that the morphism ' generates the in�nite Fibona

i

word f = '(f) = 010010100100101001010 � � �.

Proposition 2.3.1. The morphisms E, ' and ~' are Sturmian.

Proof. This follows from Corollary 2.2.19.

We shall see below that every Sturmian morphism is a 
omposition of these

three morphisms. The following property gives a 
onverse of Proposition 2.3.1.

Proposition 2.3.2. Let x be an in�nite word.

(i) If '(x) is Sturmian then x is Sturmian.

(ii) If ~'(x) is Sturmian and x starts with the letter 0, then x is Sturmian.

Proof . Let x be an in�nite word. If '(x) or ~'(x) is Sturmian, then x is 
learly

aperiodi
. Arguing by 
ontradi
tion, let us suppose that x is not balan
ed and

suppose that 0v0 and 1v1 are both fa
tors of x.

Clearly, '(0v0) = 01'(v)01, '(1v1) = 0'(v)0 and every o

urren
e of

'(1v1) in '(x) is followed by the letter 0. Consequently 1'(v)01 and 0'(v)00

are both fa
tors of '(x) whi
h is not balan
ed.

Next, if x does not start with 1, then either 01v1 or 11v1 is a fa
tor of x.

But ~'(0v0) 
ontains the fa
tor 10 ~'(v)1, and ~'(01v1) and ~'(11v1) both 
ontain

the fa
tor 00 ~'(v)0. Consequently, ~'(x) is not balan
ed.

Corollary 2.3.3. Let x be an in�nite word and let f be a morphism that is

a 
omposition of E and '. If f(x) is Sturmian then x is Sturmian.

Example 2.3.4. We give an example of a non Sturmian word x starting with 1

and su
h that ~'(x) is Sturmian. Let f be the Fibona

i word. The in�nite word

11f is not Sturmian be
ause it 
ontains both 00 and 11 as fa
tors. However,

sin
e f is a 
hara
teristi
 word, the in�nite word 0f is Sturmian. Consequently

~'('(0f)) = ~'(01f) = 100 ~'(f) is Sturmian. Thus 00 ~'(f) also is Sturmian and,

sin
e 00 = ~'(11), ~'(11f) is Sturmian.



2.3. Sturmian morphisms 75

Let us denote St the submonoid of the monoid of endomorphisms obtained

by 
omposition of E, ' and ~' in any number and order. St is 
alled the monoid

of Sturm and by Proposition 2.3.1 all its elements are Sturmian. A �rst step to

the 
onverse is the following.

Lemma 2.3.5. Let f and g be two morphisms and let x a Sturmian word. If

f 2 St and f Æ g(x) is a Sturmian word, then g(x) is a Sturmian word.

Proof. Let x be a Sturmian word and g a morphism. It suÆ
es to prove the


on
lusion for f = E, f = ' and f = ~'.

Set y = g(x). If E(y) is a Sturmian word then y is also a Sturmian word too

and, by Proposition 2.3.2, this also holds if '(y) is a Sturmian word. It remains

to prove that if ~'(y) is a Sturmian word then so is y.

Suppose that y is not a Sturmian word. Observe that y is aperiodi
, sin
e

otherwise ~'(y) is eventually periodi
 thus it is not Sturmian. Thus y = g(x) is

not balan
ed and 
ontains two fa
tors 0v0 and 1v1 whi
h are fa
tors of images of

some fa
tors of x. The Sturmian word x is re
urrent, thus 1v1 o

urs in�nitely

often in y, whi
h implies that 01v1 or 11v1 is a fa
tor of y. Sin
e ~'(0v0) =

10 ~'(v)10 and ~'(1v1) = 0~'(v)0, both 10 ~'(v)1 and 00 ~'(v)0 are fa
tors of ~'(y)

and thus ~'(y) is not balan
ed. A 
ontradi
tion.

Corollary 2.3.6. Let f 2 St and g be a morphism. The morphism f Æ g is

Sturmian if and only if g is Sturmian.

Proof. Assume �rst that g is Sturmian. Sin
e f is a 
omposition of E, ' and ~',

the morphism f Æ g is Sturmian by Proposition 2.3.1.

Conversely, if f Æ g is Sturmian, then for every Sturmian word x, the in�nite

word f Æ g(x) is Sturmian and, by Lemma 2.3.5, the in�nite word g(x) is Stur-

mian. This means that g is Sturmian.

A morphism f is lo
ally Sturmian if there exists at least one Sturmian word

x su
h that f(x) is a Sturmian word.

Theorem 2.3.7. Let f be a morphism. The following three 
onditions are

equivalent:

(i) f 2 St ;

(ii) f is Sturmian;

(iii) f is lo
ally Sturmian.

The equivalen
e of (i) and (ii) means that the monoid of Sturm is exa
tly the

monoid of Sturmian morphisms.

The length of a morphism f is the number kfk = jf(0)j+ jf(1)j. The proof

of Theorem 2.3.7 is based on the following fundamental lemma.

Lemma 2.3.8. Let f be a non trivial morphism. If f is lo
ally Sturmian then

f(0) and f(1) both start or end with the same letter.
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Proof . Let f be a non trivial morphism and suppose that f(0) and f(1) do not

start nor end with the same letter.

Suppose f(0) starts with the letter 0: Then f(1) starts with the letter 1:

If f(0) ends with 1 then f(1) ends with 0: But in this 
ase f(01) 
ontains a

fa
tor 11 and f(10) 
ontains a fa
tor 00: Thus the image of any Sturmian word


ontains the two fa
tors 00 and 11 whi
h means that f is not lo
ally Sturmian.

Otherwise f(0) 2 0A

�

0[f0g and f(1) 2 1A

�

1[f1g, and we prove the result

by indu
tion on kfk:

If kfk = 3, then f(a) = 

 and f(b) = d for letters a; b; 
; d, a 6= b, and sin
e

any Sturmian word x 
ontains the two fa
tors a

n+1

and ba

n

b for some integer

n, f(x) 
ontains (

)

n+1

and d(

)

n

d and thus is not Sturmian.

Arguing by 
ontradi
tion, suppose that kfk � 4 and f is lo
ally Sturmian.

Let x be a Sturmian word su
h that f(x) is Sturmian (su
h a word exists

be
ause f is lo
ally Sturmian) and suppose that x 
ontains the fa
tor 00 (the


ase where x 
ontains 11 is 
learly the same). Sin
e f(0) starts and ends with

0, f(x) 
ontains also 00. Consequently, sin
e the in�nite word f(x) is balan
ed,

neither f(0) nor f(1) 
ontains the fa
tor 11.

Sin
e x is Sturmian, x does not 
ontain 11 and there is an integer m � 1

su
h that every blo
k of 0 between two 
onse
utive o

urren
es of 1 is either 0

m

or 0

m+1

.

The word f(0) does not 
ontain the fa
tor 00. Indeed, otherwise f(0) = u00v

and f(1) = r1 = 1s for some words u; v; r; s. Sin
e 0

m+1

and 10

m

1 are fa
tors

of w, the words f(0

m+1

) and f(10

m

1) are fa
tors of f(x). But

f(0

m+1

) = u00vf(0

m�1

)u00v = uw

1

v; f(10

m

1) = r1f(0

m�1

)u00v1s = rw

2

s

for suitable w

1

; w

2

, and one has jw

1

j = jw

2

j and Æ(w

1

; w

2

) = 2, a 
ontradi
tion.

Consequently f(0) = (01)

n

0 for some integer n � 0.

Sin
e 10

m

1 and 10

m+1

1 are fa
tors of x, the in�nite word f(x) 
ontains the

two fa
tors 10

m

1 and 10

m+1

1 if n = 0, and the two fa
tors 101 and 1001 if

n 6= 0. Set p = m if n = 0, and p = 1 if n 6= 0. Then in both 
ases, f(x)


ontains the fa
tors 10

p

1 and 10

p+1

1, and in both 
ases 1 � p � m.

Sin
e f(1) does not 
ontain the fa
tor 11, there exist an integer k � 0, and

integers m

1

; : : : ;m

k

2 f0; 1g su
h that

f(1) = 10

p+m

1

10

p+m

2

1 � � � 10

p+m

k

1

Consider a new alphabet B = fa; bg and two morphisms �; � : B

�

! A

�

� :

a 7! 0

b 7! 0

p

1

� :

a 7! (01)

n

0

b 7! 0

p

1

We show that there exists a word u over B su
h that f(�(b)) = �(bub).

(i) If n = 0, set u = a

m

1

ba

m

2

b : : : ba

m

k

. Sin
e f(1) 6= 1, one has f(1) =

1�(u)0

p

1. Thus f(�(b)) = f(0

p

1) = �(bub).

(ii) If n 6= 0 and m

1

= : : : = m

k

= 0, set u = b

k+n�1

. Sin
e f(1) = (10)

k

1,

one gets �(u) = (01)

k+n�1

and f(�(b)) = f(01) = �(bub).
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(iii) Otherwise n 6= 0 and m

i

= 1 for at least one integer i; 1 � i � k. Thus

there exist integers t � 2, n

1

; : : : ; n

t

su
h that

f(1) = 1(01)

n

1

0(01)

n

2

0 : : : (01)

n

t�1

0(01)

n

t

Sin
e f(01) starts with (01)

n+1

, one has n

1

� 0, n

i

� n for 2 � i � t � 1 and

n

t

� 1. Set u = b

n

1

ab

n

2

�n

a : : : b

n

t�1

�n

ab

n

t

�1

. Then, again, f(�(b)) = f(01) =

�(bub).

De�ne a morphism g : B

�

! B

�

by

g :

a 7! a

b 7! bub

Then f Æ � = � Æ g. Sin
e m � p, by deleting if ne
essary some letters at the

beginning of x, one may suppose that x starts with 0

p

1. It follows that there

exists a (unique) in�nite word x

0

over B su
h that �(x

0

) = x:

Thus there exists a (unique) in�nite word y

0

over B su
h that

�

?

�

?

�

x

x

0

f

g

f(x)

y

0

�

Identifying a with 0 and b with 1, one has � = (' Æ E)

p

: If n = 0 then

� = �: If n 6= 0 then p = 1, so � = ' ÆE Æ (E Æ ')

n

: Thus sin
e x and f(x) are

Sturmian, the words x

0

and y

0

are Sturmian by Corollary 2.3.3. Consequently

the morphism g is lo
ally Sturmian.

However, the words g(0) and g(1) do not start nor end with the same letter

and 3 � kgk < kfk. By indu
tion, g is not lo
ally Sturmian, a 
ontradi
tion.

The lemma is proved.

Proof of Theorem 2.3.7. It is easily seen that (i)) (ii) and (ii)) (iii).

So let us suppose that f is a lo
ally Sturmian morphism. The property is

straightforward if f = Id or f = E. Thus we assume kfk � 3.

Let x be a Sturmian word su
h that f(x) is also a Sturmian word. Sin
e

f(x) is balan
ed, it 
ontains only one of the two words 00 or 11.

Suppose that f(x) 
ontains 00. From Lemma 2.3.8, the words f(0) and f(1)

both start or end with 0. Consider �rst the 
ase where f(0) and f(1) both

start with 0. Then f(0); f(1) 2 f0; 01g

+

and there exists two words u and v

su
h that f(0) = '(u) and f(1) = '(v). De�ne g a morphism by g(0) = u and

g(1) = v. Then f = ' Æ g and, by Lemma 2.3.5, g(x) is a Sturmian word. Next,

kfk = kgk + juvj

0

and juvj

0

> 0. Otherwise, f(0) = '(u) and f(1) = '(v)

would 
ontain only 0 and f(x) = 0

!

would not be Sturmian. Thus kgk < kfk

and the result follows by indu
tion.
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If f(0) and f(1) both end with 0, the same argument holds with ~' instead of

', and if f(x) 
ontains 11 then E Æf is of the same height and 
ontains 00.

We give here only one property of the monoid St whi
h shows how de
ide

whether a morphism is Sturmian by trying to de
ompose it over fE;'; ~'g.

Other properties will be seen in se
tion 2.3.3 and in the problem se
tion.

Corollary 2.3.9. The monoid of Sturm is left and right unitary, i.e. for all

morphisms f and g:

1. If f Æ g 2 St and f 2 St then g 2 St .

2. If f Æ g 2 St and g 2 St then f 2 St .

Proof . Let f and g be two morphisms su
h that f Æg 2 St . Let x be a Sturmian

word. Then f Æ g(x) is a Sturmian word.

1. If f 2 St then by Lemma 2.3.5, g(x) is a Sturmian word. Consequently g

is lo
ally Sturmian and, by Theorem 2.3.7, g 2 St .

2. If g 2 St then g(x) is a Sturmian word. Thus f is lo
ally Sturmian and

by Theorem 2.3.7, f 2 St .

From this property we dedu
e an algorithm to de
ide whether a morphism is

Sturmian. Indeed, if f is a non trivial Sturmian morphism then f de
omposes

as f = g Æ �, where g is Sturmian by Corollary 2.3.9 and where � is one of

the eight morphisms in f'; ' Æ E;E Æ ';E Æ ' Æ E; ~'; ~' Æ E;E Æ ~';E Æ ~' Æ Eg.

A

ording to �, one gets the following fa
torizations of f(0) and f(1).

g(0) = f(1) and f(0) = f(1)u with u = g(1) if � = ';

g(0) = f(1) and f(0) = uf(1) with u = g(1) if � = ~';

g(1) = f(1) and f(0) = f(1)u with u = g(0) if � = E Æ ';

g(1) = f(1) and f(0) = uf(1) with u = g(0) if � = E Æ ~';

g(0) = f(0) and f(1) = f(0)u with u = g(1) if � = ' ÆE;

g(0) = f(0) and f(1) = uf(0) with u = g(1) if � = ~' ÆE;

g(1) = f(0) and f(1) = f(0)u with u = g(0) if � = E Æ ' ÆE;

g(1) = f(0) and f(1) = uf(0) with u = g(0) if � = E Æ ~' ÆE.

Proposition 2.3.10. A morphism f is Sturmian if and only if, with f as

input, the algorithm below ends with g = Id or E. In this 
ase, the output h is

a de
omposition of f over fE;'; ~'g.

Algorithm:

input: f morphism;

output: h morphism;

lo
al: g morphism;

begin

g  f;

h Id;

while one of the two words g(0) and g(1) is a proper pre�x

or a proper suÆx of the other

do if g(1) = g(0)u then
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g(1) u; h ' ÆE Æ h

else if g(1) = ug(0) then

g(1) u; h ~' ÆE Æ h

else if g(0) = g(1)u then

g(0) u; h E Æ ' Æ h

else fg(0) = ug(1)g

g(0) u; h E Æ ~' Æ h;

if g = E then h E Æ h

end.

Observe that f(0) may be both a proper pre�x and a proper suÆx of f(1)

(or vi
e versa). In this 
ase, there are two de
ompositions of f over fE;'; ~'g.

These are obtained in the algorithm by inverting the order in the tests. We

shall see in Se
tion 2.3.3, that these are all de
ompositions (not 
ontaining E

2

)

of a given Sturmian morphism over fE;'; ~'g.

2.3.2. Standard morphisms

In this se
tion it will be 
onvenient to 
onsider unordered standard pairs. An

unordered standard pair is a set fx; yg su
h that either (x; y) or (y; x) is a

standard pair.

In parti
ular, if fx; yg is a unordered standard pair then fE(x); E(y)g is a

unordered standard pair. On the 
ontrary, f ~'(x); ~'(y)g is never a unordered

standard pair be
ause ~'(x) and ~'(y) both end with the same letter (Proposi-

tion 2.2.2).

Consequently, Sturmian morphisms that are 
ompositions of E and ' are

an interesting spe
ial 
ase. Be
ause of the following proposition, a morphism is


alled standard if it is a 
omposition of E and '.

Proposition 2.3.11. A morphism f is standard if and only if ff(0); f(1)g is

an unordered standard pair.

Proof . Assume �rst that f is standard and, arguing by indu
tion on kfk, suppose

that ff(0); f(1)g is an unordered standard pair. If g = f ÆE, then fg(0); g(1)g =

ff(0); f(1)g is an unordered standard pair. If g = f Æ ', then fg(0); g(1)g =

ff(0)f(1); f(0)g is also an unordered standard pair.

Conversely, assume that ff(0); f(1)g is an unordered standard pair, and

that jf(0)j > jf(1)j. Then f(0) = f(1)v for some word v, and fv; f(1)g is an

unordered standard pair. By indu
tion, there is a standard morphism g su
h

that fg(0); g(1)g = fv; f(1)g. If g(0) = f(1) and g(1) = v then f = g Æ', in the

other 
ase f = g ÆE Æ '. Thus f is standard.

The set of standard morphisms is interesting be
ause these morphisms are


losely related to 
hara
teristi
 words (re
all that an in�nite word x is 
har-

a
teristi
 if and only if 0x and 1x are Sturmian words), as it will appear in a

moment.
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A morphism f is 
hara
teristi
 if f(x) is a 
hara
teristi
 word for every 
har-

a
teristi
 word x, and it is lo
ally 
hara
teristi
 if there exists a 
hara
teristi


word x su
h that f(x) is a 
hara
teristi
 word.

The following theorem is an analogue of Theorem 2.3.7 for standard mor-

phisms.

Theorem 2.3.12. Let f be a morphism. The following 
onditions are equiv-

alent:

(i) f is standard;

(ii) f is 
hara
teristi
;

(iii) f is lo
ally 
hara
teristi
.

To prove this result we need the following lemma.

Lemma 2.3.13. Let x be an in�nite word.

1. x is 
hara
teristi
 if and only if E(x) is 
hara
teristi
.

2. x is 
hara
teristi
 if and only if '(x) is 
hara
teristi
.

Proof. This is a 
onsequen
e of Corollary 2.2.20 and Proposition 2.3.2.

Proof of Theorem 2.3.12. The impli
ation (ii)) (iii) is obvious and the impli-


ation (i)) (ii) is an immediate 
onsequen
e of Lemma 2.3.13.

Let f be a lo
ally 
hara
teristi
 morphism. Then f is lo
ally Sturmian and

by Theorem 2.3.7, it is a 
omposition of E, ' and ~'. We show that no o

urren
e

of ~' appears in the de
omposition of f , by indu
tion on kfk.

If kfk = 2 then f = Id or f = E and the result holds.

Assume kfk � 3 and let x be a 
hara
teristi
 word su
h that f(x) is 
har-

a
teristi
.

If x 
ontains 11 as a fa
tor then we 
an repla
e x by E(x) whi
h is also

a 
hara
teristi
 word (Lemma 2.3.13) and 
onsider f Æ E instead of f , and if

f(x) 
ontains 11 as a fa
tor then we 
an 
onsider E Æ f instead of f . Sin
e

kfk = kf Æ Ek = kE Æ fk, we may suppose that x and f(x) both 
ontain the

fa
tor 00 (and thus none 
ontains the fa
tor 11).

Sin
e x and f(x) are 
hara
teristi
, both 1x and 1f(x) are Sturmian, and

thus both x and f(x) start with the letter 0, and thus f(0) also starts with 0.

If f(1) starts with 1 then, by Lemma 2.3.8, f(0) and f(1) both end with the

same letter. If this letter is a 1 then 11 is a fa
tor of f(01) and thus of f(x)

whi
h is impossible. So f(0) and f(1) both end with the letter 0. Let r � 1 be

su
h that x starts with 0

r

1. Sin
e 0x is Sturmian, x 
ontains 0

r+1

1 and then

10

r+1

as a fa
tor. Consequently 1f(0

r

)1 is a pre�x of 1f(x) and 0f(0

r

)0 is a

fa
tor of f(x). A 
ontradi
tion.

Thus, f(1) starts with 0 and sin
e f(0) and f(1) do not 
ontain 11 as a fa
tor,

f(0) 2 f01; 0g

+

and f(1) 2 f01; 0g

+

. Consequently there exists a morphism g

su
h that f = ' Æ g with kgk < kfk. But ' Æ g(x) is 
hara
teristi
 thus g(x) is


hara
teristi
 (Lemma 2.3.13) and, by indu
tion, g 2 fE;'g

�

. So f is standard.
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2.3.3. A presentation of the monoid of Sturm

In this se
tion, it will be 
onvenient to write the 
omposition of morphisms as

a 
on
atenation (so we will write fg instead of f Æ g).

Let G = 'E and

~

G = ~'E. Clearly, the monoid of Sturm St is also generated

by E, G and

~

G.

Theorem 2.3.14. The monoid of Sturm has the presentation

E

2

= Id; (2.3.1)

GEG

k

E

~

G =

~

GE

~

G

k

EG; k � 0 : (2.3.2)

Formula (2.3.2) 
an be rewritten, in terms of the generators ' and ~', as

'('E)

k

E ~' = ~'( ~'E)

k

E'; k � 0 :

Proof. We 
onsider words over the alphabet fE;G;

~

Gg. For ea
h word W over

fE;G;

~

Gg, denote by f

W

the Sturmian morphism de�ned by 
omposing the

letters of W . Two words W and W

0

are equivalent if f

W

= f

W

0

. The words

W and W

0

are 
ongruent (W � W

0

) if one 
an obtain one from the other by a

repeated appli
ation of (2.3.1) and (2.3.2) viewed as rewriting rules (i.e. if W

andW

0

are in the same equivalen
e 
lass of the 
ongruen
e generated by (2.3.1)

and (2.3.2)).

We prove that equivalent words are 
ongruent (the 
onverse is 
lear). Let

W;W

0

be equivalent words. The proof is by indu
tion on jWW

0

j. We may

assume that W and W

0

do not 
ontain E

2

. Sin
e E;G;

~

G are inje
tive, we may

also assume that W and W

0

do not start with the same letter. Observe that if

W starts with ' or ~', then jf

W

(01)j

1

< jf

W

(01)j

0

and if W starts with E Æ' or

E Æ ~', then jf

W

(01)j

1

> jf

W

(01)j

0

. Consequently W starts with E if and only

if W

0

starts with E, so we suppose that none does. Finally, sin
e G

~

G �

~

GG, we

may assume that one of W and W

0

starts with G

n

E and the other with

~

G

p

E

with n 6= 0 and p 6= 0 . Thus

W =

~

G

r

1

E

~

G

r

2

G

s

2

E � � �E

~

G

r

q

G

s

q

W

0

= G

s

0

1

E

~

G

r

0

2

G

s

0

2

E � � �E

~

G

r

0

q

0

G

s

0

q

0

with r

1

; s

0

1

� 1, r

i

; s

i

; r

0

i

; s

0

i

� 0, and r

i

+ s

i

� 1 for 2 � i < q, r

0

j

+ s

0

j

� 1for

2 � j < q

0

.

Observe �rst that f

W

0

(0) and f

W

0

(1) both start with the letter 0 (be
ause

G does).

Next, s

2

= 0. Indeed, otherwise W is 
ongruent to a word starting with

~

G

r

1

EG, and sin
e

~

G

r

1

EG(0) and

~

G

r

1

EG(1) both start with the letter 1, W

0

is

not equivalent to W .

If s

i

= 0 for i = 3; : : : ; q, then W =

~

G

r

1

E

~

G

r

2

E � � �E

~

G

r

q

, and f

W

(0) or

f

W

(1) starts with the letter 1, a

ording to whether q is even or odd. Thus,

there is a smallest i � 3 su
h that s

i

� 1. Then W is 
ongruent to a word

starting with

U =

~

G

r

1

E

~

G

r

2

E � � �E

~

G

r

i�2

E

~

G

r

i�1

EG
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If i is even, then f

U

(0) and f

U

(1) start with the letter 1. Thus i is odd, and

using (2.3.2), U is 
ongruent to

U

0

=

~

G

r

1

E

~

G

r

2

E � � �E

~

G

r

i�2

�1

GEG

r

i�1

E

~

G

and eventually U is 
ongruent to

G

~

G

r

1

�1

EG

r

2

E

~

G

r

3

E � � �E

~

G

r

i�2

EG

r

i�1

E

~

G

Thus W

0

and some word 
ongruent to W start with the same letter. By indu
-

tion, they are 
ongruent.

As a 
orollary, we obtain a presentation of the monoid of standard mor-

phisms.

Corollary 2.3.15. The only nontrivial identity in the monoid of standard

morphisms generated by E and ' is E

2

= Id.

2.3.4. Conjugate morphisms

In this se
tion, we 
hara
terize Sturmian morphisms by standard morphisms.

The main notion is a spe
ial kind of 
onjuga
y relation for morphisms.

Let f and g be morphisms. The morphism g is a right 
onjugate of f , in

symbols f / g if there is a word w su
h that

f(x)w = wg(x); for all words x 2 A

�

(2.3.3)

This implies that the words f(x) and g(x) are 
onjugate, and moreover all pairs

(f(x); g(x)) share the same \sandwi
h" word w. It suÆ
es, for (2.3.3) to hold,

that

f(a)w = wg(a); for all letters a 2 A (2.3.4)

sin
e by indu
tion f(xa)w = f(x)f(a)w = f(x)wg(a) = wg(xa). Observe that if

(2:3:4) holds for a nonempty word w, then all words f(a) for a 2 A start with the

same letter. Right 
onjuga
y is a preorder over the set of all morphisms over A.

Indeed, if f(x)w = wg(x) and g(x)v = vh(x), then f(x)wv = wg(x)v = wvh(x).

Example 2.3.16. The morphism ~' is a right 
onjugate of ' sin
e '(0)0 =

010 = 0~'(0) and '(1) = ~'(1) = 0. Observe that ' is not a right 
onjugate of ~'

sin
e ~'(0) and ~'(1) do not start with the same letter.

This example shows that right 
onjuga
y is not a symmetri
 relation. However,

one has the following formulas.

Lemma 2.3.17. Let f; g; f

0

; g

0

be morphisms.

(i) If f / g and f

0

/ g, then f / f

0

or f

0

/ f ,

(ii) If f / g and f / g

0

, then g / g

0

or g

0

/ g,

(iii) If f / g and f

0

/ g

0

, then f Æ f

0

/ g Æ g

0

.
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Proof. We start with the �rst impli
ation. If f(x)w = wg(x) and f

0

(x)v = vg(x),

then for 
onvenient x, the word g(x) is longer than v and w. Thus w is a suÆx

of v or vi
e-versa. Assume v = zw. Then zf(x) = f

0

(x)z. The se
ond is

symmetri
.

For the third, assume f(x)w = wg(x) for all words x. For any morphism h,

h(f(x)w) = h(f(x))h(w) = h(w)h(g(x)), and 
onsequently h Æ f / h Æ g. Also

f(h(x))w = wg(h(x)), showing that f Æ h / g Æ h. Thus, if f / g and f

0

/ g

0

, then

f Æ f

0

/ g Æ f

0

/ g Æ g

0

.

The next result states that the monoid of Sturm is the 
losure under right


onjuga
y of the monoid of standard morphisms.

Proposition 2.3.18. A morphism is Sturmian if and only if it is a right 
on-

jugate of some standard morphism.

Proof. We show �rst that a Sturmian morphism is a right 
onjugate of some

standard morphism. Let g be a Sturmian morphism, and 
onsider a de
ompo-

sition

g = h

1

Æ h

2

Æ � � � Æ h

n

with h

1

; : : : ; h

n

2 fE;'; ~'g. If none of the h

i

is equal to ~', then g is standard.

Otherwise, 
onsider the smallest i su
h that h

i

= ~'. Then g = g

0

Æ ~' Æ g

00

,

for g

0

= h

1

Æ � � � Æ h

i�1

and g

00

= h

i+1

Æ � � � Æ h

n

. By indu
tion, g

00

is a right


onjugate of some standard morphism f

00

, and sin
e '/ ~' and by Lemma 2.3.17,

g

0

Æ ' Æ f

00

/ g, with g

0

Æ ' Æ f

00

a standard morphism.

Conversely, let f be a standard morphism, and let g be a right 
onjugate

of f . Then there is a word w su
h that f(x)w = wg(x) for every word x. It

follows that, for any in�nite word s, one has f(s) = wg(s). If s is a Sturmian

word, then g(s) is a Sturmian word, and g is a Sturmian morphism.

We start an expli
it des
ription of the right 
onjugates of a standard mor-

phism by the following observation.

Proposition 2.3.19. Right 
onjugate standard morphisms are equal.

Proof . Let f and f

0

be two standard morphisms, and assume f / f

0

. There is a

word w su
h that

f(0)w = wf

0

(0); f(1)w = wf

0

(1) (2.3.5)

Set x = f(0), y = f(1), and x

0

= f

0

(0), y

0

= f

0

(1). Then jxj = jx

0

j and jyj =

jy

0

j. Next, by Proposition 2.3.11, fx; yg and fx

0

; y

0

g are unordered standard

pairs. If fx; yg = f0; 1g, then fx; yg = fx

0

; y

0

g and f = f

0

. Otherwise, the

words xy, yx, x

0

y

0

and y

0

x

0

are standard words with same height and length

by (2:3:5), and moreover xy 6= yx, x

0

y

0

6= y

0

x

0

by Proposition 2.2.2. In view

of Proposition 2.2.15, there exist exa
tly two standard words of this height and

length. Thus xy = x

0

y

0

or (xy = y

0

x

0

and yx = x

0

y

0

). In the �rst 
ase, f = f

0

.

In the se
ond 
ase, assume jxj � jyj. Then x is a pre�x of y, and the equation

yx = x

0

y

0

shows that x = x

0

. Thus f = f

0

in this 
ase also.
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We now show a way to 
onstru
t all Sturmian morphisms from standard

morphisms.

As in Lothaire (1983) Se
tion 1.3, we use the permutation 
 over A

+

de�ned

by 
(ax) = xa, a 2 A, x 2 A

�

. Two words x; y are 
onjugate if and only if

y = 


i

(x) for some 0 � i < jxj.

Let f be a standard morphism. For 0 � i � kfk � 1, de�ne a morphism f

i

by f

i

(01) = 


i

(f(01)) and jf

i

(0)j = jf(0)j.

Example 2.3.20. Let f be the morphism de�ned by f(0) = 01010, f(1) = 01.

The 
orresponding 7 morphisms are

f

0

: 0 7! 01010 ; 1 7! 01

f

1

: 0 7! 10100 ; 1 7! 10

f

2

: 0 7! 01001 ; 1 7! 01

f

3

: 0 7! 10010 ; 1 7! 10

f

4

: 0 7! 00101 ; 1 7! 01

f

5

: 0 7! 01010 ; 1 7! 10

f

6

: 0 7! 10101 ; 1 7! 00

It is easily 
he
ked that all morphisms ex
ept f

6

are Sturmian and are right


onjugates of f .

Proposition 2.3.21. Let f be a non trivial standard morphism. The right


onjugates of f are the morphisms f

i

, for 0 � i � kfk � 2.

This means that the morphism f

kfk�1

is never Sturmian (in the example above,

this was f

6

).

Proof. Let g be a right 
onjugate of f . Then f(01)w = wg(01) for some word

w, so g = f

i

for some i.

For the 
onverse, we show �rst that f

i

(0) and f

i

(1) start with the same letter

if and only if 0 � i � kfk � 3. Indeed, set x = f(0), y = f(1), x

0

= f

i

(0) and

y

0

= f

i

(1), and set n = jxj = jx

0

j. The word x

0

y

0

is a fa
tor of xyxy, thus

there exists a non empty word t of length i su
h that xyxy starts with tx

0

y

0

.

The �rst letter of x

0

is the (i + 1)th letter of xy. The �rst letter of y

0

is the

(n + i + 1)th letter of xyx, i.e. the (i + 1)th letter of yx. Sin
e fx; yg is an

unordered standard pair, only the last two letters of the words xy and yx are

di�erent by Proposition 2.2.2. Consequently the �rst letter of x

0

is equal to the

�rst letter of y

0

if and only if i+ 1 � kfk � 2.

For any i with 0 � i � kfk � 3, set f

i

(0) = au, f

i

(1) = av for a letter a

and words u; v. Then f

i+1

(0) = ua, f

i+1

(1) = va. Thus f

i

(0)a = af

i+1

(0),

f

i

(1)a = af

i+1

(1), showing that f

i

/ f

i+1

, when
e f / f

i+1

.

Proposition 2.3.22. Let g be a Sturmian morphism. There exists a unique

standard morphism f su
h that f /g. This standard morphism is obtained from

any de
omposition of g in elements of fE;'; ~'g by repla
ing all the o

urren
es

of ~' by '.
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Proof. Let g be a Sturmian morphism, and let f be obtained from a de
ompo-

sition of g in elements of fE;'; ~'g by repla
ing all the o

urren
es of ~' by '.

Sin
e f is a 
omposition of E and ', f is standard. Moreover, sin
e ' / ~', one

has f / g by repeated appli
ation of Lemma 2.3.17(iii).

Moreover if there exists a standard morphism f

0

su
h that f

0

/ g then by

Lemma 2.3.17, one has f

0

/ f or f / f

0

. By Proposition 2.3.19, f = f

0

whi
h

proves that f is unique.

2.3.5. Automorphisms of the free group

Consider two letters

�

0;

�

1 not in A = f0; 1g. The free monoid A

�

= f0; 1;

�

0;

�

1g

�

is equipped with an involution by de�ning

�

�a = a for a 2 A, and uv = �v�u. The

free group F (A) over A = f0; 1g is the quotient of the free monoid A

�

under the


ongruen
e relation generated by 0

�

0 �

�

00 � 1

�

1 �

�

11 � ". A word in A

�

without

fa
tors of the form 0

�

0;

�

00; 1

�

1;

�

11 is redu
ed. Every word in A

�

is equivalent to a

unique redu
ed word. If w is redu
ed, so is �w. The free group 
an be viewed as

the set of redu
ed words. The produ
t of two elements in F (A) is the redu
ed

word equivalent to the 
on
atenation of the redu
ed words 
orresponding to the

group elements, and the inverse of an element in F (A) represented by w is �w.

An element in F (A) has a length. It is the length of its 
orresponding redu
ed

word.

In this se
tion, we give a 
hara
terization of Sturmian morphisms in terms

of automorphisms of the free group F (A).

Any morphism f on A is extended in a natural way to an endomorphism

on F (A), by de�ning f(

�

0) = f(0), f(

�

1) = f(1). It follows that f( �w) = f(w)

for any w 2 F (A). Conversely, 
onsider an endomorphism f of F (A). It is


alled positive if the (redu
ed) words f(0) and f(1) are words over A, that is

do not 
ontain any barred letter. An endomorphism f that is a bije
tion is an

automorphism. Its inverse is denoted f

�1

.

The morphisms E;' and ~' are extended to F (A) by

E :

0 7! 1

1 7! 0

�

0 7!

�

1

�

1 7!

�

0

' :

0 7! 01

1 7! 0

�

0 7!

�

1

�

0

�

1 7!

�

0

~' :

0 7! 10

1 7! 0

�

0 7!

�

0

�

1

�

1 7!

�

0

They are automorphisms, and their inverses are given by

E

�1

= E
'

�1

:

0 7! 1

1 7!

�

10

~'

�1

:

0 7! 1

1 7! 0

�

1

It follows that every Sturmian morphism is a (positive) automorphism of F (A).

The 
onverse also holds.

Theorem 2.3.23. The positive automorphisms of F (A) are exa
tly the Stur-

mian morphisms.
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The theorem states that the three morphisms E;'; ~' are a set of generators

of the monoid of positive automorphisms. The full automorphism group of a

free group is a well-known obje
t (see Notes). In parti
ular, sets of generators


an be expressed in terms of so-
alled Nielsen transformations. In the present


ase, the morphisms

0 7! 0

1 7!

�

1

0 7!

�

0

1 7! 1

0 7! 01

1 7! 1

0 7! 0

1 7! 10

generate the automorphism group of F (A). The two last morphisms are E Æ ~'

and ~' ÆE.

We �rst prove a spe
ial 
ase of the theorem.

Proposition 2.3.24. Let f be a positive automorphism of F (A). If the words

f(0) and f(1) do not end with the same letter, then f is a standard Sturmian

morphism.

Proof. Let f be a positive automorphism of F (A). We may assume jf(0)j �

jf(1)j. We suppose �rst that f(0) is not a pre�x of f(1). There exist words u,

v

0

, v

1

over A su
h that v

0

and v

1

start with di�erent letters and f(0) = uv

0

and f(1) = uv

1

. Sin
e f(0) and f(1) do not end with the same letter, the

words v

0

and v

1

also end with di�erent letters. The images of redu
ed words

of length 2 under f are uv

a

uv

b

, uv

a

�v

b

�u, �v

a

v

b

, �v

a

�u�v

b

�u. Ea
h of these words is

redu
ed be
ause v

0

and v

1

start and end with di�erent letters. It follows that

for any redu
ed word w of length at least 2, the redu
ed word f(w) has length

at least 2. Consider now any letter a 2 A. Sin
e jf(f

�1

(a))j = 1, it follows that

jf

�1

(a)j = 1, that is f is either the identity or E. Thus f is Sturmian.

Next, if f(0) is a pre�x of f(1), there exists a word u su
h that f(1) = f(0)u.

De�ne a morphism g by g(0) = f(0) and g(1) = u. Then f = g Æ ' Æ E. Sin
e

f is a bije
tion, g is also a bije
tion. By indu
tion on kgk, the morphism g is a

standard Sturmian morphism, and so is f .

Proof of Theorem 2.3.23. Let g be a positive automorphism. The words g(01)

and g(10) are di�erent be
ause g is a bije
tion. They have same length. Let u

be their longest 
ommon suÆx. There exist words v

0

; v

1

over A of same length

su
h that g(01) = v

0

u, g(10) = v

1

u and v

0

, v

1

do not end with the same letter.

Sin
e for letters a 6= b, g(aba) = v

a

ug(a) = g(a)v

b

u, the words ug(a) end with

u. De�ne a morphism f by f(a) = ug(a)�u for a 2 f0; 1g. Then f(w) = ug(w)�u

for all w in F (A). Sin
e ug(a) ends with u for a 2 f0; 1g, the morphism f is

positive.

Sin
e g is a bije
tion, f is also a bije
tion. Moreover f(01) = uv

0

and

f(10) = uv

1

end with di�erent letters and sin
e f is positive, also f(0) and

f(1) end with di�erent letters. By Proposition 2.3.24, f is a standard Sturmian

morphism. Now f(0)u = ug(0) and f(1)u = ug(1) whi
h means that g is a right


onjugate of f . Consequently, by Proposition 2.3.18, g is a Sturmian morphism.
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2.3.6. Fixpoints

In this se
tion, we make use of Theorem 2.3.12 to des
ribe those 
hara
teristi


words that are �xpoints of standard morphisms. As an example, we know from

Chapter 1 that the morphism ' �xes the in�nite Fibona

i word f .

We say that a morphism h �xes an in�nite word x if h(x) = x. In this 
ase,

x is a �xpoint of h. Every in�nite word is �xed by the identity, and no in�nite

word is �xed by E.

For the des
ription of 
hara
teristi
 words whi
h are �xpoints of morphisms,

we introdu
e a spe
ial set of irrational numbers. A Sturm number is a number

� that has a 
ontinued fra
tion expansion of one of the following kinds:

(i) � = [0; 1; a

0

; a

1

; : : : ; a

k

℄, with a

k

� a

0

,

(ii) � = [0; 1 + a

0

; a

1

; : : : ; a

k

℄, with a

k

� a

0

� 1.

Observer that (i) implies � > 1=2, and (ii) implies � < 1=2. More pre
isely, �

has an expansion of type (i) if and only if 1� � has an expansion of type (ii).

Consequently, � is a Sturm number if and only 1� � is a Sturm number.

As an example, 1=� = [0; 1℄ is 
overed by the �rst 
ase (for k = 1 and

a

k

= a

0

= 1), and 1=�

2

= [0; 2; 1℄ is 
overed by the se
ond 
ase.

We shall give later (Theorem 2.3.26) a simple algebrai
 des
ription of Sturm

numbers. There is also a simple 
ombinatori
 
hara
terization of these numbers

(Problem 2.3.4).

Theorem 2.3.25. Let 0 < � < 1 be an irrational number. The 
hara
teristi


word 


�

is a �xpoint of some non trivial morphism if and only if � is a Sturm

number.

Proof. Let

� = [0;m

1

;m

2

; : : :℄

be the 
ontinued fra
tion expansion of �, and suppose that f(


�

) = 


�

for some

morphism f . In view of Theorem 2.3.12, the morphism f is standard. Thus, f

is a produ
t of E and G, and is not a power of E. Also, f is not a proper power

of G, be
ause a morphism G

n

with n � 1 �xes only the in�nite word 0

!

. Thus

(we write 
omposition as 
on
atenation), f has the form

f = G

n

1

EG

n

2

� � �EG

n

k

EG

n

k+1

for some k � 1, n

1

; n

k+1

� 0, and n

2

; : : : ; n

k

� 1. We use the morphisms

�

m

= G

m�1

EG for m � 1 and the fa
t (Corollary 2.2.21) that

�

m

(


�

) = 


1=(m+�)

:

There are three 
ases.

(a) Suppose �rst that n

k+1

> 0. Then

f = �

n

1

+1

�

n

2

� � � �

n

k

G

n

k+1

�1

Sin
e f �xes 


�

, this implies

[0;m

1

;m

2

; : : :℄ = [0; 1 + n

1

; n

2

; : : : ; n

k

; n

k+1

� 1 +m

1

;m

2

; : : :℄
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whi
h in turn givesm

1

= 1+n

1

,m

2

= n

2

, . . . ,m

k

= n

k

,m

k+1

= n

k+1

�1+m

1

=

n

k+1

+ n

1

, and m

j

= m

j+k

for j � 2. Thus

� = [0; 1 + n

1

; n

2

; : : : ; n

k+1

+ n

1

℄; with n

1

� 0; n

2

; : : : ; n

k+1

� 1 (2.3.6)

(b) Suppose now that n

k+1

= 0, and 
onsider the morphism f

0

= EfE. From




�

= f(


�

), it follows that f

0

(E


�

) = E


�

, that is f

0

(


�

) = 


�

for � = 1 � �.

Now

f

0

= EG

n

1

EG

n

2

� � �EG

n

k

where n

1

� 0 and n

2

; : : : ; n

k

� 1. There are two sub-
ases.

(b.1) If n

1

= 0, then k � 3 and

f

0

= G

n

2

� � �EG

n

k

= �

n

2

+1

� � � �

n

k�1

G

n

k

�1

when
e, as above, � = [0; 1 + n

2

; n

3

; : : : ; n

k�1

; n

2

+ n

k

℄ and sin
e n

2

� 1,

� = 1� � = [0; 1; n

2

; n

3

; : : : ; n

k�1

; n

2

+ n

k

℄ with n

2

; : : : ; n

k

� 1 (2.3.7)

(b.2) If n

1

� 1, then

f

0

= EG

n

1

� � �EG

n

k

= �

1

�

n

1

� � � �

n

k�1

G

n

k

�1

when
e as above � = [0; 1; n

1

; : : : ; n

k�1

; n

k

℄ and

� = 1� � = [0; 1 + n

1

; n

2

; n

3

; : : : ; n

k

; n

1

℄ with n

1

; : : : ; n

k

� 1 (2.3.8)

To show that Equations (2.3.6){(2.3.8) des
ribe exa
tly Sturm numbers, observe

that Equation (2.3.6) with n

1

= 0 
orresponds, in the de�nition of Sturm num-

bers, to 
ase (i) with a

k

= a

0

, that Equation (2.3.6) with n

1

> 0 
orresponds

to 
ase (ii) with a

k

> a

0

, that Equation (2.3.7) is equivalent to 
ase (i) with

a

k

> a

0

and that Equation (2.3.8) is 
ase (ii) with a

k

= a

0

.

The proof that a Sturm number indeed yields a �xpoint is exa
tly the reverse

of the previous one.

Sturm numbers have a simple algebrai
 des
ription. Clearly, a Sturm number

� is quadrati
 irrational, that is solution of some equation

x

2

+ px+ q = 0

with rational 
oeÆ
ients p; q. The other solution of this equation is the 
onjugate

of �, denoted by ��, and satis�es ��� = q. It is easy to prove that the 
onjugate

of 1� � is 1� ��, and that the 
onjugate of 1=� is 1=��.

Theorem 2.3.26. A quadrati
 irrational � with 0 < � < 1 is a Sturm number

if and only if 1=�� < 1.

We need some fa
ts from number theory. A quadrati
 irrational number 


is said to be redu
ed if 
 > 1 and �1 < �
 < 0. This is equivalent to 1 > 1=
 > 0

and 1=�
 < �1. It is known that
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1. the 
ontinued fra
tion of a quadrati
 irrational 
 is purely periodi
 if and

only if 
 is redu
ed.

2. if 
 is redu
ed and 
 = [a

1

; : : : ; a

n

℄, then �1=�
 = [a

n

; : : : ; a

1

℄.

Proof of Theorem 2.3.26. The 
ondition 1=�� < 1 is equivalent to �� =2 [0; 1℄.

This in turn is equivalent to 1 � �� =2 [0; 1℄. Thus �� veri�es the 
ondition if

and only if 1 � �� does. Consequently, it suÆ
es to prove the equivalen
e for

0 < � < 1=2. We have to prove that 1=�� < 1 if and only if

� = [0; 1 + a

0

; a

1

; : : : ; a

k

℄; with a

k

� a

0

� 1 :

Let �rst � be a Sturm number with 0 < � < 1=2. Then

� =

1

1 + a

0

+

1




; with 
 = [a

1

; : : : ; a

k

℄; a

k

� a

0

� 1 (2.3.9)

Thus 
 is redu
ed, and sin
e �1=�
 = [a

k

; : : : ; a

1

℄ > a

k

, it follows from (2.3.9)

that

1=�� = 1 + a

0

+ 1=�
 < 1 + a

0

� a

k

� 1 :

Conversely, let 0 < � < 1=2 be a quadrati
 irrational with 1=�� < 1. Sin
e

2 < 1=�, write

1=� = 1 + a

0

+ 1=
 (2.3.10)

where a

0

= b1=�� 1
 � 1 and 1 < 1=
 < 1. From 1=�� < 1 and the 
onjugate

of (2:3:10), one gets

1=�
 < �a

0

� �1

Thus 
 is redu
ed, and writing 
 = [a

1

; : : : ; a

k

℄, one gets

a

0

< �1=�
 = [a

k

; : : : ; a

1

℄ < a

k

+ 1

when
e a

k

� a

0

� 1 and

� =

1

1 + a

0

+

1




= [0; 1 + a

0

; a

1

; : : : ; a

k

℄ :

Problems

Se
tion 2.1

2.1.1 We 
onsider two-sided in�nite words over f0; 1g of 
omplexity n+ 1.

1. Show that the word x de�ned by x(k) = 1 for k � 0, and x(k) = 0

for k < 0 has n+ 1 fa
tors of length n for ea
h n � 0.

2. Let z =2 0

�

[ 1

�

be a 
entral word with period k and `, and set

w = p10q where p and q are palindrome words with k = jpj, ` = jqj.

De�ne two (onesided) in�nite words x = (10q)

!

and y = (01p)

!

. Then

the two-sided in�nite word ~yzx has n + 1 fa
tors of length n for ea
h

n � 1. (These are the only two-sided in�nite words with 
omplexity

n+ 1, see Coven and Hedlund 1973.)
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2.1.2 Let x be an in�nite word whi
h 
ontains in�nitely many o

urren
es of

0 and of 1. The 
ell-
ondition for x is the following: for any words w;w

0

su
h that jwj

0

= jw

0

j

0

and 0w0; 0w

0

0 2 F (x), one has

�

�

jwj � jw

0

j

�

�

� 1,

and the same 
ondition with 0 and 1 ex
hanged. Show that x is balan
ed

if and only if x satis�es the 
ell-
ondition. (Morse and Hedlund 1940.

A proof 
onsists in 
onsidering the word y su
h that x = G(y).)

2.1.3 Let x be an in�nite word. For n � 1, let X

n

be the set of fa
tors of x

starting with 0, ending with 0, and 
ontaining exa
tly n o

urren
es of

the letter 0. De�ne similarly Y

n

, repla
ing 0 by 1. Show that x is Stur-

mian if and only if Card(X

n

) = Card(Y

n

) = n for every n (Ri
homme

1999a).

2.1.4 Show that a word w is unbalan
ed if and only if it admits a fa
tor-

ization w = xauayb~ubz for words u; x; y; z and letters a 6= b. Use this


hara
terization to prove that the set of unbalan
ed words is a 
ontext-

free language. (Dulu
q and Gouyou-Beau
hamps 1990, see also Mignosi

1991, 1990)

Se
tion 2.2

2.2.1 Show that for any standard word w 6= 0; 1, there is only one standard

pair (x; y) su
h that w = xy or w = yx.

2.2.2 De�ne sequen
es of words (A

n

)

n�0

and (B

n

)

n�0

by

A

0

= a; B

0

= b

and

R

1

:

A

n+1

= A

n

B

n+1

= A

n

B

n

and R

2

:

A

n+1

= B

n

A

n

B

n+1

= B

n

The R

i

's are 
alled Rauzy's rules (see Rauzy 1985).

1. Show that, provided ea
h of the rules R

i

is applied in�nitely many

often, the sequen
es A

n

and B

n


onverge to the same in�nite word

whi
h is 
hara
teristi
.

2. Show that 
onversely every 
hara
teristi
 word is obtained in this

way.

2.2.3 Let 0 � h � m be integers with (h;m) = 1. The lower and upper

Christo�el words t

h;m

and t

0

h;m

are de�ned by t

0;1

= t

0

0;1

= 0, t

1;1

=

t

0

1;1

= 1, and t

h;m

= 0z

h;m

1, t

0

h;m

= 1z

h;m

0 if m � 2. These are exa
tly

the words de�ned in Se
tion 2.1.2.

1. Show that if h

0

m�m

0

h = 1, then

t

h;m

t

h

0

;m

0

= t

h+h

0

;m+m

0

; t

0

h

0

;m

0

t

0

h;m

= t

0

h+h

0

;m+m

0

2. For 1 � h < m and (h;m) = 1, show that there exist integers m

0

; h

0

with 0 � h

0

� m

0

< m, h

0

< h su
h that m

0

h� h

0

m = 1, and

t

h;m

= t

h

0

;m

0

t

h�h

0

;m�m

0
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3. De�ne �

h;m

= z

h;m

10, �

0

h;m

= z

h;m

01. Show that

�

0

h;m

�

h

0

;m

0

= �

h+h

0

;m+m

0

; �

h;m

�

0

h

0

;m

0

= �

0

h+h

0

;m+m

0

:

Show that the pairs of standard words are (0; 1) and all the pairs

(�

h;m

; �

0

h;m

), for h

0

m� hm

0

= 1.

2.2.4 Consider a fun
tion �

0

from f0; 1g

�

into itself de�ned by �

0

(u; v) =

(uv; v). The family of Christo�el pairs is the smallest set of pairs of

words 
ontaining (0; 1) and 
losed under � and �

0

. A standard pair

and a Christo�el pair are 
orresponding if they are obtained by the

same sequen
e of � and � (resp. � and �

0

).

1. Let (u; v) be a standard pair and let (u

0

; v

0

) be the 
orresponding

Christo�el pair. Show that if u = p10, then u

0

= 0p1 and if v = q01,

the v

0

= 0q1.

2. Show that the 
omponents of Christo�el pairs are exa
tly the lower

Christo�el words. (see Borel and Laubie 1993.)

2.2.5 Christo�el words and Lyndon words.

1. Show that every lower Christo�el word is a Lyndon word.

2. Show that a balan
ed word is a Lyndon word if and only if it is a

Christo�el word (Berstel and De Lu
a 1997).

3. Any lower Christo�el word w whi
h is not a letter admits a unique

fa
torization w = xy, where (x; y) is a Christo�el pair. Show that this

fa
torization is the standard Lyndon fa
torization (Borel and Laubie

1993).

2.2.6 Show that, for 0 � � < 1,

~'(s

�;�

) = s

0

1��

2��

;

2����

2��

; D(s

�;�

) = s

1

2��

;

1��+�

2��

;

~

D(s

�;�

) = s

1

2��

;

�

2��

:

Show that for 0 < � � 1,

~'(s

0

�;�

) = s 1��

2��

;

2����

2��

; D(s

0

�;�

) = s

0

1

2��

;

1��+�

2��

;

~

D(s

0

�;�

) = s

0

1

2��

;

�

2��

:

(see Parvaix 1997)

2.2.7 The aim of this problem is to prove that if w is a word su
h that w0

and w1 are balan
ed, then w is a right spe
ial fa
tor of some Sturmian

word.

Let w be a word su
h that w0 and w1 are balan
ed.

1. Show that if w is a palindrome, then w is 
entral.

2. Show that if w = uap, with a a letter and p a palindrome, then pa

is a pre�x of some 
hara
teristi
 word.

3. Show that w is always a suÆx of a 
entral word.

4. Show that w is a right spe
ial fa
tor of some Sturmian word.

(see De Lu
a 1997
)
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2.2.8 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the 
ontinued fra
tion expansion of the

irrational �, let (s

n

) be the asso
iated standard sequen
e, and de�ne

(t

n

)

n��1

by

t

�1

= 1; t

0

= 0; t

n

= t

d

n

�1

n�1

t

n�2

t

n�1

; (n � 1) :

1. Show that t

0

t

1

� � � t

n

= s

n

� � � s

1

s

0

.

2. Show the follow produ
t formula: 


�

= t

0

t

1

� � � t

n

� � �.(Brown 1993)

2.2.9 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the 
ontinued fra
tion expansion of the

irrational �, let (s

n

) be the asso
iated standard sequen
e. Let w be a

standard word that is a pre�x of the 
hara
teristi
 word 


�

. Show that

there is an integer n su
h that w = s

k

n

s

n�1

for some 1 � k � d

n+1

.

2.2.10 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the 
ontinued fra
tion expansion of the

irrational �, let (s

n

) be the asso
iated standard sequen
e. De�ne three

sequen
es of words by (u

n

)

n��1

, (v

n

)

n��1

and (w

n

)

n��1

u

�1

= v

�1

= w

�1

= 1; u

0

= v

0

= w

0

= 0

and

u

2n

= u

2n�2

(u

2n�1

)

d

2n

(n � 1)

u

2n+1

= (u

2n

)

d

2n+1

u

2n�1

(n � 0)

v

2n

= (v

2n�1

)

d

2n

v

2n�2

(n � 1)

v

2n+1

= v

2n�1

(v

2n

)

d

2n+1

(n � 0)

w

n

= w

n�2

(w

n�1

)

d

n

(n � 1)

1. Show that

0


�

= lim

n!1

u

n

; 1


�

= lim

n!1

v

n

01


�

= lim

n!1

w

2n

10


�

= lim

n!1

w

2n+1

:

2. De�ne a sequen
e (p

n

)

n��1

by p

�1

= 0

�1

, p

0

= 1

�1

and

p

2n

= p

2n�2

(10�

2n�1

)

d

2n

n � 1

p

2n+1

= (p

2n

10)

d

2n+1

p

2n�1

n � 0

Show that the words p

n

, for n � 1 are palindromes, and

s

2n

= p

2n

10;

s

2n+1

= p

2n+1

01;

u

n

= 0p

n

1;

v

n

= 1p

n

0;

w

2n

= 01p

2n

;

w

2n+1

= 10p

2n+1

:

2.2.11 A number system asso
iated with a dire
tive sequen
e.

Let � = [0; 1 + d

1

; d

2

; : : :℄ be the 
ontinued fra
tion of the irrational �,

and (s

n

) be the asso
iated standard sequen
e. De�ne integers by

q

�1

= 1; q

0

= 1; q

n

= d

n

q

n�1

+ q

n�2

; (n � 1) :

Then of 
ourse js

n

j = q

n

.
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1. Show that any integer m � 0 
an be written in the form

m = z

h

q

h

+ � � �+ z

0

q

0

; (0 � z

i

� d

i+1

) (2.4.1)

2. Show that every integer 0 � m � q

h+1

� 1 admits a unique su
h

representation provided

z

i

= d

i+1

=) z

i�1

= 0 (1 � i � h)

3. Show that ifm = z

h

q

h

+� � �+z

0

q

0

is as in eq. (2.4.1), then the pre�x of




�

of length m has the form s

z

h

h

� � � s

z

0

0

(see Fraenkel 1985, 1982, Brown

1993 and the referen
es 
ited there).

2.2.12 A Beatty sequen
e is a set B = fbrn
 jn � 1g for some irrational number

r > 1 (it is a spe
trum).

1. Let � = 1=r, and let 


�

= a

1

a

2

� � � be the 
hara
teristi
 word of slope

�. Show that B = fk j a

k

= 1g.

2. Two Beatty sequen
es B and B

0

are 
omplementary if B and B

0

form a partition of f1; 2; : : :g. Show that the sets fbrn
 jn � 1g and

fbr

0

n
 jn � 1g are 
omplementary if and only if 1=r + 1=r

0

= 1. (Use

1., see Beatty 1926)

2.2.13 Write x < y if x is lexi
ographi
ally less that y. Show that for any

irrational 
hara
teristi
 word 
, the word 0
 is lexi
ographi
ally smaller

than all its proper suÆxes, and 1
 is lexi
ographi
ally greater than all

its proper suÆxes. (Borel and Laubie 1993)

2.2.14 De�ne a mapping C : f0; 1g

�

! f0; 1g

�

by C(") = " and C(ax) = xa for

a 2 f0; 1g. This is just a 
y
li
 permutation. Let � = [0; 1 + d

1

; d

2

; : : :℄

be the 
ontinued fra
tion of the irrational �, and (s

n

) be the asso
iated

standard sequen
e.

1. Show that for n � 0, the words C

�1

(s

2n

) and C

js

2n

�1j

(s

2n+1

) are

Lyndon words. (Borel and Laubie 1993, Melan�
on 1996)

2. Set `

n

= C

js

2n

�1j

(s

2n+1

). Show that 


�

= `

d

2

0

`

d

4

1

� � � `

d

2n+2

n

� � � and

that the sequen
e `

n

is a lexi
ographi
ally stri
tly de
reasing sequen
e.

2.2.15 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the 
ontinued fra
tion of the irrational �,

and (s

n

) be the asso
iated standard sequen
e.

1. Show that s

2

n

is a fa
tor of 


�

for every n � 1.

Sin
e s

n

is primitive, every fa
tor of 


�

of length js

n

j ex
epted one is

a 
onjugate of s

n

. This is the singular word, denoted w

n

. For the

Fibona

i word, the singular words are 00, 101, 00100, 10100101, . . . .

2. Let p

n

be the palindrome pre�x of s

n

of length js

n

j � 2. Show that

w

n

= a

n

p

n

a

n

, where a

n

= 0 if n is odd, and a

n

= 1 if n is even.

3. Show that the Fibona

i word is the produ
t of 01 and its singular

words: f = 01(00)(101)(00100) � � �. (see Wen and Wen 1994b)

2.2.16 To 
ompute all 
onjugates of s

n

, de�ne sequen
es (w

h

)

0�h�n

of words

parameterized by sequen
es of integers z

0

; : : : ; z

n�1

with 0 � z

h

� d

h+1

by w

�1

= 1, w

0

= 0 and w

h+1

= w

d

h+1

�z

h

h

w

h�1

w

z

h

h

0 � h < n.

1. Show that w

n

= C

k

(s

n

), where k =

P

n�1

h=0

q

h

z

h

.

2. Show that one gets all 
onjugates exa
tly on
e. (see Chuan 1997)
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2.2.17 Sturmian words and palindromes.

1. Let s be a Sturmian word. Show that F (s) 
ontains exa
tly one palin-

drome word of even length, and two palindrome words of odd length for

ea
h nonnegative integer.

2. Show that 
onversely, if F (s) 
ontains exa
tly one palindrome word

of even length, and two palindrome words of odd length for ea
h non-

negative integer, then s is Sturmian (Droubay and Pirillo 1999).

2.2.18 Sturmian words and de
imation.

Let 1 � k � m be integers with m � 2. Let x be an in�nite word with

in�nitely many 0's and 1's. The transformationM

k;m

deletes in x every

0 ex
epted those o

urring at position 
ongruent to k modulo m. The

transformation D

k;m

operates in the same way on 1's. For example,

M

3;4

, applies to

0100101001001010010100100101001001 � � �

keeps only the itali
ized letter 0, and gives the word

101110110111011011 � � �

1. Give a geometri
 argument (by 
utting sequen
es) showing that

M

k;m

(s) and D

k;m

(s) are Sturmian for Sturmian words.

2. Give expli
it formulas forM

k;m

(s

�;�

) and D

k;m

(s

�;�

) similar to those

of Problem 2.2.6.

3. Show that M

m;m

Æ D

m;m

(
) = 
 for every 
hara
teristi
 word 
.

4. Show that 
onversely, if M

m;m

Æ D

m;m

(s) = s for every m, then

the in�nite word s is balan
ed. (Justin and Pirillo 1997, the expli
it

formulas are in Parvaix 1998)

Se
tion 2.3

2.3.1 For integers m � 1; r � 1, set

w

m;r

= 0

m�1

1(0

m+1

1)

r+1

0

m

1(0

m+1

1)

r

0

m

1

w

0

m;r

= 0

m

1(0

m

1)

r+1

0

m+1

1(0

m

1)

r

0

m+1

1

In parti
ular, w

1;1

= 10

2

10

2

1010

2

101 is a word of length 14. Any Stur-

mian word 
ontains one and only one word from the set


 = fw

m;r

; w

0

m;r

; E(w

m;r

); E(w

0

m;r

) j m � 1; r � 1g :

1. Prove that a morphism f is Sturmian if and only if f is a
y
li


and there exists a word w 2 
 su
h that f(w) is a balan
ed word (in

parti
ular, an a
y
li
 morphism f is Sturmian if and only if f(w

1;1

) is

a balan
ed word) (Berstel and S�e�ebold 1994a).

2. Prove that no word of length less or equal to 13 has the above prop-

erty. (Ri
homme 1999b)
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2.3.2 Let C be the set of morphi
 Sturmian 
hara
teristi
 words. Prove that,

for any 
 2 C, the words 0
; 1
; 01
 and 10
 are morphi
 (Berstel and

S�e�ebold 1994a).

2.3.3 Prove that a morphism f is standard if and only if f(0), f(1) and f(01)

are standard words (De Lu
a 1997b).

2.3.4 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the 
ontinued fra
tion of an irrational

number �. De�ne an in�nite word Æ

�

over f0; 1g by

Æ

�

= 0

d

1

1

d

2

0

d

3

1

d

4

� � �

Show that � is a Sturm number if and only if Æ

�

is purely periodi


(Droubay, Justin, and Pirillo 2001).

Notes

The history of Sturmian words goes ba
k to the astronomer J. Bernoulli III

(Bernoulli 1772). The book of Venkov (1970) des
ribes early work by Christo�el

(1875) and Marko� (1882). The �rst in depth study is by Morse and Hedlund

(1940). They also introdu
e the term \Sturmian", more pre
isely Sturmian

traje
tories, named after the mathemati
ian Charles Fran�
ois Sturm (1803{

1855), born in Geneva, and who taught at the

�

E
ole Polyte
hnique in Paris

sin
e 1840. He is famous for his rule to 
ompute the roots of an algebrai


equation. As des
ribed by Hedlund and Morse, Sturmian words are obtained

in 
onsidering the zeroes of solutions u(x) of linear homogeneous se
ond order

di�erential equations

y

00

+ �(x)y = 0 ;

where �(x) is 
ontinuous of period 1. If k

n

is the number of zeros of u in the in-

terval [n; n+1[, then the in�nite word 01

k

0

0

k

1

0

k

2

� � � is Sturmian (or eventually

periodi
). The papers by Coven and Hedlund (1973) and Coven (1974) 
ontain

many 
ombinatorial properties (in parti
ular the des
ription of two-sided in�-

nite words of minimal 
omplexity), and the paper by Stolarsky (1976) shows

the relation with 
ontinued fra
tions, �xpoints, and Beatty sequen
es. The last

twenty years have seen large developments, from the point of view of arithmeti
s,

dynami
al systems and 
ombinatori
s on words. Surveys are by T. C. Brown

(1993), Berstel (1996), Zi

ardi (1995), partly De Lu
a (1997a) and for �nite

fa
tors of Sturmian words Bender, Patashnik, and Rumsey (1994). Sturmian

words are known under many other names. Ea
h re
e
ts the emphasis on a par-

ti
ular property. Thus, they are 
alled two-distan
e sequen
es (see e.g. Lunnon

and Pleasants 1992), Beatty sequen
es (de Bruijn 1989, 1981), 
hara
teristi
 se-

quen
es (Christo�el 1875), spe
tra (Boshernitzan and Fraenkel 1981, 1984, the

spe
trum of a number � is the multiset fbn�
 j n � 1g in the book Graham,

Knuth, and Patashnik 1989), digitized straight lines, 
utting sequen
es and even

musi
al sequen
e in a spe
ial 
ase (Series 1985).

Sturmian words are of lowest possible 
omplexity. For an overview on 
om-

plexity of in�nite words, see Allou
he (1994). Two-sided in�nite words of 
om-

plexity P (n) = n + 1 in
lude stri
tly me
hani
al words (Problem 2.1.1, Coven
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and Hedlund 1973). There is a large literature on in�nite words with slightly

more than minimal 
omplexity (Coven 1974, Alessandri 1996, Cassaigne 1996,

Feren
zi 1995, Rote 1994, Hubert 1995, 1996, Rauzy 1988). An extension to 3

letters has been initiated by Arnoux and Rauzy (1991), Arnoux, Mauduit, Sh-

iokawa, and Tamura (1994), Castelli, Mignosi, and Restivo (1999) (the last paper

relates Arnoux-Rauzy words to 
entral words over 3 letters). Several properties

have been extended to larger alphabets by Droubay et al. (2001). The property

of balan
e and Theorem 2.1.5 are due to Morse and Hedlund (1940), our expo-

sition bene�ts from Coven and Hedlund (1973). In parti
ular, Proposition 2.1.3

is there. Theorem 2.1.13 is also from Morse and Hedlund (1940). The argument

of the proof of Lemma 2.1.15 is from Tijdeman (1996). Christo�el words were

investigated in Christo�el (1875). A systemati
 geometri
 study is in Borel and

Laubie (1991, 1993). Several propositions of Se
tion 2.1.3 Propositions 2.1.18,

2.1.19, 2.1.23 are from Mignosi (1989). He uses rotations (in a slightly di�erent

setting).

Me
hani
al words are also known as digitized straight lines. They have

been 
onsidered for a long time in pattern re
ognition, where the problem is

to 
ompute the slope and the inter
ept of a �nite Sturmian word as fast as

possible, to test whether a word is a �nite Sturmian word and, if not, to get the

polygonal de
omposition (see Bru
kstein 1991, Dorst and Smeulders 1991 and

the literature quoted there, also Berstel and Po

hiola 1996). Words generated

by rotations are in fa
t more general than Sturmian words when the partition

of [0; 1[ is de�ned independently from the angle of rotation (see Alessandri 1996,

Gambaudo, Lanford, and Tresser 1984, Iwanik 1994, Rauzy 1988, Sidorov and

Vershik 1993). Interval ex
hange is even more general, be
ause the ex
hange

fun
tions are pie
ewise rotations (see e.g. Rauzy 1979, Didier 1997).

Standard pairs were introdu
ed in a slightly di�erent form in Rauzy (1985).

His 
onstru
tion is known as Rauzy's rules (see also Problem 2.2.2).

Theorem 2.2.4 and its 
orollaries are from De Lu
a and Mignosi (1994).

Theorem 2.2.11 is from De Lu
a and Mignosi (1994). It appears in a similar

form in Coven and Hedlund (1973), see also Pedersen 1988.

Lemmas 2.2.17 and 2.2.18 are from Parvaix (1997). Proposition 2.2.24 has

been proved by Fraenkel, Mushkin, and Tassa (1978), see also Brown (1993).

Theorem 2.2.31 is from Mignosi (1991), although the present proof is di�erent.

The proof of Theorem 2.2.36 given here is from De Lu
a and Mignosi (1994).

There are several other proofs, in Mignosi (1991), Berstel and Po

hiola (1993).

The formula also appeared in Koplowitz, Lindenbaum, and Bru
kstein (1990).

The proof of Theorem 2.2.37 by the fa
tor graphs is from Berth�e (1996). The

result is also known as the three distan
e theorem. There is a large literature

on this subje
t (see Berth�e 1996 and the survey paper Alessandri and Berth�e

1998).

Sturmian morphisms were investigated in S�e�ebold (1991). The equivalen
e

(i) and (ii) of Theorem 2.3.7 is due to Mignosi and S�e�ebold (1993), the third is

adapted from Berstel and S�e�ebold (1994a). Proposition 2.3.11 is from Berstel

and S�e�ebold (1994b). Theorem 2.3.12 appears in De Lu
a (1997
). The results

of Se
tion 2.3.4 are from S�e�ebold (1998). The relation to automorphisms of
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free groups is from Wen and Wen 1994a. The proof given here is simpler than

the original one. For results on free groups and their automorphisms, see e.g.

Magnus, Karrass, and Solitar 1966 or Lyndon and S
hupp 1977. Theorem 2.3.25

is from Crisp, Moran, Pollington, and Shiue (1993). Several weak versions of

this theorem were known earlier (see Brown 1993 for a dis
ussion). Our proof

is adapted from Berstel and S�e�ebold (1994a). A self-
ontained proof exists by

Komatsu and van der Poorten (1996). The 
hara
terization of Sturm numbers

is from Allauzen (1998). Several generalizations to non 
hara
teristi
 Sturmian

words were proposed (see e.g. Komatsu 1996, Arnoux, Feren
zi, and Hubert

2000).


