CHAPTER 2

Sturmian Words

2.0. Introduction

Sturmian words are infinite words over a binary alphabet that have exactly
n + 1 factors of length n for each n > 0. It appears that these words admit
several equivalent definitions, and can even be described explicitly in arithmetic
form. This arithmetic description is a bridge between combinatorics and number
theory. Moreover, the definition by factors makes that Sturmian words define
symbolic dynamical systems. The first detailed investigations of these words
were done from this point of view. Their numerous properties and equivalent
definitions, and also the fact that the Fibonacci word is Sturmian, has lead to
a great development, under various terminologies, of the research.

The aim of this chapter is to present basic properties of Sturmian words and
of their transformation by morphisms. The style of exposition relies basically
on combinatorial arguments.

The first section is devoted to the proof of the Morse-Hedlund theorem
stating the equivalence of Sturmian words with the set of balanced aperiodic
word and the set of mechanical words of irrational slope. We also mention several
other formulations of mechanical words, such as rotations and cutting sequences.
We next give properties of the set of factors of one Sturmian word, such as
closure under reversal, the minimality of the associated dynamical system, the
fact that the set depends only on the slope, and we give the description of special
words.

In the second section, we give a systematic exposition of standard pairs
and standard words. We prove the characterization by the double palindrome
property, describe the connection with Fine and Wilf’s theorem. Then, standard
sequences are introduced to connect standard words to characteristic Sturmian
words. The relation to Beatty sequences is in the exercises. This section also
contains the enumeration formula for finite Sturmian words. It ends with a
short description of frequencies.

The third section starts by proving that the monoid of Sturmian morphisms
is generated by three well-known morphisms. Then, standard morphisms are
investigated. A description of all Sturmian morphisms in terms of standard
morphisms is given next. The section ends with the characterization of those
algebraic numbers that yield fixed points by standard morphisms.
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Some problems are just exercises, but most contain additional properties of
Sturmian words, with appropriate references. It is difficult to trace back many of
the properties of Sturmian words, because of the scattered origins, terminology
and notation. When we quote a reference in the Notes section, we are only
relatively certain that it is the source of the result.

In this chapter, words will be over a binary alphabet A = {0,1}.

2.1. Equivalent definitions

This section is devoted to the proof of a theorem (Theorem 2.1.13) stating the
equivalence of three properties, all defining what we call Sturmian words. We
start by defining Sturmian words to have minimal complexity among aperiodic
infinite words. We first prove that Sturmian words are exactly the aperiodic
balanced words. We then introduce so called mechanical words and prove that
these yield another characterization of Sturmian words. Other formulations of
the mechanical definition, by rotation and cutting sequences, are given in the
second paragraph. The third paragraph contains several properties concerning
the set of factors of a Sturmian word.

2.1.1. Complexity and balance

The complexity function of an infinite word x over some alphabet A was defined
in Chapter 1. It is the function that counts, for each integer n > 0, the number
P(z,n) of factors of length n in z:

P(z,n) = Card(F,(x)).

A Sturmian word is an infinite word s such that P(s,n) =n + 1 for any integer
n > 0. According to Theorem 1.3.13, Sturmian words are aperiodic infinite
words of minimal complexity. Since P(s,1) = 2, any Sturmian word is over two
letters. A right special factor of a word z is a word u such that u0 and ul are
factors of z. Thus, s is a Sturmian word if and only if it has exactly one right
special factor of each length.

A suffix of a Sturmian word is a Sturmian word.

ExXAMPLE 2.1.1. We show that the Fibonacci word
f=0100101001001010010100100101001001 - - -

defined in Chapter 1 is Sturmian. It will be convenient, in this chapter, to start
the numeration of finite Fibonacci words differently, and to set f_1 =1, fo = 0.

Since f = ¢(f), it is a product of words 01 and 0. Thus, the word 11 is not
a factor of f and consequently P(f,2) = 3. The word 000 is not a factor of
©(f), since otherwise it is a prefix of some @(z) for a factor z of f, and z has
to start with 11.

To show that f is Sturmian, we prove that f has exactly one right special
factor of each length.
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We start by showing that, for no word z, both 0z0 and 1z1 are factors of
f. This is clear if z is the empty word and if z is a single letter. Arguing by
induction on the length, assume that 0z0 and 1z1 are in F(f). Then z starts
and ends with 0, and z = 0y0 for some y. Since 00y00 and 10y01 have to be
factors of o(f), there exists a factor z of f such that ¢(z) = O0y. Moreover,
00y0 = ¢(1z1) and 010y01 = ¢(020), showing that 1z1 and 020 are factors of
f. This is a contradiction because |z| < |p(2)] < |z|.

We show now that f has at most one right special factor of each length.
Agsume indeed that v and v are right special factors of the same length, and
let x be the longest common suffix of v and v. Then the four words 0z0, 0z1,
120, 121 are factors of f, which contradicts our previous observation.

To show that f has at least one right special factor of each length, we use
the relation

fate = gnfnfntn (n>2) (2.1.1)

where g» = ¢ and for n > 3

01 if n is odd,
10 otherwise.

= Fosfifor tn= {

Observe that the first letter of f,, is the opposite of the first letter of #,. This
proves that f, is a right special factor for each n > 2. Since a suffix of a right
special factor is itself a right special factor, this proves that right special factors
of any length exist.

Equation (2.1.1) is proved by induction. Indeed, fy = £(010)(010)10 and
f5 = 0(10010)(10010)01. Next, is it easily checked by induction that

p(@)0 = 0(p(u))™ (2.1.2)

for any word u. Tt follows that p(ftn) = 0fns1tner and since ©(gn)0 = gni1s
one gets (2.1.1).

We now start to give another description of Sturmian words, namely as
balanced words. The height of a word z is the number h(x) of letters equal to
1in z. Given two words x and y of the same length, their balance 6(x,y) is the
number

8(z,y) = |h(x) — h(y)|
A set of words X is balanced if
z,y € X, |z| =yl = d(z,y) <1

A finite or infinite word is itself balanced if the set of its factors is balanced.

PROPOSITION 2.1.2. Let X be a factorial set of words. If X is balanced, then
for all n > 0,
Card(X NA™) <n+1.
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Proof. The conclusion is clear for n = 0,1, and it holds for n = 2 because
X cannot contain both 00 and 11. Arguing by contradiction, let n > 3 be
the smallest integer for which the statement is false. Set ¥ = X N A"~' and
Z = X N A" Then Card(Y) < n and Card(Z) > n + 2. For each z € Z,
its suffix of length n — 1 is in Y. By the pigeon-hole principle, there exist two
distinct words y,y" € Y such that all four words Oy, 1y, 0y’, 1y are in Z. Since
y # y' there exists a word x such that £0 and x1 are prefixes of y and y'. But
then, both 0xz0 and 1z1 are words in X, showing that X is unbalanced. [

The argument used in the proof can be refined as follows.

PRrRoPoOSITION 2.1.3. Let X be a factorial set of words. The set X is unbal-
anced if and only if there exists a palindrome word w such that Ow0 and lwl
arein X.

Proof. The condition is clearly sufficient. Conversely, assume that X is unbal-
anced. Consider two words u,v € X of the same length n such that §(u,v) > 2,
and take them of minimal length. The first letters of w and v are distinct, and
so are the last letters. Assuming that u starts with 0 and v with 1, there are
factorizations 4 = Owau' and v = lwbv' for some words w,u',v’ and letters
a #b. In fact a = 0 and b = 1 since otherwise d(u',v") = d(u,v), contradicting
the minimality of n. Thus, again by minimality, « = Ow0 and v = 1w1.
Agsume next that w is not a palindrome. Then there is a prefix z of w and
a letter a such that za is a prefix of w, Z is a suffix of w but aZ is not a suffix
of w. Then of course bZ is a suffix of w, where b is the other letter. This gives
a proper prefix 0za of u and a proper suffix bZ1 of v. If @ = 0 and b = 1,
then §(020,121) = 2, contradicting the minimality of n. But then u = 0z1u”
and v = v"120 for two words with §(u",v") = §(u,v), contradicting again the
minimality. Thus w is a palindrome. L]

REMARK 2.1.4. In the proof that the Fibonacci word f is Sturmian given in
Example 2.1.1, we actually started by showing that f is balanced.

THEOREM 2.1.5. Let x be an infinite word. The following conditions are equiv-
alent.

(i) = is Sturmian,

(ii) z is balanced and aperiodic.

Proof. If z is aperiodic, then P(z,n) > n + 1 for all n by Theorem 1.3.13. If
x is balanced, then by Proposition 2.1.2, P(z,n) < n + 1 for all n. Thus z is
Sturmian.

To prove the converse, we assume z is Sturmian and unbalanced, and show
that z is eventually periodic. Since z is unbalanced, there is a palindrome word
w such that Ow0, 1wl are factors of 2. This shows that w is right special. Set
n = |w| + 1. Since z is Sturmian, there is a unique right special factor of length
n, which is either Ow or 1w. We suppose that Ow is right special, so 1w is not,
and Owl is a factor of z and 1w0 is not.
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Any occurrence of 1w in z is followed by the letter 1. Let v be a word of
length n—1 such that v = lwlv isin F(z). The word u has length 2n. We prove
that all factors of length n of u are conservative. In view of Proposition 1.3.14,
x is eventually periodic.

To show the claim, it suffices to prove that the only right special factor of
length n, that is Ow, is not a factor of u. Assume the contrary. Then there exist
factorizations w = s0t,v = yz,w = tly.

Since w is a palindrome, the first factorization implies w = 03, and the letter
following the prefix ¢ in w is both a 0 and a 1. m

The slope of a nonempty word z is the number 7(z) = —=

ExXAMPLE 2.1.6. The height of z = 0100101 is 3, and its slope is 3/7. The
word z can be drawn on a grid by representing a 0 (resp. a 1) as a horizontal
(resp. a diagonal) unit segment. This gives a polygonal line from the origin to
the point (|z|, h(x)), and the line from the origin to this point has slope 7 (z).
See Figure 2.1.

(7,3)

o 1 o0 O 1 0 1
Figure 2.1. Height and slope of the word 0100101.

It is easily checked that

w(ey) = ) + )

|lzy| |lzy|

PROPOSITION 2.1.7. A factorial set of words X is balanced if and only if, for
allz,y € X, x,y # ¢,
1 1

|r(z) —7(y)| < =+ . (2.1.3)
lz| 1yl
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Proof. Assume first that (2.1.3) holds. For z,y € X of the same length, the
equation gives

|h(a:) — h(y)| <2
showing that X is balanced.

Conversely, assume that X is balanced, and let z,y be in X. If |z| = |y|,
then (2.1.3) holds. Assume |z| > |y|, and set & = zt, with |z| = |y|. Arguing by
induction on |z| + |y|, we have

1 1

|7r(t) — 7r(y)| < m + m

1
and since X is factorial, |h(2) — h(y)| < 1, whence |7r(z) - 7r(y)| < —. Next,

|y|
n(x) — () %%(H{%ﬂw—ﬂm
2| )
= (7@ = 1@) + 15 (70 - 7))
ths o1 1y 11
|W($)—W(y)|<m+m(m+m):m+m. ™

COROLLARY 2.1.8. Let = be an infinite balanced word, and for each n > 1,
let z,, be the prefix of length n of x. The sequence (m(xy))n>1 converges for
n — 0o.

Proof. Indeed, (2.1.3) shows that (7(z,))n>1 is a Cauchy sequence. "

The limit

o= g, mlen)

is the slope of the infinite word z.

ExAMPLE 2.1.9. To compute the slope of an infinite balanced word, it suffices
to compute the limit of the slopes of an increasing sequence of prefixes (or even
factors, as shown by the next proposition). For the Fibonacci infinite word, the
slopes of the finite Fibonacci words f,, are easily computed. Indeed, |f,| = F,,
and h(f,) = F,—2, whence

w(f) = im T2 o 2

n—oo  F, T

where 7 = (1 ++/5)/2.

PropPOSITION 2.1.10. Let x be an infinite balanced word with slope «. For
every nonempty factor u of x, one has
1

|m(u) — a] < Tl (2.1.4)
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More precisely, one of the following holds: either
alu] —1 < h(u) < alul +1 for all u € F(x) (2.1.5)

or
alu] —1 < h(u) < aul +1 for all u € F(x) (2.1.6)

Of course, the inequalities in (2.1.5) and (2.1.6) are strict if « is irrational.

Proof. Let x, be the prefix of length n of x. Given some ¢, consider ng such
that for all n > ng,
|7r(a:n) - a| <e.

Then, using (2.1.3),

() — o] < |m(u) = w(@a)| + 7(2n) —a < ﬁ Fote

For n — oo and then € — 0, the inequality follows. Equation (2.1.4) means that
alul =1 < h(u) < ajul+1

If the second claim were wrong, there would exist u,v in F(z) such that o|u| —
1 = h(u) and ajv| + 1 = h(v). But then |7(u) — 7(v)] = 1/|u| + 1/|v|, in
contradiction with (2.1.3). n

PRrROPOSITION 2.1.11. Let x be an infinite balanced word. The slope « of x is
a rational number if and only if © is eventually periodic.

Proof. If © = uy®, then

h(u) + nh(y)
lul +nly|

m(uy") = ™(y)
for n — oo, showing that the slope is rational.

For the converse, we suppose that (2.1.5) holds. The other case is symmetric.
The slope of z is a rational number a = ¢/p with ¢ and p relatively prime. By
(2.1.5), any factor u of z of length p has height g or ¢+ 1. There are only finitely
many occurrences of factors of length p and height ¢ + 1, since otherwise there
is a factor w = uzv of x with |u| = |v| = p and h(u) = h(v) = ¢+ 1. In view of
(2.1.5)

24 2q+ h(z) =h(uzv) <14+ ap+alz| +ap =1+ 2q + a|z|

whence h(z) < a|z| — 1, in contradiction with (2.1.5).

By the preceding observation, there is a factorization z = ty such that every
word in F(y) has the same height. Consider now an occurrence azb of a factor
in y of length p + 1, with a and b letters. Since h(az) = h(zb), one has a = b.
This means that y is periodic with period p. Consequently, x is eventually
periodic. [
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2.1.2. Mechanical words, rotations

Given two real numbers o and p with 0 < a < 1, we define two infinite words
Sap N—=A, s, N A

by

sa.p(n) = la(n+1) + p| — [an + o]
(n > 0)
sy () = Ta(n +1) + p] — [an + o]

It is easy to check that s, ,(n) and s/, ,(n) indeed are in {0,1}. The word s,,,

a,p

is the lower mechanical word and sf%p is the upper mechanical word with slope

a and intercept p. (This slope will be shown in a moment to be the same as the
slope of a balanced word.) It is clear that if p—p' is an integer, then so,, = Sq,p

and s;, , = s;, . Thus we may assume 0 < p < lor 0 < p <1 (both will be

v
useful).

P! 7 y=az+yp

_—
L P,

/

0 1.0 O 1 0 O

Figure 2.2. Mechanical words associated with the line y = ax + p.

The terminology stems from the following graphical interpretation (see Fig-
ure 2.2). Consider the straight line with equation y = ax + p. The points with
integer coordinates just below this line are P, = (n, [an + p|). Two consecutive
points P, and P,,; are joined by a straight line segment that is horizontal if
Sa,p(n) = 0 and diagonal if s, ,(n) = 1.

The same observation holds for the points P, = (n, [an + p]) located just
above the line.

sh, ‘0io0i1io0 y=az+p
"
"
Sa,p 0 1 0 0
n

Figure 2.3. Mechanical words with an integral point.
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Clearly,
— ol _nw ol _qw
so,p—so’p—O , sl,p—sl’p—l

Let 0 < @ < 1. Since 1 + |an+ p| = [an + p| whenever an + p is not an
integer, one has s,,, = s’mp excepted when an + p is an integer for some n > 0.
In this case (see Figure 2.3),

Sa,p(m) =0, s, ,(n)=1

and, if n > 0,
Sa,p(n —1) =1, s'am(n -1)=0
Thus, if « is irrational, s,,, and s, , differ by at most one factor of length 2.
A mechanical word is irrational or rational according to its slope is rational or
irrational.
A special case deserves consideration, namely when 0 < o < 1 and p = 0.
In this case, 54,0(0) = [a] =0, s, 0(0) = [a] =1, and if « is irrational

Sa,0 = 0cq, s'a70 =1le,
where the infinite word ¢, is called the characteristic word of «a.

REMARK 2.1.12. The condition 0 < a < 1 in the definition of mechanical
words is not a restriction, but a simplification. One could indeed use the same
definition of s, , without any condition on a. Since |a]| < s4,(n) <14 |af,
the numbers sq4,,(n) then can have the two values k and k + 1 where k = |«a].
Thus the words s,,, and s;, , are over the two letter alphabet {k,% + 1}. This
alphabet can be transformed back into {0,1} by using the formula

Sap(n) = [a(n +1) +p| = [an +p| - |a]

Mechanical words can be interpreted in several other ways. Consider again
a straight line y = Sz + p, for some 5 > 0 not restricted to be less than 1,
and p not restricted to be positive. Consider the intersections of this line with
the lines of the grid with nonnegative integer coordinates. We get a sequence
Qo,Q1,. .. of intersection points. We call Q,, = (zn,yn) horizontal if y,, is an
integer, and vertical if x,, is an integer. If both are integers, we insert before @,
a sibling @,,—1 of @, with the same coordinates, and we agree that the first is
horizontal and the second is vertical (or vice-versa, but we do always the same
choice). In Figure 2.4 below, Qg is vertical, because p is positive.

Writing a 0 for each vertical point and a 1 for each horizontal point, we
obtain an infinite word Kg , that is called the (lower) cutting sequence (with
the other choice for labeling siblings, one gets an upper cutting sequence K é p).

To each @, = (zn,yn), we associate a point I, = (un,v,) with integer
coordinates. The point I,, is the point below (below and to the right of) @,, if
@, is vertical (horizontal). Formally,

([zn],yn — 1) if @, is horizontal,
(@n, lyn]) if Q,, is vertical

(i) = {
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y =Bz +p y=tigr+ 45

J2| Qo Iy

Ji / Joi i
Jo 0 /@1 I / I}
y

Iy I /A

01t o111t ot1--- 0 1 1 0 1 1 1 0

—_—

Figure 2.4. Cutting sequence and corresponding mechanical sequence.

Similar points .J,, are defined above the line (see Figure 2.4). It is easy to check
that u,, + v, = n for n > 0, and that

Kgp(n) =vng1 —vp = 1+ up — unt1

In the special case p = 0 and f irrational, we again get the same infinite word
up to the first letter. There is a word Cjg such that

Kz =0C3s, Kjo=1Cp
Observe that @), is horizontal if and only if
14+v, <upf+p<l+p+u, (2.1.7)
and @, is vertical if and only if
Up <upf+p<l+uo, (2.1.8)

We now check that
K0 = 53/(148).0/(14+8)

Indeed, the transformation (x,y) — (x + y, ) of the plane maps the line y =
Br+ptoy=pB/(1+B)x+p/(1+ ), and a point I), = (un, vy) to I}, = (n,vy).
It remains to show that

| B p
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Using u,, + v, = n, we get from (2.1.7) that

vn +1/(1+5) <B/(1+B)n+p/(1+8) <1+4+wvn
and from (2.1.8) that

vn <B/(L+ B+ p/(1+B) <vn+1/(1+5)

Thus, (2.1.9) holds for horizontal and for vertical steps. Thus, cutting sequences
are just another formulation of mechanical words.

Mechanical words can also be generated by rotations. Let 0 < a < 1. The
rotation of angle « is the mapping R = R, from [0, 1] into itself defined by

R(2) = {z +a}
where {2z} = z — | 2] is the fractional part of z. Iterating R, one gets
R"(p) = {na + p}
Moreover, a straightforward computation shows that
[n+1la+p] =1+ |na+p| < {na+p}>1-a
Thus, defining a partition of [0, 1] by
Iy=[0,1—a], I=[1-al],

one gets
0 if R"(p) € Iy

san(n) = {1 if R(p) € I

It will be convenient to identify [0, 1] with the torus (or the unit circle). For 0 <
b < a <1, the set [a,1]U[0,b] is considered as an interval denoted [a,b]. Then,
for any subinterval I of [0, 1], the sets R(I) and R~'(I) are always intervals
(even when overlapping the point 0).

As an example of the use of rotations, consider a word w = bgoby ++* bp—1,
with bo, by, ... letters. We want to know whether w is a factor of some s,,, =
apay - - -, with ag, ay, ... letters. By (2.1.10), anyr = b; if and only if R"*(p) €
I,, or equivalently, if and only if R"(p) € R~%(I,). Thus, for n > 0,

(2.1.10)

W = Qpln+1 - Angm—1 < R"(p) € I, (2.1.11)
where I, is the interval
I,=L,NRY(L,,)n---NR~™ (T, )

The interval I, is non empty if and only if w is a factor of s, ,. Observe that
this property is independent of p, and thus words s,,, and s, have the same
set of factors. A combinatorial proof will be given later (Proposition 2.1.18).

Mechanical words are quite naturally defined as two-sided infinite words.
However, it appears that several properties, such as Theorem 2.1.13 below, only
hold with some restrictions (see Problem 2.1.1).
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THEOREM 2.1.13. Let s be an infinite word. The following are equivalent:
(i) s is Sturmian;
(i) s is balanced and aperiodic;
(iii) s is irrational mechanical.

The proof will be a simple consequence of two lemmas. In the proofs, we
will use several times the formula

r—r—-1<|7] - |z] <2’ —z+1.

LEMMA 2.1.14. Let s be a mechanical word with slope . Then s is balanced
of slope a. If « is rational, then s is purely periodic. If « is irrational, then s is
aperiodic.

Proof. Let s = 5,,, be a lower mechanical word. The proof is similar for upper
mechanical words. The height of a factor u = s(n) - -+ s(n +p—1) is the number
h(u) = la(n +p) + p] — lan + p|, thus

alu] —1 < h(u) < aju| +1 (2.1.12)

This implies |aju|] < h(u) < 1+ |aju|], and shows that h(u) takes only two
consecutive values, when u ranges over the factors of a fixed length of s. Thus,
s is balanced. Moreover, by (2.1.12)

|7r(u) - a| < =

Thus 7(u) — a for |u| — oo and a is the slope of s as it was defined for balanced
words. This proves the first statement.

If « is irrational, the word s is aperiodic by Proposition 2.1.11. If @« = ¢/p is
rational, then |a(n + p) + p| = g+ |an + p|, for alln > 0. Thus s(n+p) = s(n)
for all n, showing that s is purely periodic. [

LEMMA 2.1.15. Let s be a balanced infinite word. If s is aperiodic, then s is
irrational mechanical. If s is purely periodic, then s is rational mechanical.

Proof. In view of Corollary 2.1.8, s has a slope, say a. Denote by h,, the height
of the prefix of length n of s.
For every real number 7, one at least of the following holds:
— hyp, < |an + 7] for all n;
— hy, > |an + 7] for all n.
Indeed, on the contrary there exist a real number 7 and two integers n, n+k such
that hy, < [an + 7] and hptr > |a(n+ k) + 7| (or the symmetric relation).
This implies that hpir — hy > 2+ |a(n+k)+7] — [an+ 7] > 1+ ak, in
contradiction with (2.1.4).
Set
p=inf{r | h, < |an + 7| for all n}
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By Proposition 2.1.10, one has p < 1, and p < 1 if « is irrational. Observe that
for allm >0
hn<an+p<h,+1 (2.1.13)

since otherwise there is an integer n such that h, + 1 < an + p, and setting
o0 =hy,+1—an,one has 0 < pand an+ 0o = h, +1 > h,, in contradiction
with the definition of p.

If s is aperiodic, then « is irrational by Proposition 2.1.11, and an + p is an
integer for at most one n. By (2.1.13), either h, = |an + p| for all n, and then
$ = Sa,p, O hy, = |an + p] for all but one ng, and hy,, +1 = ang + p. In this
case, one has h, = [an + p — 1] for all n and s = s, , ;.

If s = w” is purely periodic with period |u| = p, then a = ¢/p with ¢ =
h(u) = hy. Again h,, = |an + p] if an + p is never an integer (this depends on
p)-

If h,, = an + p for some n, we claim that h,, = |an + p| for all n. Assume
the contrary. Then by (2.1.13), 1 + h,, = am + p, for some m and we may
assume n < m < n + p. Consider the words y = s(n + 1)---s(m) and z =
s(m+1)---s(n+p). Then w(y) = (hm — hyp)/(m —n) =a —1/|y| and 7 (z) =
(hntp — hin)/(n + p—m) = a + 1/|z|, whence |x(y) — 7(2)| = 1/|y| + 1/2|, in
contradiction with Proposition 2.1.7. Similarly, if 1 + h,, = an + p for some n,
then h,, = [an + p] for all n. "

Proof of theorem 2.1.13. We know already by Theorem 2.1.5 that () and (i)
are equivalent. Assume that s is irrational mechanical. Then s is balanced
aperiodic by Lemma 2.1.14. Conversely, if s is balanced and aperiodic, then by
the Lemma 2.1.15 s is irrational mechanical. [

ExXAMPLE 2.1.16. To show that a balanced infinite word is not always me-
chanical when the slope is rational (so the converse is false in Lemma 2.1.14),
consider the infinite balanced word 01¢. It is not a mechanical word. Indeed,
it has slope 1, and all mechanical words s; , are equal to 1.

Let us consider mechanical words with rational slope in some more detail.
For a rational number a@ = p/q with 0 < @ < 1 and p, ¢ relatively prime, the
infinite words s4,0 and s}, o are purely periodic. Define finite words

— P ! — ! “ e !
tpg =0 ag—1, 4 =Gy agy

a; = {(z’+ 1)§J - {ZSJ , al= [(z'+1)7ﬂ - [zﬂ

Clearly, t, , and t;, , have height p. They are primitive words because (p,q) = 1.
In particular, tp,; = 0 and ¢;; = 1. These words are called Christoffel words.
In any case, s,/,0 = ty, and s,/ = tr 4" Moreover, if 0 < p/q < 1, the
word tp 4 starts with 0 and ends with 1 (and ¢ , starts with 1 and ends with

P
0). There is a word 2, 4 such that

by

tp7q = OZp7q1a t;,q = 1Zp,q0 (2114)
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The word 2,4 is easily seen to be a palindrome. Later, we will see that these
words, called central words, have remarkable combinatorial properties.
The following result deals with finite words.

PROPOSITION 2.1.17. A finite word w is a factor of some Sturmian word if
and only if it is balanced.

Proof. Clearly a factor of a Sturmian word is balanced. For the converse,
consider a balanced word w, and define

a' = max(m(u) — 1/|ul), a" = min(r(u) + 1/ |u|)

where the maximum and the minimum is taken over all non empty factors u of
w. Since w is balanced, one gets from Proposition 2.1.10 that

m(u) = 1/[u <= (v) +1/]v|

for all nonempty factors u and v of w. Thus o’ < a”.
Take any irrational number o with o/ < a < . Then by construction, for
every nonempty factor u of w,

|m(u) —a| <1 (2.1.15)

Let wy be the prefix of length n of w. By (2.1.15), there exists a real p,

such that
h(wn) = na+ pn, |pnl <1
Moreover, for n > m, setting w, = wyu, one gets h(w,) — h(wy) = h(u) =
(n —m)a + (pp — pm), showing that |p, — pm| < 1. Set
RE
Then
na+p > h(wp) =na+p+(pn—p) >na+p-1

whence h(wy) = [na + p|. This proves that w is a prefix of the Sturmian word
Sa,p- "

2.1.3. The factors of one Sturmian word

The aim of this paragraph is to give properties of the set of factors of a single
Sturmian word.

ProprosSITION 2.1.18. Let s and t be Sturmian words.
1. If s and t have same slope, then F(s) = F(t).
2. If s and t have distinct slopes, then F(s) N F(t) is finite.
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Proof. Let a be the common slope of s and t. By Proposition 2.1.10, every
factor u of s verifies

Im(u) — a| < i

(indeed, equality is impossible because « is irrational). Next, for every factor v
of t,

Let X = F(s)U F(t). The set X is factorial. It is also balanced since

() = 7(v)] < [n(w) — o] + [x(v) — o] < |71| + ﬁ

In view of Proposition 2.1.2
Card( X NA™) <n+1

for every n. Thus F(s) = X = F(¢).

Let now « be the slope of s and 8 be the slope of . We may suppose that
[ > a. For any factor u of s such that (8—«) > 2/|ul, one has 7(u) —a > —1/]u|
by Proposition 2.1.10 whence 7(u) — 8 = (7(u) — @) + (8 — &) > 1/|u| showing
that u is not a factor of ¢. L]

PROPOSITION 2.1.19. The set F(s) of factors of a Sturmian word s is closed
under reversal.

Proof. Set F(s) = {# | € F(s)}. The set X = F(s) U F(s) is balanced.
In view of Proposition 2.1.2, Card(X N A") < n + 1, for each n, and since
Card(F(s)NA™) =n + 1, one has X = F(s). Thus F(s) = F(s). "

We now compare Sturmian words, with respect to their slope and intercept.
The lexicographic order defined in Chapter 1 extends to infinite words as follows,
with the assumption that 0 < 1. Given two infinite words £ = ag - - - a, - - - and

y = bg---by---, we say that x is lexicographically less than y, and we write
x < y if there is an integer n such that a; = b; fori =0,...,n —1 and a,, = 0,
b, = 1.

PRroPOSITION 2.1.20. Let 0 < a < 1 be an irrational number and let p, p' be
real numbers with 0 < p,p' < 1. Then

Sayp < Sap = p<p.

Proof. Since « is irrational, the set of fractional parts {an} for n > 0 is dense in
the interval [0, 1[. Thus p < p' if and only if there exists an integer n > 1 such
that 1 — p’ < {an} < 1— p, and this is equivalent to |an + p'| =1+ |an + p|.
If n is the smallest integer for which this equality holds, then s, ,(n —1) =0
and sq,,r(n — 1) =1 and sq,p (k) = Sa,,(k) for k <n —1. "

Observe that this proposition does not hold for rational slopes, since indeed
50, = 0¥ for all p.
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LEMMA 2.1.21. Let 0 < o, < 1 be irrational numbers and let p,p' be real
numbers. Any of the equalities So,, = Sar,p1; Sa,p = Sty OF 8y, = S, implies
a=a' and p = p’ mod 1.

Proof. Any of the equalities implies that @ = o’ because equal words have the
same slope. Next, sq., = Sq,, implies p = p’ mod 1 by the previous proposition.
Finally, consider the equality sq,, = s;, . If an + p’ is not an integer for all
n > 1, then s’mp, = 54, and the conclusion holds. Otherwise, let n be the
unique integer such that an+p' is an integer. Then s, ,4(14n)a = 5, ' +(14m)a 0

showing again that p = p’ mod 1. m

Sturmian words with intercept 0 have many interesting properties. We ob-
served already that, for an irrational number 0 < a < 1, the words s, and
Su,0 differ only by their first letter, and that

!
5,0 = Ocq, Sa0 = lec,
where ¢, is the characteristic word of slope a. Equivalently,
_ I
Ca = Sa,a = Sa.a

The following proposition states a combinatorial characterization of character-
istic words among Sturmian words.

PROPOSITION 2.1.22. For every Sturmian word s, either 0s or 1s is Sturmian.
A Sturmian word s is characteristic if and only if Os and 1s are both Sturmian.

Proof. The first claim follows from the fact that s, ,—« = @Sa,,, for some
a € {0,1}.

If s =s50,0 = s’cw is the characteristic word of slope «, then 0s = 5,9 and
s = s, o are Sturmian.

Conversely, the Sturmian words 0Os and 1s have same slope, say a. Denote
by p and p' their intercept. Then their common shift s has intercept p + o =
p' + a, and by Lemma 2.1.21, p = p' mod 1 and we may take 0 < p = p' < 1.
Thus Os = s4,, and 1s = s;, ,. Assume p > 0. The first letter of Os is gives
0= |a+p]—|p] =|a+ p| and the first letter of 1s is 1 = [a + p| — [p]. Then
2 = [a + p], a contradiction. Thus p = 0. "

We are now able to describe right special factors.

PROPOSITION 2.1.23. The set of right special factors of a Sturmian word is
the set of reversals of the prefixes of the characteristic word of same slope.

Call a factor w of a Sturmian word s left special if both Ow and 1w are factors of
s. Clearly, w is left special if and only if @ is right special. Thus the proposition
states that the set of left special factors of a Sturmian word is the set of prefixes
of the characteristic word of same slope.
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Proof. Let s be a Sturmian word of slope a. By Proposition 2.1.22, the infinite
words Oc, and 1e, are Sturmian and clearly have slope a. Thus

F(s) = F(cq) = F(0co) = F(1lea)

by Proposition 2.1.18. Consequently, for each prefix p of ¢y, Op and 1p are
factors of s. Since F(s) is closed under reversal, this shows that p is right
special. Thus p is the unique right special factor of length |p|. [

EXAMPLE 2.1.24. Consider again the Fibonacci word f. We have seen in
Example 2.1.1 that its right special factors are the reversals of its prefixes.
Thus each prefix of f is left special. This shows that F(f) = F(0f) = F(1f).
Consequently, f is characteristic of slope 1/72.

PROPOSITION 2.1.25. The dynamical system generated by a Sturmian word
is minimal.

Proof. Let s be a Sturmian word, and let = be an infinite word such that F(x) C
F(s). Clearly, = is balanced. Also, z has the same irrational slope as s. Thus x
is aperiodic and therefore is Sturmian. By Proposition 2.1.18(1), F(z) = F(s).
This shows that s and x generate the same dynamical system. [

Observe that Proposition 2.1.18(2) is a consequence of Proposition 2.1.25.
Indeed, the intersection of two distinct minimal dynamical systems is the trivial
system.

2.2. Standard words

This section is concerned with a family of finite words that are basic bricks for
constructing characteristic Sturmian words, in the sense that every character-
istic Sturmian word is the limit of a sequence of standard words. This will be
shown in Section 2.2.2.

2.2.1. Standard words and palindrome words

After basic definitions, we give two characterizations of standard words. The
first is by a special decomposition into palindrome words (Theorem 2.2.4), the
second (Theorem 2.2.11) by an extremal property on the periods of the word
that is closely related to Fine and Wilf’s theorem. We give then a “mechanical”
characterization of central and standard words (Proposition 2.2.15). We end
with an enumeration formula for standard words.

Consider two functions I and A from {0,1}* x {0,1}* into itself defined by

D(u,0) = (wuv),  Au,v) = (vu,v)

The set of standard pairs is the smallest set of pairs of words containing the
pair (0,1) and closed under I' and A. A standard word is any component of a
standard pair.
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(0,01) (10,1)
(0,001) (010,01) (10,101) (110,1)
N\ YN\ e
(0,0001) (0010,001)(010,01001)(01010,01) (10,10101)

N

(01001010, 01001)

Figure 2.5. The tree of standard pairs.

ExAMPLE 2.2.1. Figure 2.5 shows the beginning of the tree of standard pairs.
Considering the leftmost and rightmost paths, one gets the pairs

(0,0"1), (1"0,1) (n>1)
Next to them are the pairs
(0(10)",01), (10,(10)"1) (n >1)

These are the pairs with one component of length 1 or 2.
Finite Fibonacci words are standard, since (fo, f—1) = (0,1), and for n > 1,
(f2n+27 f2n+1) = Ar(f2na f2n71)-

Every standard word which is not a letter is a product of two standard words
which are the components of some standard pair. The next proposition states
some elementary facts.

PROPOSITION 2.2.2. Let r = (z,y) be a standard pair.
1. If r # (0,1) then one of = or y is a proper prefix of the other.
2. If x (resp. y) is not a letter, then x ends with 10 (resp. y ends with 01).
3. Only the last two letters of xy and yx are different.

Proof. We prove the last claim by induction on |zy|. Assume indeed that zy =
p01 and yz = p10. Then I'(r) = (z,zy) and zzy = xp01, (zy)z = z(yx) = zpl0,
so the claim is true for I'(r). The same holds for A(r). "

Every standard pair is obtained in a unique way from (0, 1) by iterated use
of I and A. Indeed, if (z,y) is a standard pair, then it is an image through
T (resp. A) if and only if |z| < |y| (resp. |z| > |y|). Thus, there is a unique
product W = Ay o...0A,, with A; € {T, A} such that

(z,y) =W(0,1)
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Consider two matrices

(1) (3 )

and define a morphism g from the monoid generated by I' and A into the set
of 2 x 2 matrices by
w(T) =L, pu(A) =R,

and p(Ajo...0A,) = p(Ay) - - p(Ay). If (z,y) = W(0, 1), then a straightforward

induction shows that I
T\ T|1

W) = 2.2.1

ww) (|y|o |y|1> (2.2.1)

Observe that every matrix (W) has determinant 1. Thus if (z,y) is a standard
pair,

|zlolylr — |zlilylo =1 (2.2.2)
showing that the entries in the same row (column) of p(17) are relatively prime.
From (2.2.2), one gets

hy)lz| = h(z)ly| = 1. (2.2.3)
(recall that h(w) = |w|; is the height of w). This shows also that |z| and |y| are
relatively prime. A simple consequence is the following property.

PROPOSITION 2.2.3. A standard word is primitive.

Proof. Let w be a standard word which is not a letter. Then w = z or w = y
for some standard pair (z,y). From (2.2.3), one gets that h(w) and |w| are
relatively prime. This implies that w is primitive. L]

The operations T" and A can be explained through three morphisms E, G,
D on {0,1}* which we introduce now. These will be used also in the sequel. Let

0=1 G_O»—)O D_O»—)lO

E'1|—>0’ "1—01" 11

It is easily checked that Eo D = G o E = ¢. We observe that, for every
morphism f,

L'(f(0), f(1)) = (fG(0), fG(1)), A(f(0), f(1)) = (fD(0), fD(1))
For W= A 0...0A,, with A; € {T', A}, define W =An,o...0A;, withT =G,
A = D. Then

w(0,1) = (W(0), W(1)). (2.2.4)
Standard words have the following description.

THEOREM 2.2.4. A word w Is standard if and only if it is a letter or there exist
palindrome words p, q and r such that

w = pab = qr (2.2.5)

where {a,b} = {0,1}. Moreover, the factorization w = qr is unique if ¢ # €.
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EXAMPLE 2.2.5. The word 01001010 is standard (see Figure 2.5) and
01001010 = (010010)10 = (010)(01010) .

We start the proof with a lemma of independent interest.

LEMMA 2.2.6. If a primitive word is a product of two nonempty palindrome
words, then this factorization is unique.

Proof. Let w be a primitive word and assume w = pg = p'q’ for palindrome
words p,q,p’,q'. We suppose |p| > |p'|, so that p = p's(= 3p'), sq¢ = ¢'(= ¢3)
for some nonempty word s. Thus 5p'q = pq = p'q' = p'q5, showing that p’'q and
5 are powers of some word z. But then w = pg = §p’q = 2™ for some n > 2,
contradicting primitivity. [

Observe that (2.2.5) implies the following relations.

LEMMA 2.2.7. Ifw = pab = qr for palindrome words p, q, r, and letters a # b,
then one of the following holds
(i) 7 =&, p= (ba)"b, ¢ = (ba)""1b = w for some n > 0;
(i) r=b,p=a", q=a"", w = a"*'b for somen > 0;
(iii) r = bab, p =", ¢ = b, w = b"*lab for some n > 0;
(iv) r = basab, p = gbas, w = gbasab for some palindrome word s. n

We need another lemma.

LEMMA 2.2.8. Let x,y be words with |z|,|y| > 2. The pair (x,y) is a standard
pair if and only if there exist palindrome words p, q, r such that

x=pl0=¢qr and y=q01 (2.2.6)

or
x=¢l0 and y=p01=qr. (2.2.7)

Proof. Assume that (2.2.6) holds (the other case is symmetric). If r is the empty
word, then by the previous lemma,

(2,) = ((01)"*10, (01)"+1001) = T((01)"*"0,01)

showing that the pair (z,y) is standard.

If r =0, then (z,y) = (10,1™01) = T'(1"0, 1), and if » = 010, then (z,y) =
(0™10,0™1) = A(0,0™1).

Thus, we may assume that » = 01510 for some palindrome word s. By
(2.2.6), if follows that y is a prefix of z, so z = yz for some word z. We show
that (z,y) is standard. From p = ¢01s = s10q it follows that ¢ # s. Assume
lg] < |s| (the other case is symmetric). Then s = ¢t for some word ¢, and the
equation p = ¢qt10q shows that the word ' = #10 is a palindrome. Thus

y =q01, z = qr' = 510
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and (z,y) satisfies (2.2.6).
Conversely, let (z,y) be a standard pair, and assume (z,y) = I'(z, 2), that
is y = zz. If 2z is a letter, then (z,z) = (170, 1) for some n > 1 and

z =ql0, y =p01 = qr
for g =17 p=1", r = 101.
Thus we may assume that for some palindrome words p, g, r, either
r=pl0=gqr, z=4q01
or
z=ql0, z=p0l=qr.
In the first case,
x=pl0, y==xz= (qrq)01 = p(10¢01)
In the second case,
x =ql0, y==xz=q(10p01) = (grq)01
because 10p = rq. Thus (2.2.7) holds. "

Proof of Theorem 2.2.4. Let w be a standard word, |w| > 2. Then there exists
a standard pair (z,y) such that w = zy (or symmetrically w = yz). If z = 0,
then y = 0”1 for some n > 0, and 2y = 0"*'1 has the desired factorization.
A similar argument holds for y = 1. Otherwise, either (2.2.6) or (2.2.7) of
Lemma 2.2.8 holds. In the first case, zy = p(10g01) = qrq01 and in the second
case, zy = q(10p01) = ¢rq01 because 10p = rq. The factorization is unique by
Lemma, 2.2.6 because a standard word is primitive.

Conversely, if w = pl0 = gr (or w = p01 = gr) for palindrome words p, ¢, r,
then by Lemma 2.2.8, the word w is a component of some standard pair, and
thus is a standard word. m

A word w is central if w01 (or equivalently w10) is a standard word. As we
shall see, central words play indeed a central role.

COROLLARY 2.2.9. A word is central if and only if it is in the set
0*uUl*uU(PnPl0P)

where P is the set of palindrome words. The factorization of a central word w
as w = pl0g with p, q palindrome words is unique.

Observe that PN P10P = PN PO1P.

Proof. Let w € 0* U 1* U (P N P10P). By the previous characterization, w01
is a standard word, so w is central. Conversely, if w01 is standard, then w
is a palindrome and w01 = ¢r for some palindrome words ¢ and r. Either
w € 0* U1* or by Lemma 2.2.7, r = ¢ and w = (10)"1 for some n > 1, or
w = q10s for some palindrome s, as required. [

As a simple consequence, we obtain.
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COROLLARY 2.2.10. A palindrome prefix (suffix) of a central word is central.

Proof. We consider the case of a prefix. Let p be a central word. If p € 0*U1*, the
result is clear. Let 2 be a standard word such that 2 = pab, with {a,b} = {0,1}.
Then x = yz for a standard pair (y, z) or (z,y). Set y = qba and z = rab, where
q,r are central words. Then p = gbar = rabq and by symmetry we may assume
that |r| < |q]-

Let w be a palindrome prefix of p. If |w| < |q|, the result holds by induction.
If w = gb then w is a power of b. Thus set w = gbat where t is a prefix of r.
Since r is a prefix of ¢, the word ¢ is a prefix of ¢, and since w = fabg, one has
t = t. Thus, by Corollary 2.2.9, w = gbat is central. [

The next characterization relates central words to periods in words. Recall
from Chapter 1 that given a word w = ay ---a,, where ay,...,a, are letters,
an integer k is a period of w if k > 1 and a; = a;4 for all 1 <i <n — k. Any
integer k > n is a period with this definition.

An integer k with 1 < k < |w]| is a period of w if and only if there exist
words z, y, and z such that

w=zy = 2z, lyl =1z] = k.

Fine and Wilf’s theorem states that if a word w has two periods k£ and ¢, and
|w| > k + £ — ged(k, ), then ged(k, £) is also a period of w. In particular, if &
and ¢ are relatively prime, and |w| > k + £ — 1, then w is the power of a single
letter. The bound is sharp, and the question arises to describe the words w of
length |w| = k 4+ ¢ — 2 having periods k and ¢. This is the object of the next
theorem.

THEOREM 2.2.11. A word w is central if and only if it has two periods k and
¢ such that ged(k,f) = 1 and |w| = k + ¢ — 2. Moreover, if w ¢ 0* U 1*, and
w = pl0q with p, q palindrome words, then {k,£} = {|p| + 2, |q| + 2} and the
pair {k,(} is unique.

The proof will show that any word w having two periods k£ and ¢ such that
ged(k,f) =1 and |w| = k + £ — 2 is over an alphabet with at most two letters.

Proof. Let w be a central word. Then w01 is a standard word, and there is
a standard pair (z,y) such that w0l = zy. If x = 0 or y = 1, then w is a
power of 0 resp. of 1, and w has periods k = 1 and ¢ = |w| + 1. Otherwise,
x = pl0 and y = ¢01 for some palindrome words p, ¢, and w = pl0g = ¢01p
has two periods k = |z| and ¢ = |y| which are relatively prime by Equation
(2.2.3). Assume that w has also periods {k',¢'}, with k' +¢' — 2 = |w|. We
may suppose k < k' < £' < L. Since k+ ¢' — 1 < |w]|, Fine and Wilf’s theorem
applies. So w has also the period d = ged(k,£'). Similarly, w has also the period
d' = ged(k,k'). So it has the period ged(d,d’) = 1. This proves that the pair
{k, ¢} is unique.

Conversely, if w is a power of a letter, the result is trivial. Thus we assume
that w contains two distinct letters. Since k, £ # 1, we assume 2 < k < £.
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Since w has period k, there is a word = of length |z| = £ — 2 that is both a
prefix and a suffix of w. Similarly, there is a word y of length |y| = k — 2 that is
both a prefix and a suffix of w. Consequently, there exist words u and v, both
of length 2, such that

w = yur = xvy
We prove by induction on |w| that z, y, w are palindrome words, that v and
v are composed of distinct letters, and that no other letters than those of u
appear in w (that is w is over an alphabet of two letters).

If £ = 2, then y is the empty word. Thus uz = zv, and £ is odd. Therefore
u = ab, v = ba, * = (ab)"a, w = (ab)"*'a for letters a # b and some n > 0.
The result holds in this case.

If k=/¢—-1, then x = ya = by for letters ¢ and b. But then a = b and w is
a power of a letter, a case that we have excluded.

Thus we assume k < £ — 2. Then yu is a prefix of . Define z by yuz = z.
Then

T =yuz = 2vy
showing that x has periods |yu| = k and |uz| = £ — k. Since ged(k, £ — k) =1
and |z| = k4 (£ — k) — 2, we get by induction that z is a palindrome, and that
its prefix of length k — 2, that is y, and its suffix of length ¢ — k — 2, that is z
also are palindromes. Moreover, u = ab for letters a # b, and &4 = v because
yuz = zuy = zvy. Also, the word z (and y, and therefore also w) is composed
only of a’s and b’s. Thus w is central. [

Theorem 2.2.11 associates, to every central word of length m, a pair {k, ¢}
of relatively prime integers such that k + ¢ —2 = m. We now show that, for
each pair {k, ¢} of relatively prime integers, there exists indeed a central word
of length k + ¢ — 2 and periods &k and .

Let h,m be relatively prime integers with 1 < h < m. Define a word

Zhom = A1G3 Q2 (an, € {0,1})

oy = {(n+1)%J _ V%J .

These words have already been mentioned in our discussion of rational mechan-
ical words (Equation 2.1.14). Each word zp ,, has length m — 2 and height
h—1.

by

PROPOSITION 2.2.12. For every couple 1 < h < m of relatively prime integers,
the word 2., is central. It has the periods k and ¢ where k + £ = m and
kh =1 mod m.

Proof . Define k by 1 < k <m — 1, and set kh = 1 + Am. Observe that k exists
because h and m are relatively prime. Let £ = m — k. Then /h = —1 mod m,
and /£ is the unique integer in the interval [0. .., m — 1] with this property. Next

{(n+k)%J — a4 {”h“J
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Since nh Z —1 mod m for 1 < n < /¢ —1, it follows that

V}H—lJ _ V_hJ (1<n<e-1)

m m

Consequently, a, 1 = a, for 1 <n < £ —2. A similar argument holds when &
is replaced by £ and —1 is changed into 1.

Assume that some integer d divides k and £. Then d divides also m. But
k and £ are relatively prime to m, so d = 1 and gecd(k,£¢) = 1. This proves, by
Theorem 2.2.11, that zj_,, is central. n

EXAMPLE 2.2.13. The words 21, = 0™ 2 and 2,1, = 1™ 2 are central.
In particular, z; » = €.

EXAMPLE 2.2.14. For h = 5, m = 18, one gets 25,15 = 0010001001000100, a
word of length 16. By inspection, one finds the periods 7 and 11. The previous
proposition allows to compute them, since 11 -5 = 1 mod 18.

ProPOSITION 2.2.15. Let h,m be relatively prime integers with 1 < h < m.
There exist exactly two standard words of height h and length m, namely zj, , 10
and zp,,01. These words are balanced.

Proof. By Proposition 2.2.12, the words 2z, 10 and zj,,,01 are standard words
of height h and length m. They are factors of the Sturmian words sy, o and
s}, m.0 and therefore are balanced. We prove that there exists only one standard
word of height h and length m ending in 10. Assume there are two, say w and
w'. Then

w==zy, w =2z'y

for some standard pairs (z,y), (z',y"). By formula (2.2.3),
h@)lyl = h(y)lzl =1,  h(@)ly'] - hy')|2'| =1
Since m = |z| + |y| and h = h(z) + h(y), this gives
h(z)m — |zlh =1, h(z")m —|z'|h =1

whence

(h(w) = h(z"))m = (|2'| - |=[)h
Since ged(m, h) = 1, m divides |z'| — |z|. Thus |z| = |2'|, that is 2 = 2’ and
y=1y' "

Recall that Euler’s totient function ¢ is defined for m > 1 as the number
¢(m) of positive integers less than m and relatively prime to m

COROLLARY 2.2.16. The number of standard words of length m is 2¢(m,), the
number of central words of length m is ¢(m + 2), where ¢ is Euler’s totient
function. m
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2.2.2. Standard sequences and characteristic words

In this section, we use particular morphisms that will also be considered in the
next section. Three of them, namely E, G, and D, were already introduced
earlier. Here, these morphisms are used to relate standard words to charac-
teristic words, and both to the continued fraction expansion of the slope of a
characteristic word. Consider the morphisms

01 0+ 01 . 0m-10

Fiyor %9150 0 Piieo

From these, we get other morphisms, denoted G, G, D, D and defined by

0—0 ~ - 0—0
G=woB:y o1 G=¢°F:y g
0~ 10 ~ . 001
D=FEey:y, 1 » D=Fegiy

Of course, p=GoE=FEoDand p=GoE =FEoD.

LEMMA 2.2.17. For any real number p, the following relations hold: E(sq. ,) =
8’1_a71_p and E(sg7p) = S1—q,1—p-
Proof . For n > 0,

S an o) =[(1—a)n+1)+1—p] ~[(L—)n+1-p]
1= ([—an — pl = [-a(n+1) = p]) =1 - s4,(n)

because — [—r]| = |r] for every real number r. This proves the first equality,
and the second is symmetric. [

LEMMA 2.2.18. Let0<a <1 For0<p<1,

G(Sap) =8 o  », é(sa’p) =5 a pta, P(Sa,p) =51-a 1-0

I+a’lt+a T+a’ld+a 2—a’'2—a
and for0 < p <1,
! o ST ot ! _
G(sa,p) = Sﬁ,ﬁa G(Sa7p) =S5_a pta, ‘p(smp) - Sﬁ,%

1+a’l+ta

Proof . Let s = agay - - - a, - - - be an infinite word, the a; being letters. An integer
n is the index of the k-th occurrence of the letter 1 in s if ag - - - a,, contains k
letters 1 and ag - - - a,,—1 contains k — 1 letters 1. If s = 54, and 0 < p < 1, this
means that

la(n+1)+p| =k, |an+pl=k-1

which implies an + p < k < a(n + 1) + p, that is

=[]




2.2. Standard words 65

Similarly, if s = s;, , and 0 < p < 1, then
[a(n+1)+pl=k+1, [an+p]=k

and n = Vﬂ%”J

Set G(Sa,p) = bob1 ---b; - -+, with b; € {0,1}. Since every letter 1 in s,,, is
mapped to 01 in G(sa,,), the prefix ag---a, of s,,, (where n is the index of
the k-th letter 1) is mapped onto the prefix bob; - - - bpir of G(Sqa,,). Thus the
index of the k-th letter 1 in G(sq,,) is

k— 2
TL+k'= ’V%—l-‘

This proves the first formula.
Next, we observe that, for any infinite word z, one has

G(z) = 0G(z)

Indeed, the formula G(w)0 = 0G(w) is easily shown to hold for finite words w
by induction. Furthermore, if a Sturmian word s,,, starts with 0 and setting
Sa,p = Ot, one gets ¢ = $q,a+4p. Altogether C;‘(s%,,) = Sa/(1+4a),(p+a)/(1+a) fOT
0 < p < 1. The proof of the other formula is similar. Finally, since ¢ = G o F,

@(Sa,p) = G(Sll—a,l—p) = Sl(l—a)/(Q—a)7(1—p)/(2—a)' m

COROLLARY 2.2.19. For any Sturmian word s, the infinite words E(s), G(s)
G(s), p(s), ¢(s), D(s) D(s) are Sturmian. "

Formulas similar to those of Lemma 2.2.18 hold for ¢, D, D (Problem 2.2.6).
Recall that the characteristic word of irrational slope « is defined by

Ca = Sa,a = s'a,Q }
The previous lemmas imply
COROLLARY 2.2.20. For any irrational a with 0 < a < 1, one has
E(ca) = ci—ay G(ca) = Caj(i+a) "
For m > 1, define a morphism 6,,, by

0 0ml

Om 1 0m7110

It is easily checked that
b, =G™" 'oEoQG.

COROLLARY 2.2.21. Form > 1, one has 0p,(ca) = ¢1/(m+a)-
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Proof. Since E o G(ca) = €i/(14a), the formula holds for m = 1. Next,
G(C1/(k+a)) = C1/(14k+a), SO the claim is true by induction. n

We use this corollary for connecting continued fractions to characteristic
words. Recall that every irrational number v admits a unique expansion as a
continued fraction

1
y=mo+ ——— (2.2.8)
mi o+
mo + —
where mg,m1, ... are integers, mg > 0, m; > 0 for ¢ > 1. If (2.2.8) holds, we

write

v = [mg, my, ma,...].
The integers m; are called the partial quotients of v. If the sequence (m;) is
eventually periodic, and m; = my4; for ¢ > h, this is reported by overlining the
purely periodic part, as in

v = [mo,ml,mg,...,mh_l,mh,...,mh_,_k_lj.

Let a = [0,m1,ma2,...] be the continued fraction expansion of an irrational «
with 0 < a < 1. If, for some # with 0 < 8 < 1,

ﬂ = [07 M1, Mig2, .. ]

we agree to write

a=1[0,my,ma,...,m; + f].
COROLLARY 2.2.22. If a = [0,my,ma,...,m; + B] for some irrational o and
0<a,B <1, then

ca:9m100mzo"'00mi(cﬁ) u

Let (dy,ds,...,dy,-..) be a sequence of integers, with d; > 0 and d,, > 0 for
n > 1. To such a sequence, we associate a sequence (s,)p>—1 of words by

s.1=1, s=0, Sp =5 sp_n (n>1) (2.2.9)

The sequence (s,)n>—1 is a standard sequence, and the sequence (dy,d>, .. .) is
its directive sequence. Observe that if di > 0, then any s, (n > 0) starts with
0; on the contrary, if d; = 0, then sy =s_; = 1, and s,, starts with 1 for n # 0.
Every so, ends with 0, every ss,41 ends with 1.

ExAMPLE 2.2.23. The directive sequence (1,1, ...) gives the standard sequen-
ce defined by s, = sp—15p—2, that is the sequence of finite Fibonacci words.
Observe that the directive sequence (0,1,1,...) results in the sequence of words
obtained from Fibonacci words by exchanging 0 and 1.
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Every standard word occurs in some standard sequence, and every word
occurring in a standard sequence is a standard word. This results by induction
from the fact that, for s, = siilsn_g, one has

(Sna Snfl) = Ad" (5n727 Snfl)a (snfla Sn) - Fdn (Snfla 5n72)

Thus
(52n7 S2n71) = Af2n g d2n-1 g ... 0 (0, 1)
(520, S2mt1) = Td2n+1 o Ad2n o [92n-1 o ...0 % (0,1)

By Equation 2.2.4, this gives the expressions

Sop = Gd1 oD% o...0 Dn (0) _ Gd1 0---0D%n o GdgnJrl (0)
Sopi1 = Gl oD% o...o DEn+2(1) = Gl o ... 0 Dm0 Gl2nt1(1)

PROPOSITION 2.2.24. Let a =[0,1+ dy,d>,...] be the continued fraction ex-
pansion of some irrational o with 0 < a < 1, and let (s,) be the standard
sequence associated to (dy,ds,...). Then every s, is a prefix of ¢, and

Co = lim s, .
n—oo
Proof. By definition, s, = s,dlilsn,g for n > 1. Define morphisms h, by
hn :91+d1 Oedg O"'Oedn -

We claim that
S$n = hn(0), Spsn—1 =hp(l), n>1

This holds for n = 1 since hy(0) = 041 = s; and hy(1) = 09110 = s150. Next,
forn > 2,

hn(O) = hn_1(0dn (0)) = hn_l(Od"_ll) = Szn_zlsn_lSn_Q = Sp,

and
hn(1) = hp 1 (0%7110) = 5,8, 1

For any infinite word z, the infinite word h,(z) starts with s, because both

hn(0) and h, (1) start with s,. Thus, setting £, = [0,dp+1,dn+2,-..], one has
¢a = hn(cs,) by Corollary 2.2.22 and thus ¢, starts with s,. This proves the
first claim. The second is an immediate consequence. [

It is easily checked that

0114,004,0--00;, =G oEoG®2o0FEo---0G"oFEo(G
_{GdloDd2o---oDd"oG if r is even,
G oD% o-.--0D% oDoE otherwise.
ExAMPLE 2.2.25. The directive sequence for the Fibonacci word is (1,1,...).

The corresponding irrational is 1/72 = [0,2,1,1,...], and indeed the infinite
Fibonacci word is the characteristic word of slope 1/72.
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EXAMPLE 2.2.26. Since 1/7 = [0,1,1,1,...], the corresponding standard se-
quence is s; = 1, s = 10, s3 = 101,.... The sequence is obtained from the Fi-
bonacci sequence by exchanging 0’s and 1’s, in concordance with Lemma 2.2.17,
since indeed 1/7 +1/7% = 1.

EXAMPLE 2.2.27. Consider a = (/3 —1)/2 = [0,2,1,2,1,...]. The directive
sequence is (1,1,2,1,2,1,...), and the standard sequence starts with s; = 01,
s9 = 010, s3 = 01001001, ..., whence

C(v3-1)/2 = 010010010100100100101001001001 - - -

Due to the periodicity of the development, we get for n > 2 that s,12 = 52 115n
if n is odd, and s,,42 = Sp415, if 1 is even.

COROLLARY 2.2.28. Every standard word is a prefix of some characteristic
word. ]

Thus, every standard word is left special.

COROLLARY 2.2.29. A word is central if and only if it is a palindrome prefix
of some characteristic word.

Proof. A central word is a prefix of some standard word, so also of some charac-
teristic word. Conversely, a palindrome prefix of a characteristic word is a prefix
of any sufficiently long word in its standard sequence, so also of some sufficiently
long central word. Thus the result follows from Proposition 2.2.10. m

Proposition 2.2.24 has several interesting consequences. The relation to fix-
points is left to section 2.3.6. We focus on two properties, first the powers that
may appear in a Sturmian word, and then the computation of the number of
factors of Sturmian words.

Let z be an infinite word. For w € F(x), the index of w in z is the greatest
integer d such that w? € F(xz), if such an integer exists. Otherwise, w is said to
have infinite index.

PROPOSITION 2.2.30. Every nonempty factor of a Sturmian word s has finite
index in s.

Proof. Assume the contrary. There exist a Sturmian word s and a nonempty
factor u of s such that u™ is a factor of s for every n > 1. Consequently, the
periodic word u¥ is in the dynamical system generated by s. Since this system
is minimal, F'(s) = F'(u“), a contradiction. "

An infinite word z has bounded index if there exists an integer d such that
every nonempty factor of z has an index less than or equal to d.

THEOREM 2.2.31. A Sturmian word has bounded index if and only if the con-
tinued fraction expansion of its slope has bounded partial quotients.
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We start with a lemma.

LEMMA 2.2.32. Let (sp)n>—1 be the standard sequence of the characteristic

word co, with a =[0,14 dy,ds,...]. For n > 3, the word shTdntt js g prefix of
Ca, and s2T"* js not a prefix. If d; > 1, this holds also for n = 2.

ExampPLE 2.2.33. For the Fibonacci word f = 0100101001001 ---, we have
$p = fn and d,, = 1 for all n. The lemma claims that for n > 2, the word f2 is
a prefix of the infinite word f, and that f2 is not. As an example, f7 = 010010
is a prefix and f3 = 010010010 is not. Observe also that fZ = 0101 is not a
prefix of f.

Proof. We show that for n > 3 (and for n > 2 if d; > 1), one has

. dn—1
Sn—18n = Sntn_1, with ¢, = Sp' 1 Sn—28n—1
Indeed p
d d -1
Sn—18n = Sp—18," 1Sn—2 = Snn_lSnn_Q Sp—3Sn—2

d dp_1—1
= 5. 15n—25," 9 Sn—35n—2 = Spln_1

provided d,,_; > 1. Observe that t,_; is not a prefix of s,, since otherwise
$p = tp—1u for some word u, and s,_1s,u = s2 and s, is not primitive.
Clearly, sp415y is a prefix of the characteristic word ¢,. Since

Sni18n = ST s, g5, = shtIntit,

Tbdnyr - . .
the word s, "' is a prefix of c,, and since t,_ is not a prefix of s,, the word

bdntt .
sotdn+1 s not a prefix of cq. -

Proof of Theorem 2.2.31. Since a Sturmian word has the same factors as the
characteristic word of same slope, it suffices to prove the result for characteristic
words. Let ¢ be the characteristic word of slope @ = [0,1 + dy,ds,...]. Let

(8n)n>—1 be the associated standard sequence.

To prove that the condition is necessary, observe that sz"“ is a prefix of

¢ for each n > 1. Consequently, if the sequence (d,) of partial quotients is
unbounded, the infinite word c has factors of arbitrarily great exponent.
Conversely, assume that the partial quotients (d,,) are bounded by some D
and arguing by contradiction, suppose that ¢ has unbounded index. Let r be
some integer such that F'(c) contains a primitive word of length 7 with index
greater than D 4+4. Among those words, let w be a word of length r of maximal
index. Let d+ 1 be the index of w. Then d > D + 3. The proof is in three steps.
(1) The characteristic word ¢ has prefixes of the form w?, with d > D + 3.
Indeed, if w?t! is a prefix of ¢, we are done. Otherwise, consider an occurrence
of wi*!, Set w = za with a a letter, and let b be the letter preceding the
occurrence of w?!. If b = a, replace w by az and proceed. The process will
stop after at most |w|—1 steps because either a prefix of ¢ is obtained, or because
otherwise w would occur in ¢ at the power d + 2. Thus, we may assume b # a.
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Thus b(za)?*! is a factor of c. This implies that a(za)? and b(za)? are factors,
so w? is a right special factor, and therefore it is a prefix of c.

(2) If w? is a prefix of the characteristic word ¢, then w is one of the standard
words s,. Indeed, set e = d— 2, so that e > D + 1. Let n be the greatest integer
such that s,, is a prefix of w®t!'. Then w®*! is a prefix of 5,41 = shntig

thus also of sh %+, This shows that

(1+ D)|w| < (1 +e)|w| < (1+dnt1)lsn] < (1+ D)lsql

. 14d,
whence |w| < |s,|- Now, since both w®*? and s, “** are prefixes of ¢, one
is a prefix of the other. If w®*? is the shorter one, then |wt?| = |wet!| +

lw| > |sn| + |w|. Thus, w**? and s,"™*+' share a common prefix of length
> |sn| + |w|. Consequently, w and s,, are powers of the same word, and since
they are primitive, they are equal.

If sk """+ is the shorter one then, since (1 + €)w| < (1 + dpi1)|snl,

dn+1

|S111+dn+1| = |5n| +dn+1|5n| > |Sn| + 1+d
n+1

(1 +e)|w] = |sn| + |w|
and the same conclusion holds.
(3) If follows that s.*¢ is a prefix of ¢ and, since e > D +1 > d,,41 + 1, also

s%+d"+1 is a prefix of ¢, contradicting Lemma 2.2.32. n

We conclude this section with the computation of the number of factors of
Sturmian words. Another characterization of central words will help. Recall
that a finite word is balanced if and only if it is a factor of some Sturmian
word. Moreover, every balanced word w, as a factor of some uniformly recurrent
infinite word, can be extended to the right and to the left, that is wa and bw
are balanced for some letters a, b.

PROPOSITION 2.2.34. For any word w, the following are equivalent:
(i) the word w is central;
(ii) the words Ow0, Owl, 1w0, 1wl are balanced;
(iii) the words Owl and 1w0 are balanced.

Proof. (i) = (ii). The words w0l and w10 are standard, and therefore are
prefixes of some characteristic words ¢ and ¢’. By Proposition 2.1.22 the four
infinite words Oc, 1c, Oc’ and 1¢’ are Sturmian, and consequently their prefixes
Ow0, Owl, 1w0, 1wl are balanced. (i7) = (i4i) is trivial.

(#ii) = (7). We prove first that w is a palindrome word. Assume the contrary.
Then there are words u,v, v’ and letters a # b such that w = uav = v'ba. But
then awb = auavb = av’'bub has factors aua and bab with height satisfying
|h(aua) — h(bab)| = 2, contradiction.

Let ¢ be a characteristic word such that Owl € F(c). Since F(c) is closed
under reversal (Proposition 2.1.19), and w is a palindrome, 1w0 € F(c), showing
that w is a right special factor of c¢. Thus its reversal (that is w itself) is a prefix
of ¢. In view of Corollary 2.2.29, the word w is central. m
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Words satisfying condition (ii) are sometimes called strictly bispecial.
We now want to count the number of balanced words of length n. We need
a lemma.

LEMMA 2.2.35. Let w be a word. If w0 and w1 are balanced, then there is a
letter a such that aw0 and awl are balanced.

Before giving the proof, let us observe that there seems to be a difference, for a
word w, to be right special or have both extensions w0 and w1 balanced. Indeed,
a word w can only be right special with respect to some Sturmian word s that
contains both factors w0 and wl. On the contrary, if w0 and w1 are balanced,
then there exist Sturmian words z an y such that w0 € F(z) and wl € F(y),
but z and y need not be the same. In fact, one can show (Problem 2.2.7) that
both notions coincide.

Proof of Lemma 2.2.35. Since w0 and w1 are factors of Sturmian words, there
exist letters a and b such that aw0 and bwl are balanced. If a = b, we get
the claim. If @ = 1 and b = 0, then w is central by Proposition 2.2.34, and
therefore is balanced. Thus suppose a = 0, b = 1. Then Ow0 and 1wl are
balanced, but neither 1w0 nor Owl are. According to Proposition 2.1.3, there
exists a palindrome word u such that 1ul and 0u0 are factors of 1w0. However,
since 1w and w0 are balanced, 1ul is a prefix of 1w0 and Ou0 is a suffix of
1w0. Thus there exist words p, s such that 1w0 = 1luls0 = 1p0u0, whence w =
uls = pOu. Similarly, there exist words ', p’, s’ such that w = u'0s’ = p'1u/.
We may assume |u| < |[u'| and set v’ = ulz = yOu for some words z,y. Then
w = y0uls' = p'lulz, showing that w is unbalanced, a contradiction. n

THEOREM 2.2.36. The number of balanced words of length n is

n

L4+ (n+1—1i)g(i)

i=1
where ¢ is Euler’s totient function.

Proof. Let R(n) be the set of words w of length n such that Ow and lw are
balanced, and set r(n) = Card R(n). Then r(0) =1 = ¢(1) and

r(n+1) =r(n) +é(n +2)

Indeed, for each w € R(n), one has Ow € R(n + 1) or 1w € R(n + 1) by
Lemma 2.2.35, and both Ow,1lw € R(n + 1) if and only if w € R(n) and 0wl
and 1w0 are balanced, that is if and only if w is central, by Proposition 2.2.34.
Thus 7(n + 1) — r(n) is the number of central words of length n, which in turn
is ¢(n + 2) by Corollary 2.2.16. It follows that
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Let g(n) be the number of balanced words of length n. Then
g(n+1) = g(n) +r(n)

since for each balanced word w, the word w0 or wl is balanced, and both are
balanced if and only if w € R(n). Since ¢g(0) = 1, it follows that

n—1 n—1k+1 n k n

gn) =1+ > r(k) =1+> "> ¢(@) =1+ > 6(i) =1+ _(n+1—-i)¢(i)
k=0 k=0 i=1 k=1 i=1 i=1

as required. [

2.2.3. Frequencies

Let = be an infinite word. Recall from Chapter 1 that the factor graph G, (x)
of order n is the graph with vertex set F,,(z) and domain F,;(z). A triple
(p,a,s) is an edge if and only if pa = bs € Fj,11(z) for some letter b.

A
foo\ 001 100
0l— =10 \\>010/‘
101
00100
0100—1001——=0010 01001— 10010
1010 0101 10100 00101
01010

Figure 2.6. Factor graphs for the Fibonacci word.

If z is a Sturmian word, then there is exactly one vertex in G,,(z) with out-
degree 2. This is the right special factor d,, of length n. The edges leaving d,,
are (dy,0,d,—10) and (d,,1,d,_11), because d,,_; is a suffix of d,. Similarly,
there is exactly one vertex with in-degree 2. This is the left special factor g, of
length n. Let a be the letter such that g, = g,—1a. Then the edges entering g,
are (0gn—1,a,9n) and (1g,—1,a,gn). Observe that d, = g, if and only if d,, is a
palindrome word. See Figure 2.6 for the word graphs of the Fibonacci word.

The factor graph of order n of a Sturmian word z is composed of three
paths: the first is from g, to d,, both vertices included. This path is never
empty. There are two other paths, from d,, to g,, one through vertex d,_10 the
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other through d,,_;1. We consider that the endpoints d,, and g, are not part
of these paths. Then such a path may be empty. This happens if and only if
dp—10 = g, or d,—11 = g,, which in turn is the case if and only if d,,—1 = gn—1
because g,_1 is a prefix of g,.

Let s = s4,, be a Sturmian word of slope . We have seen how to associate
to s a rotation R on the unit circle. Also (Equation 2.1.11), a word w is a factor
of s if and only if the interval I,, of the unit circle is non empty. Moreover,
an integer n. > 0 is the starting index of an occurrence of w in s if and only if
R"(p) € I,.

Let pun(w) be the number of occurrences of w in the prefix of length N +
|w| —1 of s. This is exactly the number of integers n, with 0 < n < N, such that
R"(p) € I,. It is known from number theory that the numbers R"(p), (n > 1)
are uniformly distributed in the interval [0,1[. As a consequence, the limit

plw) = lim py(w)

always exists and is equal to the length of the interval I,,. The number p(w) is
the frequency of w in s. Of course, p(w) = 0 if and only if w ¢ F(s). It is easily
seen that, for any word w, one has p(0w) + p(lw) = p(w) and symmetrically

p(w) = p(wo) + p(wl).

THEOREM 2.2.37. Let s be a Sturmian word. For each n, the frequencies of
the factors of length n take at most three values. If they take three values, then
one is the sum of the two others.

LEMMA 2.2.38. Let s be a Sturmian word. Let (p,a,q) be an edge in G (s).
If p is not right special and q is not left special, then u(p) = p(q).

Proof. There exists a letter b such that pa = bq € F,,11(s). Since pb,aq ¢ Fp11,
one has u(p) = p(pa) = p(bg) = pu(q). =

Proof of Theorem 2.2.37. By the lemma, the frequencies are constant on each
of the three paths in the factor graph G, (s). Thus there are at most three
frequencies. Assume that none of the three paths in the factor graph is empty.
According to our discussion, this happens if and only if d,,_1 # g,—1. Moreover,
the frequencies are those of any set of vertices taken in the paths, e.g. u(d,),
w(dn—10), and p(d,—11). Set d,, = 0d,,_1. Since d,,_; is not left special, 1d,,_1
is not a factor of s. Thus

u(dn) = p(0dn—1) = p(dn—1) = p(dp-10) + p(dn—11)

showing the second part of the theorem. m

2.3. Sturmian morphisms

All morphisms will be endomorphisms of {0,1}*. The identity morphism Id
and the morphism E that exchanges the letters 0 and 1 will be called trivial
morphisms.
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A morphism f is Sturmian if f(s) is a Sturmian word for every Sturmian
word s. Since an erasing morphism can never be Sturmian, all morphisms
considered here are assumed to be nonerasing. The trivial morphisms Id and
FE are Sturmian. The set of Sturmian morphisms is closed under composition,
and consequently is a submonoid of the monoid of endomorphisms of {0,1}*.

2.3.1. A set of generators

The main result of this section is the characterization of Sturmian morphisms
(Theorem 2.3.7). Consider the morphisms

0~ 01 . 010
Y150 Y150

Recall from Chapter 1 that the morphism ¢ generates the infinite Fibonacci
word f = ¢(f) =010010100100101001010 - - -.

PROPOSITION 2.3.1. The morphisms E, ¢ and ¢ are Sturmian.

Proof. This follows from Corollary 2.2.19. ]

We shall see below that every Sturmian morphism is a composition of these
three morphisms. The following property gives a converse of Proposition 2.3.1.

PROPOSITION 2.3.2. Let x be an infinite word.
(i) If o(x) is Sturmian then z is Sturmian.
(ii) If ¢(x) is Sturmian and x starts with the letter 0, then x is Sturmian.

Proof . Let x be an infinite word. If p(z) or ¢(z) is Sturmian, then z is clearly
aperiodic. Arguing by contradiction, let us suppose that z is not balanced and
suppose that Ov0 and 1v1 are both factors of z.

Clearly, ¢(0v0) = 01p(v)01, ¢(lvl) = 0p(v)0 and every occurrence of
p(1vl) in () is followed by the letter 0. Consequently 1¢(v)01 and Og(v)00
are both factors of ¢(z) which is not balanced.

Next, if  does not start with 1, then either 0lvl or 11v1 is a factor of x.
But ¢(0v0) contains the factor 10¢(v)1, and $(01v1) and @(11v1) both contain
the factor 00p(v)0. Consequently, ¢(z) is not balanced. "

COROLLARY 2.3.3. Let x be an infinite word and let f be a morphism that is
a composition of E and . If f(x) is Sturmian then z is Sturmian. L]

ExXAMPLE 2.3.4. We give an example of a non Sturmian word x starting with 1
and such that ¢(z) is Sturmian. Let f be the Fibonacci word. The infinite word
11f is not Sturmian because it contains both 00 and 11 as factors. However,
since f is a characteristic word, the infinite word 0f is Sturmian. Consequently
&(p(0f)) = @(01f) = 100(f) is Sturmian. Thus 004(f) also is Sturmian and,
since 00 = @¢(11), p(11f) is Sturmian.
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Let us denote St the submonoid of the monoid of endomorphisms obtained
by composition of E, ¢ and ¢ in any number and order. St is called the monoid
of Sturm and by Proposition 2.3.1 all its elements are Sturmian. A first step to
the converse is the following.

LEMMA 2.3.5. Let f and g be two morphisms and let x a Sturmian word. If
f € St and f o g(z) is a Sturmian word, then g(z) is a Sturmian word.

Proof. Let x be a Sturmian word and g a morphism. It suffices to prove the
conclusion for f = E, f = p and f = ¢.

Set y = g(z). If E(y) is a Sturmian word then y is also a Sturmian word too
and, by Proposition 2.3.2, this also holds if ¢(y) is a Sturmian word. It remains
to prove that if ¢(y) is a Sturmian word then so is y.

Suppose that y is not a Sturmian word. Observe that y is aperiodic, since
otherwise ¢(y) is eventually periodic thus it is not Sturmian. Thus y = g(z) is
not balanced and contains two factors Ov0 and 1v1 which are factors of images of
some factors of . The Sturmian word z is recurrent, thus 1v1 occurs infinitely
often in y, which implies that 0lvl or 11vl is a factor of y. Since ¢(0v0) =
10¢(v)10 and @(1vl) = 04(v)0, both 10p(v)1 and 005(v)0 are factors of G(y)
and thus ¢(y) is not balanced. A contradiction. "

COROLLARY 2.3.6. Let f € St and g be a morphism. The morphism f o g is
Sturmian if and only if g is Sturmian.

Proof. Assume first that ¢ is Sturmian. Since f is a composition of F, ¢ and @,
the morphism f o g is Sturmian by Proposition 2.3.1.

Conversely, if f o g is Sturmian, then for every Sturmian word z, the infinite
word f o g(x) is Sturmian and, by Lemma 2.3.5, the infinite word g(z) is Stur-
mian. This means that g is Sturmian. L]

A morphism f is locally Sturmian if there exists at least one Sturmian word
z such that f(z) is a Sturmian word.

THEOREM 2.3.7. Let f be a morphism. The following three conditions are
equivalent:

(i) f €St

(ii) f is Sturmian;

(iii) f is locally Sturmian.

The equivalence of (i) and (ii) means that the monoid of Sturm is exactly the
monoid of Sturmian morphisms.

The length of a morphism f is the number || f|| = |f(0)| + |f(1)|. The proof
of Theorem 2.3.7 is based on the following fundamental lemma.

LEMMA 2.3.8. Let f be a non trivial morphism. If f is locally Sturmian then
f(0) and f(1) both start or end with the same letter.
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Proof. Let f be a non trivial morphism and suppose that f(0) and f(1) do not
start nor end with the same letter.

Suppose f(0) starts with the letter 0. Then f(1) starts with the letter 1.
If £(0) ends with 1 then f(1) ends with 0. But in this case f(01) contains a
factor 11 and f(10) contains a factor 00. Thus the image of any Sturmian word
contains the two factors 00 and 11 which means that f is not locally Sturmian.

Otherwise f(0) € 0A*0U{0} and f(1) € 1A*1U{1}, and we prove the result
by induction on ||f]|.

If || f]| = 3, then f(a) = cc and f(b) = d for letters a, b, ¢, d, a # b, and since
any Sturmian word z contains the two factors a”*! and ba™b for some integer
n, f(z) contains (cc)"*! and d(cc)™d and thus is not Sturmian.

Arguing by contradiction, suppose that ||f|| > 4 and f is locally Sturmian.
Let = be a Sturmian word such that f(z) is Sturmian (such a word exists
because f is locally Sturmian) and suppose that = contains the factor 00 (the
case where z contains 11 is clearly the same). Since f(0) starts and ends with
0, f(x) contains also 00. Consequently, since the infinite word f(z) is balanced,
neither f(0) nor f(1) contains the factor 11.

Since z is Sturmian, z does not contain 11 and there is an integer m > 1
such that every block of 0 between two consecutive occurrences of 1 is either 0™
or Om+1L,

The word f(0) does not contain the factor 00. Indeed, otherwise f(0) = u00v
and f(1) = r1 = 1s for some words u,v,r,s. Since 0™*! and 10™1 are factors
of w, the words f(0™*!) and f(10™1) are factors of f(z). But

F0™ ) = w00 f(0™ Hu00v = uwyv,  f(10™1) = r1£(0™ Hu00vls = rwsys

for suitable wq,ws, and one has |w| = |ws| and é(wy,ws) = 2, a contradiction.

Consequently f(0) = (01)"0 for some integer n > 0.

Since 10™1 and 10™*11 are factors of z, the infinite word f(z) contains the
two factors 10™1 and 10™+!1 if n = 0, and the two factors 101 and 1001 if
n#0. Set p=mifn=0,and p=1if n # 0. Then in both cases, f(x)
contains the factors 1071 and 10P*'1, and in both cases 1 < p < m.

Since f(1) does not contain the factor 11, there exist an integer k¥ > 0, and
integers my, ..., my € {0,1} such that

F(1) = 10PFmiggpma .. 1opEme
Consider a new alphabet B = {a, b} and two morphisms p,n : B* — A*

a0 ~a~ (01)"0
Pobisorr T ps or1

We show that there exists a word u over B such that f(p(b)) = n(bub).

(i) If n = 0, set u = a™ba™2b...ba™*. Since f(1) # 1, one has f(1) =
1n(u)0P1. Thus f(p(b)) = f(0P1) = n(bub).

(i) fn#0and m; = ... =my; =0, set u = b¥*"~1, Since f(1) = (10)*1,
one gets n(u) = (01)*"=1 and f(p(b)) = £(01) = n(bub).
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(iii) Otherwise n # 0 and m; = 1 for at least one integer 4,1 < i < k. Thus
there exist integers ¢ > 2, ny,...,n; such that

f(1) =1(01)"0(01)"20...(01)™~*0(01)™

Since f(01) starts with (01)"*!, one has ny > 0, n; > n for 2 <i <t —1 and
ng > 1. Set u = b™ab™ "a...b" -1 "ab™ L. Then, again, f(p(b)) = f(01) =
n(bub).

Define a morphism g : B* — B* by

ar—a
9" b bub

Then fop =mnog. Since m > p, by deleting if necessary some letters at the
beginning of x, one may suppose that x starts with 0P1. It follows that there
exists a (unique) infinite word z’ over B such that p(z') = z.

Thus there exists a (unique) infinite word y' over B such that

p

X -~ wl

f@) ~—— ¢
n

Identifying a with 0 and b with 1, one has p = (p o E)P. If n = 0 then
n=p.lftn#0thenp=1,80n=¢poFEo(FEop)" Thus since z and f(z) are
Sturmian, the words z' and ' are Sturmian by Corollary 2.3.3. Consequently
the morphism g is locally Sturmian.

However, the words ¢(0) and g(1) do not start nor end with the same letter
and 3 < ||g|| < ||f]]- By induction, g is not locally Sturmian, a contradiction.
The lemma is proved. m

Proof of Theorem 2.3.7. Tt is easily seen that (i) = (i) and (i) = (iii).

So let us suppose that f is a locally Sturmian morphism. The property is
straightforward if f = Id or f = E. Thus we assume || f|| > 3.

Let z be a Sturmian word such that f(z) is also a Sturmian word. Since
f(z) is balanced, it contains only one of the two words 00 or 11.

Suppose that f(z) contains 00. From Lemma 2.3.8, the words f(0) and f(1)
both start or end with 0. Consider first the case where f(0) and f(1) both
start with 0. Then f(0), f(1) € {0,01}" and there exists two words u and v
such that f(0) = ¢(u) and f(1) = ¢(v). Define g a morphism by ¢(0) = u and
g(1) =v. Then f = pog and, by Lemma 2.3.5, g(z) is a Sturmian word. Next,
IFIl = llgll + Juv]o and |uv]p > 0. Otherwise, f(0) = ¢(u) and f(1) = p(v)
would contain only 0 and f(z) = 04 would not be Sturmian. Thus ||g]| < || f]|
and the result follows by induction.
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If £(0) and f(1) both end with 0, the same argument holds with ¢ instead of
¢, and if f(z) contains 11 then Eo f is of the same height and contains 00. m

We give here only one property of the monoid St which shows how decide
whether a morphism is Sturmian by trying to decompose it over {E, ¢, @}.
Other properties will be seen in section 2.3.3 and in the problem section.

COROLLARY 2.3.9. The monoid of Sturm is left and right unitary, i.e. for all
morphisms f and g:

1. If fog € St and f € St then g € St.

2. If foge St and g € St then f € St.

Proof . Let f and g be two morphisms such that fog € St. Let x be a Sturmian
word. Then f o g(z) is a Sturmian word.

1. If f € St then by Lemma 2.3.5, g(z) is a Sturmian word. Consequently ¢
is locally Sturmian and, by Theorem 2.3.7, g € St.

2. If g € St then g(z) is a Sturmian word. Thus f is locally Sturmian and
by Theorem 2.3.7, f € St. n

From this property we deduce an algorithm to decide whether a morphism is
Sturmian. Indeed, if f is a non trivial Sturmian morphism then f decomposes
as f = g oo, where g is Sturmian by Corollary 2.3.9 and where o is one of
the eight morphisms in {¢,po0 E,Eop,EopoE,p,po E,Eo @, EopoE}.
According to o, one gets the following factorizations of f(0) and f(1).

9(0) = £(1) and £(0) = f(L)u with u = g(1) if o = ¢

9(0) = £(1) and 7(0) = uf (1) with u = g(1) if o =
g(1) = f(1) and f(0) = f(1)u with u = g(0) if 0 = E o y;
g(1) = f(1) and f(0) = uf(1) with u = g(0) if 0 = E o @;
9(0) = f(0) and f(1) = f(0)u with u = g(1) if 0 = p o E;
9(0) = f(0) and f(1) = uf(0) with u = g(1) if 0 = P o E;
g(1) = f(0) and f(1) = f(0)u with u = ¢g(0) if c = Eo p o E;
g(1) = f(0) and f(1) = uf(0) with u = g(0) f c = Eo@o E.

PROPOSITION 2.3.10. A morphism f is Sturmian if and only if, with f as
input, the algorithm below ends with g = Id or E. In this case, the output h is

a decomposition of f over {E, p, p}. n
Algorithm:
input:  f morphism;
output: h morphism;
local: g morphism;
begin
g I
h <+ Id;

while one of the two words ¢g(0) and g(1) is a proper prefix
or a proper suffix of the other
do if ¢(1) = g(0)u then
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g(l) < u; h<poEoh
else if g(1) = ug(0) then

g(l) < u; h+< poEoh
else if ¢g(0) = g(1)u then

g(0) < wu; h< Eopoh
else {9(0) = ug(1)}

9(0) < u; h+ Eogoh;

if g=F then h< Foh

end.

Observe that f(0) may be both a proper prefix and a proper suffix of f(1)
(or vice versa). In this case, there are two decompositions of f over {E, p, ¢}.
These are obtained in the algorithm by inverting the order in the tests. We
shall see in Section 2.3.3, that these are all decompositions (not containing E?)
of a given Sturmian morphism over {E, ¢, $}.

2.3.2. Standard morphisms

In this section it will be convenient to consider unordered standard pairs. An
unordered standard pair is a set {z,y} such that either (z,y) or (y,z) is a
standard pair.

In particular, if {z,y} is a unordered standard pair then {E(z), E(y)} is a
unordered standard pair. On the contrary, {¢(x), #(y)} is never a unordered
standard pair because ¢(z) and $(y) both end with the same letter (Proposi-
tion 2.2.2).

Consequently, Sturmian morphisms that are compositions of E and ¢ are
an interesting special case. Because of the following proposition, a morphism is
called standard if it is a composition of F and ¢.

PROPOSITION 2.3.11. A morphism f is standard if and only if {f(0), f(1)} is
an unordered standard pair.

Proof . Assume first that f is standard and, arguing by induction on || f||, suppose
that {£(0), f(1)} is an unordered standard pair. If g = fo E, then {g(0),g(1)} =
{f(0), f(1)} is an unordered standard pair. If g = f o, then {g(0),9(1)} =
{f(0)f(1), f(0)} is also an unordered standard pair.

Conversely, assume that {f(0), f(1)} is an unordered standard pair, and
that |£(0)] > |f(1)]. Then f(0) = f(1)v for some word v, and {v, f(1)} is an
unordered standard pair. By induction, there is a standard morphism ¢ such
that {g(0),g(1)} = {v, f(1)}. If g(0) = f(1) and g(1) = v then f = gop, in the
other case f = go F oy. Thus f is standard. m

The set of standard morphisms is interesting because these morphisms are
closely related to characteristic words (recall that an infinite word x is char-
acteristic if and only if Oz and 1z are Sturmian words), as it will appear in a
moment.
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A morphism f is characteristic if f(z) is a characteristic word for every char-
acteristic word z, and it is locally characteristic if there exists a characteristic
word x such that f(z) is a characteristic word.

The following theorem is an analogue of Theorem 2.3.7 for standard mor-
phisms.

THEOREM 2.3.12. Let f be a morphism. The following conditions are equiv-
alent:

(i) f is standard;

(i) f is characteristic;

(iii) f is locally characteristic.

To prove this result we need the following lemma.

LEMMA 2.3.13. Let x be an infinite word.
1. z is characteristic if and only if E(x) is characteristic.
2. x is characteristic if and only if ¢(x) is characteristic.

Proof. This is a consequence of Corollary 2.2.20 and Proposition 2.3.2. m

Proof of Theorem 2.3.12. The implication (ii) = (i4i) is obvious and the impli-
cation (i) = (¢i) is an immediate consequence of Lemma 2.3.13.

Let f be a locally characteristic morphism. Then f is locally Sturmian and
by Theorem 2.3.7, it is a composition of E, ¢ and . We show that no occurrence
of ¢ appears in the decomposition of f, by induction on ||f]|.

If | f]| = 2 then f = Id or f = E and the result holds.

Assume ||f]] > 3 and let = be a characteristic word such that f(z) is char-
acteristic.

If 2 contains 11 as a factor then we can replace z by E(z) which is also
a characteristic word (Lemma 2.3.13) and consider f o E instead of f, and if
f(z) contains 11 as a factor then we can consider E o f instead of f. Since
£l = IIf o E|| = ||E o f||, we may suppose that = and f(z) both contain the
factor 00 (and thus none contains the factor 11).

Since x and f(x) are characteristic, both 1z and 1f(z) are Sturmian, and
thus both z and f(z) start with the letter 0, and thus f(0) also starts with 0.

If £(1) starts with 1 then, by Lemma 2.3.8, f(0) and f(1) both end with the
same letter. If this letter is a 1 then 11 is a factor of f(01) and thus of f(z)
which is impossible. So f(0) and f(1) both end with the letter 0. Let » > 1 be
such that x starts with 0"1. Since Oz is Sturmian, z contains 0"*'1 and then
10"+! as a factor. Consequently 1£(07)1 is a prefix of 1f(z) and 0£(0")0 is a
factor of f(x). A contradiction.

Thus, f(1) starts with 0 and since f(0) and f(1) do not contain 11 as a factor,
f(0) € {01,0}" and f(1) € {01,0}". Consequently there exists a morphism g
such that f = ¢ o g with ||g]| < ||f|]. But ¢ o g(z) is characteristic thus g(x) is
characteristic (Lemma 2.3.13) and, by induction, g € {E, p}*. So f is standard.

]
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2.3.3. A presentation of the monoid of Sturm

In this section, it will be convenient to write the composition of morphisms as
a concatenation (so we will write fg instead of f o g).

Let G = ¢F and G = @E. Clearly, the monoid of Sturm St is also generated
by E, G and G.

THEOREM 2.3.14. The monoid of Sturm has the presentation

E? = Id, (2.3.1)
GEG*EG = GEG*EG, k>0. (2.3.2)

Formula (2.3.2) can be rewritten, in terms of the generators ¢ and @, as
0(0B) B¢ = $(9E)*Eyp, k>0.

Proof. We consider words over the alphabet {E, G, é} For each word W over
{E,G,C?}, denote by fw the Sturmian morphism defined by composing the
letters of W. Two words W and W' are equivalent if fwv = fw:. The words
W and W' are congruent (W ~ W') if one can obtain one from the other by a
repeated application of (2.3.1) and (2.3.2) viewed as rewriting rules (i.e. if W
and W' are in the same equivalence class of the congruence generated by (2.3.1)
and (2.3.2)).

We prove that equivalent words are congruent (the converse is clear). Let
W, W' be equivalent words. The proof is by induction on [WW'|. We may
assume that W and W’ do not contain E2. Since F, G, @ are injective, we may
also assume that W and W' do not start with the same letter. Observe that if
W starts with ¢ or @, then |fw (01)]1 < |fw(01)|o and if W starts with E o or
E o, then |fw(01)]1 > |fw(01)|o. Consequently W starts with E if and only
if W’ starts with FE, so we suppose that none does. Finally, since GG ~ GG, we
may assume that one of W and W' starts with G"E and the other with GPE
with n # 0 and p # 0 . Thus

W = G"EG"G*E - EG":G*
W' = GHNEG™G:E .- EG v G*

with r1,8} > 1, ri, 84,7
2<j<(q.

Observe first that fy/(0) and fy (1) both start with the letter 0 (because
G does).

Next, sy = 0. Indeed, otherwise W is congruent to a word starting with
G EG, and since G™ EG(0) and G™ EG(1) both start with the letter 1, W' is
not equivalent to W.

If s; = 0for i = 3,...,q, then W = GMEG™E-.-EG", and fi(0) or
fw (1) starts with the letter 1, according to whether ¢ is even or odd. Thus,
there is a smallest ¢ > 3 such that s; > 1. Then W is congruent to a word
starting with

s > 0,and r; +s; > 1 for 2 < i < g, v + s > 1for

(20

U=G"EG™E-- EG"—>EG"~'EG
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If i is even, then fy(0) and fy(1) start with the letter 1. Thus i is odd, and
using (2.3.2), U is congruent to

U'=GMEG™E---EG"-*"'GEG"-'EG
and eventually U is congruent to
GG 'EG™EG™E-- EG"-EG™-'EG

Thus W' and some word congruent to W start with the same letter. By induc-
tion, they are congruent. m

As a corollary, we obtain a presentation of the monoid of standard mor-
phisms.

COROLLARY 2.3.15. The only nontrivial identity in the monoid of standard
morphisms generated by E and ¢ is E* = Id. m

2.3.4. Conjugate morphisms

In this section, we characterize Sturmian morphisms by standard morphisms.
The main notion is a special kind of conjugacy relation for morphisms.

Let f and g be morphisms. The morphism g is a right conjugate of f, in
symbols f « g if there is a word w such that

f(@)w = wg(z), for all words z € A* (2.3.3)

This implies that the words f(x) and g(z) are conjugate, and moreover all pairs
(f(z),g(z)) share the same “sandwich” word w. It suffices, for (2.3.3) to hold,
that

fla)w = wg(a), for all lettersa € A (2.3.4)

since by induction f(za)w = f(z)f(a)w = f(z)wg(a) = wg(za). Observe that if
(2.3.4) holds for a nonempty word w, then all words f(a) for a € A start with the
same letter. Right conjugacy is a preorder over the set of all morphisms over A.
Indeed, if f(z)w = wg(z) and g(x)v = vh(zx), then f(x)wv = wg(x)v = woh(zx).

EXAMPLE 2.3.16. The morphism ¢ is a right conjugate of ¢ since ¢(0)0 =
010 = 0p(0) and (1) = $(1) = 0. Observe that ¢ is not a right conjugate of ¢
since $(0) and ¢(1) do not start with the same letter.

This example shows that right conjugacy is not a symmetric relation. However,
one has the following formulas.

LEMMA 2.3.17. Let f,g,f',g" be morphisms.
(i) If f<ag and f'<g, then faf or f'«f,
(ii) If f<ag and f<ag', then g<ag' or g’ <y,

(iii) If f<g and f'<g', then fo f'<agog'.
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Proof. We start with the first implication. If f(z)w = wg(z) and f'(z)v = vg(z),
then for convenient z, the word g(z) is longer than v and w. Thus w is a suffix
of v or vice-versa. Assume v = zw. Then zf(z) = f'(z)z. The second is
symmetric.

For the third, assume f(z)w = wg(z) for all words z. For any morphism h,
h(f(z)w) = h(f(x))h(w) = h(w)h(g(z)), and consequently ho f<ahog. Also
f(h(z))w = wg(h(zx)), showing that foh<goh. Thus, if f<g and f'<g’, then
fof'ageflageyg. =

The next result states that the monoid of Sturm is the closure under right
conjugacy of the monoid of standard morphisms.

PRrROPOSITION 2.3.18. A morphism is Sturmian if and only if it is a right con-
jugate of some standard morphism.

Proof. We show first that a Sturmian morphism is a right conjugate of some
standard morphism. Let g be a Sturmian morphism, and consider a decompo-
sition
g=hiohyo---oh,

with hy,...,h, € {E,p,p}. If none of the h; is equal to @, then g is standard.
Otherwise, consider the smallest ¢ such that h; = @. Then g = g’ o g o g",
for ¢ = hyo---oh;—1 and g"” = hjrq 0 --- 0 h,. By induction, g" is a right
conjugate of some standard morphism f”, and since p <% and by Lemma 2.3.17,
g opo f"ag, with g oo f" a standard morphism.

Conversely, let f be a standard morphism, and let g be a right conjugate
of f. Then there is a word w such that f(z)w = wg(z) for every word z. It
follows that, for any infinite word s, one has f(s) = wg(s). If s is a Sturmian
word, then g(s) is a Sturmian word, and g is a Sturmian morphism. "

We start an explicit description of the right conjugates of a standard mor-
phism by the following observation.

ProPoSITION 2.3.19. Right conjugate standard morphisms are equal.

Proof. Let f and f’ be two standard morphisms, and assume f < f'. There is a
word w such that

fOw =wf'(0), f(Hw=wf'(1) (2.3.5)

Set & = £(0), y = f(1), and 2’ = £(0), y' = f'(1). Then |z| = |a'| and |y| =
|y'|. Next, by Proposition 2.3.11, {z,y} and {z',y'} are unordered standard
pairs. If {z,y} = {0,1}, then {z,y} = {2',y'} and f = f'. Otherwise, the
words zy, yz, 'y’ and y'z’ are standard words with same height and length
by (2.3.5), and moreover zy # yzx, 'y’ # y'z' by Proposition 2.2.2. In view
of Proposition 2.2.15, there exist exactly two standard words of this height and
length. Thus zy = z'y’ or (zy = y'z’ and yz = z'y'). In the first case, f = f'.
In the second case, assume |z| < |y|. Then z is a prefix of y, and the equation
yr = z'y’ shows that z = 2’. Thus f = f' in this case also. n
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We now show a way to construct all Sturmian morphisms from standard
morphisms.

As in Lothaire (1983) Section 1.3, we use the permutation v over AT defined
by y(az) = za, a € A, x € A*. Two words z,y are conjugate if and only if
y = 7! (x) for some 0 <i < |z|.

Let f be a standard morphism. For 0 < i < ||f|| — 1, define a morphism f;
by £i(01) = ¥(£(01)) and |(0)| = |£(0)]

ExAMPLE 2.3.20. Let f be the morphism defined by f(0) = 01010, f(1) = 01.
The corresponding 7 morphisms are

fo:0 01010, 1+ 01
f1:0 10100, 1+ 10
£>:05 01001, 1~ 01
f5:0 10010, 1+ 10
£2:0+ 00101, 1+ 01
f5:0— 01010, 1+ 10
f6:0— 10101, 1+ 00

It is easily checked that all morphisms except fg are Sturmian and are right
conjugates of f.

PROPOSITION 2.3.21. Let f be a non trivial standard morphism. The right
conjugates of f are the morphisms f;, for 0 < i < ||f]|| — 2.

This means that the morphism f ¢ is never Sturmian (in the example above,
this was fg).

Proof. Let g be a right conjugate of f. Then f(01)w = wg(01) for some word
w, so g = f; for some i.

For the converse, we show first that f;(0) and f;(1) start with the same letter
if and only if 0 < i < ||f|| — 3. Indeed, set z = f(0), y = f(1), ' = f;(0) and
y" = fi(1), and set n = |z| = |2'|. The word z'y’ is a factor of zyzy, thus
there exists a non empty word ¢ of length i such that zyzy starts with tx'y’.
The first letter of ' is the (i + 1)th letter of zy. The first letter of y' is the
(n + i + 1)th letter of zyz, i.e. the (i + 1)th letter of yx. Since {z,y} is an
unordered standard pair, only the last two letters of the words xy and yz are
different by Proposition 2.2.2. Consequently the first letter of z’ is equal to the
first letter of ¢’ if and only if i +1 < ||f|| — 2.

For any i with 0 < i < ||f]| — 3, set fi(0) = au, f;(1) = av for a letter a
and words u,v. Then f;11(0) = ua, fiy1(1) = va. Thus f;(0)a = af;+1(0),
fi(l)a = af;+1(1), showing that f; < f;11, whence f < fi11. n

PROPOSITION 2.3.22. Let g be a Sturmian morphism. There exists a unique
standard morphism f such that f<g. This standard morphism is obtained from
any decomposition of g in elements of {E, p, p} by replacing all the occurrences

of ¢ by .
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Proof. Let g be a Sturmian morphism, and let f be obtained from a decompo-
sition of g in elements of {E, ¢, $} by replacing all the occurrences of ¢ by .
Since f is a composition of E and ¢, f is standard. Moreover, since ¢ <@, one
has f < g by repeated application of Lemma 2.3.17(iii).

Moreover if there exists a standard morphism f’ such that f’ < g then by
Lemma 2.3.17, one has f' < f or f < f'. By Proposition 2.3.19, f = f’ which
proves that f is unique. n

2.3.5. Automorphisms of the free group

Consider two letters 0,1 not in A = {0,1}. The free monoid 4* = {0,1,0,1}*
is equipped with an involution by defining @ = a for a € A, and wv = va. The
free group F(A) over A = {0, 1} is the quotient of the free monoid A® under the
congruence relation generated by 00 = 00 = 11 = 11 = e. A word in A® without
factors of the form 00,00, 11,11 is reduced. Every word in A® is equivalent to a
unique reduced word. If w is reduced, so is w. The free group can be viewed as
the set of reduced words. The product of two elements in F'(A) is the reduced
word equivalent to the concatenation of the reduced words corresponding to the
group elements, and the inverse of an element in F'(A) represented by w is .
An element in F(A) has a length. Tt is the length of its corresponding reduced
word.

In this section, we give a characterization of Sturmian morphisms in terms
of automorphisms of the free group F'(A).

Any morphism f on A is extended in a natural way to an endomorphism

on F(A), by defining f(0) = f(0), f(I) = f(1). Tt follows that f(&w) = f(w)
for any w € F(A). Conversely, consider an endomorphism f of F(A). It is
called positive if the (reduced) words f(0) and f(1) are words over A, that is
do not contain any barred letter. An endomorphism f that is a bijection is an
automorphism. Its inverse is denoted f—1.

The morphisms E, ¢ and ¢ are extended to F'(A) by

0—1 0~ 01 0+~ 10
g. 170 =0 o 10
01 Y010 Y00l
1—0 1—0 1—0

They are automorphisms, and their inverses are given by

01 0—1

-1 _ —1. =1,

EX=E v i1, % ‘1ol

It follows that every Sturmian morphism is a (positive) automorphism of F(A).
The converse also holds.

THEOREM 2.3.23. The positive automorphisms of F'(A) are exactly the Stur-
mian morphisms.
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The theorem states that the three morphisms E, ¢, ¢ are a set of generators
of the monoid of positive automorphisms. The full automorphism group of a
free group is a well-known object (see Notes). In particular, sets of generators
can be expressed in terms of so-called Nielsen transformations. In the present
case, the morphisms

00 0—0 0~ 01 0—0
1—1 11 11 110

generate the automorphism group of F(A). The two last morphisms are E o ¢
and po E.
We first prove a special case of the theorem.

PROPOSITION 2.3.24. Let f be a positive automorphism of F(A). If the words
f(0) and f(1) do not end with the same letter, then f is a standard Sturmian
morphism.

Proof. Let f be a positive automorphism of F(A). We may assume |f(0)] <
|£(1)]. We suppose first that f(0) is not a prefix of f(1). There exist words u,
vg, v1 over A such that vy and vy start with different letters and f(0) = uwg
and f(1) = wwy. Since f(0) and f(1) do not end with the same letter, the
words vg and vy also end with different letters. The images of reduced words
of length 2 under f are wv,uvy, UV VpU, VoUp, U, ulpu. Fach of these words is
reduced because vy and v; start and end with different letters. It follows that
for any reduced word w of length at least 2, the reduced word f(w) has length
at least 2. Consider now any letter a € A. Since |f(f~!(a))| = 1, it follows that
|f~'(a)| =1, that is f is either the identity or E. Thus f is Sturmian.

Next, if f(0) is a prefix of f(1), there exists a word u such that f(1) = f(0)u.
Define a morphism g by ¢g(0) = f(0) and g(1) = u. Then f = go po E. Since
f is a bijection, ¢ is also a bijection. By induction on ||g||, the morphism g is a
standard Sturmian morphism, and so is f. n

Proof of Theorem 2.3.23. Let g be a positive automorphism. The words g(01)
and ¢(10) are different because g is a bijection. They have same length. Let u
be their longest common suffix. There exist words vy, v; over A of same length
such that ¢g(01) = vou, g(10) = v;u and vg, v; do not end with the same letter.
Since for letters a # b, g(aba) = voug(a) = g(a)vpyu, the words ug(a) end with
u. Define a morphism f by f(a) = ug(a)a for a € {0,1}. Then f(w) = ug(w)a
for all w in F(A). Since ug(a) ends with u for a € {0,1}, the morphism f is
positive.

Since g is a bijection, f is also a bijection. Moreover f(01) = uwvy and
f(10) = ww; end with different letters and since f is positive, also f(0) and
f(1) end with different letters. By Proposition 2.3.24, f is a standard Sturmian
morphism. Now f(0)u = ug(0) and f(1)u = ug(1) which means that g is a right
conjugate of f. Consequently, by Proposition 2.3.18, g is a Sturmian morphism.

|
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2.3.6. Fixpoints

In this section, we make use of Theorem 2.3.12 to describe those characteristic
words that are fixpoints of standard morphisms. As an example, we know from
Chapter 1 that the morphism ¢ fixes the infinite Fibonacci word f.

We say that a morphism A fizes an infinite word z if h(z) = x. In this case,
z is a fizpoint of h. Every infinite word is fixed by the identity, and no infinite
word is fixed by FE.

For the description of characteristic words which are fixpoints of morphisms,
we introduce a special set of irrational numbers. A Sturm number is a number
« that has a continued fraction expansion of one of the following kinds:

(1) a = [07 laamm]a with ag Z ao,

(i) a =1[0,1+ ag,ar,---,ax), with ax > ag > 1.
Observer that (i) implies a > 1/2, and (ii) implies & < 1/2. More precisely, «
has an expansion of type (i) if and only if 1 — a has an expansion of type (ii).
Consequently, a is a Sturm number if and only 1 — « is a Sturm number.

As an example, 1/7 = [0,1] is covered by the first case (for k¥ = 1 and
ar = ap = 1), and 1/72 = [0,2,1] is covered by the second case.

We shall give later (Theorem 2.3.26) a simple algebraic description of Sturm
numbers. There is also a simple combinatoric characterization of these numbers
(Problem 2.3.4).

THEOREM 2.3.25. Let 0 < a < 1 be an irrational number. The characteristic
word ¢, is a fixpoint of some non trivial morphism if and only if a is a Sturm
number.

Proof. Let
a=1[0,my,ma,...]

be the continued fraction expansion of a, and suppose that f(c,) = ¢, for some
morphism f. In view of Theorem 2.3.12, the morphism f is standard. Thus, f
is a product of E and GG, and is not a power of E. Also, f is not a proper power
of G, because a morphism G™ with n > 1 fixes only the infinite word 0. Thus
(we write composition as concatenation), f has the form

f=GmEG" ... EG" EG"+

for some k > 1, ny,ngy1 > 0, and na,...,n, > 1. We use the morphisms
Om = G™ LEG for m > 1 and the fact (Corollary 2.2.21) that

Om(Ca) = C1/(mta) -

There are three cases.
(a) Suppose first that ng4q > 0. Then

f = 0n1+19n2 .. .gnkG”kH*l
Since f fixes ¢, this implies

[O,ml,mg,...] = [0,1+n1,n2,...,nk,nk+1 —1+m1,m2,...]
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which in turn gives my = 14n1, my = ns, ..., Mk = Nk, Mpyp1 = N1 —1+my =
Ng+1 + N1, and m; = mjyy, for j > 2. Thus

a=1[0,1+mn1,n9,...,nk41 +n1], withny; >0,n9,...,np41 >1 (2.3.6)

(b) Suppose now that ngy1 = 0, and consider the morphism f' = EfE. From
ca = f(ca), it follows that f'(Ecy) = Ecq, that is f'(cg) = ¢z for § =1 — «.
Now

f'=EG™EG™ ---EG™

where n; > 0 and ns,...,n; > 1. There are two sub-cases.
(b.1) If ny =0, then k£ > 3 and

fl=G"-.-EG™ = Onpt1 - ‘0nk—1Gnki1

whence, as above, 8 = [0,1+ n2,ng,...,ng_1,n2 + ng| and since ny > 1,

a=1-p=[0,1,n2,n3,...,nk_1,n2 + ng| withng,...,ng>1 (2.3.7)
(b.2) If ny > 1, then
f'=EG™.---EG™ =6,0,, ---0,,_,G™ !

whence as above § = [0,1,71,.., 75—, %] and

a=1-p=[0,14ny,na,n3,...,0k,01] withng,...,ng>1 (2.3.8)

To show that Equations (2.3.6)—(2.3.8) describe exactly Sturm numbers, observe
that Equation (2.3.6) with n; = 0 corresponds, in the definition of Sturm num-
bers, to case (i) with ay = ag, that Equation (2.3.6) with n; > 0 corresponds
to case (ii) with a > ao, that Equation (2.3.7) is equivalent to case (i) with
ay, > ap and that Equation (2.3.8) is case (ii) with ay = ao.

The proof that a Sturm number indeed yields a fixpoint is exactly the reverse
of the previous one. [

Sturm numbers have a simple algebraic description. Clearly, a Sturm number
a is quadratic irrational, that is solution of some equation

P 4+pr+qg=0

with rational coefficients p, g. The other solution of this equation is the conjugate
of a, denoted by &, and satisfies a@ = ¢. It is easy to prove that the conjugate
of 1 —ais 1 — &, and that the conjugate of 1/« is 1/a.

THEOREM 2.3.26. A quadratic irrational o with 0 < « < 1 is a Sturm number
if and only if 1/a < 1.

We need some facts from number theory. A quadratic irrational number 5
is said to be reduced if ¥ > 1 and —1 < ¥ < 0. This is equivalent to 1 > 1/y > 0
and 1/ < —1. It is known that
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1. the continued fraction of a quadratic irrational v is purely periodic if and
only if ~ is reduced.
2. if v is reduced and v = [a1,- .-, ap), then —1/7 = [ay, -, a1].

Proof of Theorem 2.3.26. The condition 1/a& < 1 is equivalent to @ ¢ [0, 1].
This in turn is equivalent to 1 — & ¢ [0,1]. Thus & verifies the condition if
and only if 1 — @ does. Consequently, it suffices to prove the equivalence for
0 < a < 1/2. We have to prove that 1/a& < 1 if and only if

a=[0,1—|—a0,a1,...,ak], with ap >ag >1.
Let first @ be a Sturm number with 0 < o < 1/2. Then

1
o= ———7, with y=[@5 a5, a >a>1 (2.3.9)

1-|-a0+—
Y

Thus v is reduced, and since —1/% = [ag, ..., a1] > ax, it follows from (2.3.9)
that
lJa=14+a+1/y<1l+4+ag—ap<1.
Conversely, let 0 < a < 1/2 be a quadratic irrational with 1/a < 1. Since
2 < 1/a, write
l/a=14+a+1/y (2.3.10)
where ap = |1/a—1] > 1and 1 < 1/y < 1. From 1/& < 1 and the conjugate
of (2.3.10), one gets
1/ < —ap < -1

Thus + is reduced, and writing v = [a1, .-, ax], one gets

ag < —1/’7: [ak,...,al] <ap+1

whence a > ag > 1 and

1
a=———==1[0,1+ap,ar,...,az]. .

14+ap+ -
v

Problems

Section 2.1

2.1.1 We consider two-sided infinite words over {0, 1} of complexity n + 1.

1. Show that the word z defined by z(k) =1 for £ > 0, and z(k) =0
for k < 0 has n + 1 factors of length n for each n > 0.

2. Let z ¢ 0* U 1* be a central word with period k£ and ¢, and set
w = pl0g where p and ¢ are palindrome words with k& = |p|, £ = |q.
Define two (onesided) infinite words z = (10¢)“ and y = (01p)“. Then
the two-sided infinite word §zz has n + 1 factors of length n for each
n > 1. (These are the only two-sided infinite words with complexity
n + 1, see Coven and Hedlund 1973.)
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2.1.2

2.1.3

214

Section

221

2.2.2

2.2.3

Sturmian Words

Let = be an infinite word which contains infinitely many occurrences of
0 and of 1. The cell-condition for z is the following: for any words w, w’
such that |wlo = |w'|o and 0w0,0w'0 € F(z), one has ||w| — |w'|| < 1,
and the same condition with 0 and 1 exchanged. Show that x is balanced
if and only if z satisfies the cell-condition. (Morse and Hedlund 1940.
A proof consists in considering the word y such that z = G(y).)

Let = be an infinite word. For n > 1, let X,, be the set of factors of x
starting with 0, ending with 0, and containing exactly n occurrences of
the letter 0. Define similarly Y;,, replacing 0 by 1. Show that z is Stur-
mian if and only if Card(X,,) = Card(Y,,) = n for every n (Richomme
1999a).

Show that a word w is unbalanced if and only if it admits a factor-
ization w = xauaybiubz for words u,x,y,z and letters a # b. Use this
characterization to prove that the set of unbalanced words is a context-
free language. (Dulucq and Gouyou-Beauchamps 1990, see also Mignosi
1991, 1990)

2.2

Show that for any standard word w # 0, 1, there is only one standard
pair (z,y) such that w = zy or w = yz.
Define sequences of words (A,)n,>0 and (By,)n>0 by

AO = a, BO =b
and

An—i—l = A,
Bn+1 = A, B,

An+1 = BpAy
Bn+1 = B,

The R;’s are called Rauzy’s rules (see Rauzy 1985).

1. Show that, provided each of the rules R; is applied infinitely many
often, the sequences A, and B, converge to the same infinite word
which is characteristic.

2. Show that conversely every characteristic word is obtained in this
way.

Let 0 < h < m be integers with (h,m) = 1. The lower and upper
Christoffel words tp,,, and t, ,, are defined by to1 = t5; =0, t1,1 =
11 =1,and tp m = 0z m1, t;z,m = 1z, m0 if m > 2. These are exactly
the words defined in Section 2.1.2.

1. Show that if A'm — m'h = 1, then

R1 : and R2 :

! ! !
thomthtm! = thth! mtm’s Ept it = Ehp b ety

2. For 1 < h < mand (h,m) =1, show that there exist integers m', h'
with 0 < h' <m' <m, k' < h such that m'h — h'm =1, and

th,m = th’7m’th—h’,m—m’
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224

2.2.5

2.2.6

2.2.7

3. Define o, = 25,m,m 10, a;hm = zp,,m01. Show that

! ! !
Uh7m0-h'7m' = Uh+h’7m+m’70-h7m0-h’7m’ = Uh+h’,m+m’ .

Show that the pairs of standard words are (0,1) and all the pairs
(Uh7m7 U;L7m)7 for h'm — hml =1.

Consider a function A’ from {0,1}* into itself defined by A’(u,v) =
(uv,v). The family of Christoffel pairs is the smallest set of pairs of
words containing (0,1) and closed under T" and A’. A standard pair
and a Christoffel pair are corresponding if they are obtained by the
same sequence of I" and A (resp. I and A').

1. Let (u,v) be a standard pair and let (u',v') be the corresponding
Christoffel pair. Show that if u = pl10, then v’ = Opl and if v = ¢01,
the ' = 0q1.

2. Show that the components of Christoffel pairs are exactly the lower
Christoffel words. (see Borel and Laubie 1993.)

Christoffel words and Lyndon words.

1. Show that every lower Christoffel word is a Lyndon word.

2. Show that a balanced word is a Lyndon word if and only if it is a
Christoffel word (Berstel and De Luca 1997).

3. Any lower Christoffel word w which is not a letter admits a unique
factorization w = xy, where (z,y) is a Christoffel pair. Show that this
factorization is the standard Lyndon factorization (Borel and Laubie
1993).

Show that, for 0 < p < 1,

P(Sa,p) = 8'1—a 2-a—p D(Sa,p) =5 _1_ 1-ate, D(Sa,) =51 o .

2—a’ 2—«a 2—a’ 2—a 2—a’2—a

Show that for 0 < p <1,

P(sl, ) = S1-a 2-a—p, D(s), ) =5",

ap —a’ 5—a a,p =

(see Parvaix 1997)

The aim of this problem is to prove that if w is a word such that w0

and w1l are balanced, then w is a right special factor of some Sturmian

word.

Let w be a word such that w0 and w1 are balanced.

1. Show that if w is a palindrome, then w is central.

2. Show that if w = uap, with a a letter and p a palindrome, then pa
is a prefix of some characteristic word.

3. Show that w is always a suffix of a central word.

4. Show that w is a right special factor of some Sturmian word.

(see De Luca 1997c)
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2.2.8

2.2.9

2.2.10

2.2.11

Sturmian Words

Let « = [0,1 + dy,d>,...] be the continued fraction expansion of the
irrational «, let (s,) be the associated standard sequence, and define

(tn)nZ—l by

t=1, to=0, tp=t"Ttty ot 1, (n>1).
1. Show that tgty ---t, = S, - - - 8150.
2. Show the follow product formula: ¢, = toty - -ty - - -.(Brown 1993)
Let « = [0,1 + dy,d>,...] be the continued fraction expansion of the
irrational «, let (s,) be the associated standard sequence. Let w be a

standard word that is a prefix of the characteristic word c¢,. Show that

there is an integer n such that w = sﬁsn,l for some 1 <k <dpy1.

Let « = [0,1 + dy,ds,...] be the continued fraction expansion of the
irrational «, let (s,) be the associated standard sequence. Define three
sequences of words by (4n)n>—1, (Vn)n>—1 and (wp)n>—1

U_1=’U_1=’w_1=1, u0=v0=w0=0

and
Usp = Usp—2(Usp—1)P"  (n>1)
Usnt1 = (Uan) 2"+ usp—y  (n > 0)
Von = (V2—1)%"v2,s  (n > 1)
Vant1 = Vap—1(v2y)?22+1  (n > 0)
Wy = Wy _2(w,_1)™  (n>1)
1. Show that
Ocq = limy, o0 Up, leg = limy_ oo Un
0le, = limy, oo wop, 10¢q = limp—y 00 wap 41 -

2. Define a sequence (p,)n>—1 by p-1 = 07!, pp = 17! and

Pan = Pan—2(10map_1)%» 0 >1
Pant1 = (P2n10)™7+1po, 1 0 >0

Show that the words p,,, for n > 1 are palindromes, and

San = p2n107 Unp = Oan Wapn = 01p2na
S2n4+1 = P2n+101, v, = 1p,0, wanr1 = 10p2s41-

A number system associated with a directive sequence.
Let a = [0,1 4+ dy,ds,...] be the continued fraction of the irrational a,
and (s,) be the associated standard sequence. Define integers by

g1=1, q=1, Gn = dpng@n—1 + qn—2, (n > 1) .

Then of course |sp| = ¢pn.
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2.2.12

2.2.13

2.2.14

2.2.15

2.2.16

1. Show that any integer m > 0 can be written in the form
m = zpqn + - - + 2090, (0 <z <dit1) (2.4.1)

2. Show that every integer 0 < m < ¢p4+1 — 1 admits a unique such
representation provided

Zi:di+1:>2i71:0 (].SZSh)

3. Show that if m = zpqn+- - -+20qo0 is as in eq. (2.4.1), then the prefix of
cq of length m has the form s;” - - s3° (see Fraenkel 1985, 1982, Brown
1993 and the references cited there).

A Beatty sequence is a set B = {|rn] |n > 1} for some irrational number
r > 1 (it is a spectrum).

1. Let @« = 1/r, and let ¢, = ajas - - - be the characteristic word of slope
a. Show that B = {k | a, = 1}.

2. Two Beatty sequences B and B’ are complementary if B and B’
form a partition of {1,2,...}. Show that the sets {|rn]|n > 1} and
{[7'n] |n > 1} are complementary if and only if 1/r + 1/’ = 1. (Use
1., see Beatty 1926)

Write ¢ < y if = is lexicographically less that y. Show that for any
irrational characteristic word ¢, the word Oc is lexicographically smaller
than all its proper suffixes, and 1c¢ is lexicographically greater than all
its proper suffixes. (Borel and Laubie 1993)

Define a mapping C : {0,1}* — {0,1}* by C(e) = ¢ and C(az) = xa for
a € {0,1}. This is just a cyclic permutation. Let a = [0,1 4 dy,d>, .. ]
be the continued fraction of the irrational o, and (s,) be the associated
standard sequence.

1. Show that for n > 0, the words C~'(sy,) and Cl*2»~l(sy,,,) are
Lyndon words. (Borel and Laubie 1993, Melancon 1996)

2. Set £, = C1922=U(s5,,1). Show that c, = (P00 ... ¢2"+> ... and
that the sequence /,, is a lexicographically strictly decreasing sequence.
Let @« =[0,1 + diy,do,...] be the continued fraction of the irrational a,
and (s,) be the associated standard sequence.

1. Show that s2 is a factor of ¢, for every n > 1.

Since s, is primitive, every factor of ¢, of length |s,| excepted one is
a conjugate of s,. This is the singular word, denoted w,. For the
Fibonacci word, the singular words are 00, 101, 00100, 10100101, .. ..
2. Let p,, be the palindrome prefix of s, of length |s,| — 2. Show that
Wy = QpPnan, where a, = 0 if n is odd, and a,, = 1 if n is even.

3. Show that the Fibonacci word is the product of 01 and its singular
words: f = 01(00)(101)(00100) - - -. (see Wen and Wen 1994b)

To compute all conjugates of s,, define sequences (wp,)o<r<n of words
parameterized by sequences of integers zg, ..., 2,—1 With 0 < 2z, < dp 41
by w_1 =1, wp =0 and wpy1 = wzh“_zhwh_lwzh 0< h<n.

1. Show that w,, = C*(s,,), where k = Zz;é qhZh.

2. Show that one gets all conjugates exactly once. (see Chuan 1997)
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2.2.17

2.2.18

Section

23.1

Sturmian Words

Sturmian words and palindromes.

1. Let s be a Sturmian word. Show that F'(s) contains exactly one palin-
drome word of even length, and two palindrome words of odd length for
each nonnegative integer.

2. Show that conversely, if F'(s) contains exactly one palindrome word
of even length, and two palindrome words of odd length for each non-
negative integer, then s is Sturmian (Droubay and Pirillo 1999).
Sturmian words and decimation.

Let 1 < k < m be integers with m > 2. Let x be an infinite word with
infinitely many 0’s and 1’s. The transformation My, ,, deletes in x every
0 excepted those occurring at position congruent to £ modulo m. The
transformation Dy, ,,, operates in the same way on 1’s. For example,
M3 4, applies to

0100101001001010010100100101001001 - - -
keeps only the italicized letter 0, and gives the word
101110110111011011 - - -

1. Give a geometric argument (by cutting sequences) showing that
M, (s) and Dy y(s) are Sturmian for Sturmian words.

2. Give explicit formulas for My, ,,,(sa,5) and Dy m(Sq,p) similar to those
of Problem 2.2.6.

3. Show that My, m © Dyom(c) = ¢ for every characteristic word ec.
4. Show that conversely, if My, m © Dpom(s) = s for every m, then
the infinite word s is balanced. (Justin and Pirillo 1997, the explicit
formulas are in Parvaix 1998)

2.3

For integers m > 1,7 > 1, set

Wenp = 0m711(0m+1 1)r+10m1(0m+11)r0m1
wh, = 0™1(0™1)7FHom 11 (0™ 1) 0™+ 1

In particular, w; ; = 1021021010%101 is a word of length 14. Any Stur-
mian word contains one and only one word from the set

Q= {wmmawamraE(wmm)aE(wanm) |m>1,r>1}.

1. Prove that a morphism f is Sturmian if and only if f is acyclic
and there exists a word w € Q such that f(w) is a balanced word (in
particular, an acyclic morphism f is Sturmian if and only if f(w; 1) is
a balanced word) (Berstel and Séébold 1994a).

2. Prove that no word of length less or equal to 13 has the above prop-
erty. (Richomme 1999b)
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2.3.2 Let C be the set of morphic Sturmian characteristic words. Prove that,
for any ¢ € C, the words Oc, 1¢,01¢ and 10c are morphic (Berstel and
Séébold 1994a).

2.3.3 Prove that a morphism f is standard if and only if f(0), f(1) and f(01)
are standard words (De Luca 1997b).

2.3.4 Let a = [0,1 + dj,ds,...] be the continued fraction of an irrational
number a. Define an infinite word d, over {0,1} by

0q = 04118203144 ...

Show that « is a Sturm number if and only if d, is purely periodic
(Droubay, Justin, and Pirillo 2001).

Notes

The history of Sturmian words goes back to the astronomer J. Bernoulli 111
(Bernoulli 1772). The book of Venkov (1970) describes early work by Christoffel
(1875) and Markoff (1882). The first in depth study is by Morse and Hedlund
(1940). They also introduce the term “Sturmian”, more precisely Sturmian
trajectories, named after the mathematician Charles Frangois Sturm (1803-
1855), born in Geneva, and who taught at the Ecole Polytechnique in Paris
since 1840. He is famous for his rule to compute the roots of an algebraic
equation. As described by Hedlund and Morse, Sturmian words are obtained
in considering the zeroes of solutions u(x) of linear homogeneous second order
differential equations
y'+o(z)y =0,

where ¢(z) is continuous of period 1. If k,, is the number of zeros of u in the in-
terval [n,n + 1], then the infinite word 01%00*10%2 . .. is Sturmian (or eventually
periodic). The papers by Coven and Hedlund (1973) and Coven (1974) contain
many combinatorial properties (in particular the description of two-sided infi-
nite words of minimal complexity), and the paper by Stolarsky (1976) shows
the relation with continued fractions, fixpoints, and Beatty sequences. The last
twenty years have seen large developments, from the point of view of arithmetics,
dynamical systems and combinatorics on words. Surveys are by T. C. Brown
(1993), Berstel (1996), Ziccardi (1995), partly De Luca (1997a) and for finite
factors of Sturmian words Bender, Patashnik, and Rumsey (1994). Sturmian
words are known under many other names. Each reflects the emphasis on a par-
ticular property. Thus, they are called two-distance sequences (see e.g. Lunnon
and Pleasants 1992), Beatty sequences (de Bruijn 1989, 1981), characteristic se-
quences (Christoffel 1875), spectra (Boshernitzan and Fraenkel 1981, 1984, the
spectrum of a number « is the multiset {|[na| | n > 1} in the book Graham,
Knuth, and Patashnik 1989), digitized straight lines, cutting sequences and even
musical sequence in a special case (Series 1985).

Sturmian words are of lowest possible complexity. For an overview on com-
plexity of infinite words, see Allouche (1994). Two-sided infinite words of com-
plexity P(n) = n + 1 include strictly mechanical words (Problem 2.1.1, Coven



96 Sturmian Words

and Hedlund 1973). There is a large literature on infinite words with slightly
more than minimal complexity (Coven 1974, Alessandri 1996, Cassaigne 1996,
Ferenczi 1995, Rote 1994, Hubert 1995, 1996, Rauzy 1988). An extension to 3
letters has been initiated by Arnoux and Rauzy (1991), Arnoux, Mauduit, Sh-
iokawa, and Tamura (1994), Castelli, Mignosi, and Restivo (1999) (the last paper
relates Arnoux-Rauzy words to central words over 3 letters). Several properties
have been extended to larger alphabets by Droubay et al. (2001). The property
of balance and Theorem 2.1.5 are due to Morse and Hedlund (1940), our expo-
sition benefits from Coven and Hedlund (1973). In particular, Proposition 2.1.3
is there. Theorem 2.1.13 is also from Morse and Hedlund (1940). The argument
of the proof of Lemma 2.1.15 is from Tijdeman (1996). Christoffel words were
investigated in Christoffel (1875). A systematic geometric study is in Borel and
Laubie (1991, 1993). Several propositions of Section 2.1.3 Propositions 2.1.18,
2.1.19, 2.1.23 are from Mignosi (1989). He uses rotations (in a slightly different
setting).

Mechanical words are also known as digitized straight lines. They have
been considered for a long time in pattern recognition, where the problem is
to compute the slope and the intercept of a finite Sturmian word as fast as
possible, to test whether a word is a finite Sturmian word and, if not, to get the
polygonal decomposition (see Bruckstein 1991, Dorst and Smeulders 1991 and
the literature quoted there, also Berstel and Pocchiola 1996). Words generated
by rotations are in fact more general than Sturmian words when the partition
of [0, 1] is defined independently from the angle of rotation (see Alessandri 1996,
Gambaudo, Lanford, and Tresser 1984, Iwanik 1994, Rauzy 1988, Sidorov and
Vershik 1993). Interval exchange is even more general, because the exchange
functions are piecewise rotations (see e.g. Rauzy 1979, Didier 1997).

Standard pairs were introduced in a slightly different form in Rauzy (1985).
His construction is known as Rauzy’s rules (see also Problem 2.2.2).

Theorem 2.2.4 and its corollaries are from De Luca and Mignosi (1994).
Theorem 2.2.11 is from De Luca and Mignosi (1994). It appears in a similar
form in Coven and Hedlund (1973), see also Pedersen 1988.

Lemmas 2.2.17 and 2.2.18 are from Parvaix (1997). Proposition 2.2.24 has
been proved by Fraenkel, Mushkin, and Tassa (1978), see also Brown (1993).
Theorem 2.2.31 is from Mignosi (1991), although the present proof is different.
The proof of Theorem 2.2.36 given here is from De Luca and Mignosi (1994).
There are several other proofs, in Mignosi (1991), Berstel and Pocchiola (1993).
The formula also appeared in Koplowitz, Lindenbaum, and Bruckstein (1990).

The proof of Theorem 2.2.37 by the factor graphs is from Berthé (1996). The
result is also known as the three distance theorem. There is a large literature
on this subject (see Berthé 1996 and the survey paper Alessandri and Berthé
1998).

Sturmian morphisms were investigated in Séébold (1991). The equivalence
(i) and (ii) of Theorem 2.3.7 is due to Mignosi and Séébold (1993), the third is
adapted from Berstel and Séébold (1994a). Proposition 2.3.11 is from Berstel
and Séébold (1994b). Theorem 2.3.12 appears in De Luca (1997¢). The results
of Section 2.3.4 are from Séébold (1998). The relation to automorphisms of
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free groups is from Wen and Wen 1994a. The proof given here is simpler than
the original one. For results on free groups and their automorphisms, see e.g.
Magnus, Karrass, and Solitar 1966 or Lyndon and Schupp 1977. Theorem 2.3.25
is from Crisp, Moran, Pollington, and Shiue (1993). Several weak versions of
this theorem were known earlier (see Brown 1993 for a discussion). Our proof
is adapted from Berstel and Séébold (1994a). A self-contained proof exists by
Komatsu and van der Poorten (1996). The characterization of Sturm numbers
is from Allauzen (1998). Several generalizations to non characteristic Sturmian
words were proposed (see e.g. Komatsu 1996, Arnoux, Ferenczi, and Hubert
2000).



