Algorithmic logic is the development of tools for deciding logical properties about structure.

Automata are a key ingredient.
Algorithmic logic is the development of tools for deciding logical properties about structure. Automata are a key ingredient.
Model-checking is about testing a system toward a specification/property.

Typical instance of algorithmic logic!

Algorithmic logic is the development of tools for deciding logical properties about structure.

Automata are a key ingredient.
Model-checking is about testing a system toward a specification/property.

Typical instance of algorithmic logic!

Algorithmic logic is the development of tools for deciding logical properties about structure.

Automata are a key ingredient.

2.9.1 Well-Quasi-Orders for Algorithms
2.9.2 Algorithmic verification of programs
A language is regular (accepted by a finite automaton) if and only if it is recognized by a monoid.

[Schützenberger56]
A language is regular (accepted by a finite automaton) if and only if it is recognized by a monoid.
A language is regular (accepted by a finite automaton) if and only if it is recognized by a monoid.

A language is regular if and only if it definable in monadic second-order logic.
[Schützenberger56] A language is regular (accepted by a finite automaton) if and only if it is recognized by a monoid.

[Elgott,Büchi,Trakhtenbrot 61] A language is regular if and only if it definable in monadic second-order logic.

[Schützenberger56] A language is first-order definable if and only if it is recognized by an aperiodic monoid.
A language is regular (accepted by a finite automaton) if and only if it is recognized by a monoid.

A language is regular if and only if it definable in monadic second-order logic.

A language is first-order definable if and only if it is recognized by an aperiodic monoid.

2.20.3 Mathematical foundations of automata theory

2.26.1 Logic, descriptive complexity and database theory
Automata are « machine » representations of languages. Hence at the heart of parsing techniques in linguistic.
Automata are « machine » representations of languages. Hence at the heart of parsing techniques in linguistic.
Automata are « machine » representations of languages. Hence at the heart of parsing techniques in linguistic.

2.27.1 Logical and Computational Structures for Linguistic Modeling
Games can model the interaction of a system with the environment:

- one player plays the system
- one player plays the environment.

Both play turn by turn, and the system aims at fulfilling a goal. If system wins, one can construct a controller guaranteeing the property!
Games can model the interaction of a system with the environment:
- one player plays the system
- one player plays the environment.
Both play turn by turn, and the system aims at fulfilling a goal. If system wins, one can construct a controller guaranteeing the property!

Games are used as a key ingredient in the proof of:
[Rabin69](mother of all decidability results) infinite tree automata can be complemented.
2.20.1 Game theory techniques in computer science

Games are used as a key ingredient in the proof of: [Rabin69](mother of all decidability results) infinite tree automata can be complemented.

Games can model the interaction of a system with the environment:
- one player plays the **system**
- one player plays the **environment**.
Both play turn by turn, and the system aims at fulfilling a goal. **If system wins, one can construct a controller guaranteeing the property!**
Some databases are linear or tree-like structures (XML for instance). Transforming them consists in applying transducers; finite automata that transform the input.
Some databases are linear or tree-like structures (XML for instance). Transforming them consists in applying transducers; finite automata that transform the input.

What is the theory of transducers?
Some databases are linear or tree like structures (XML for instance). Transforming them consists in applying transducers; finite automata that transform the input.

What is the theory of transducers?

2.16 Computation model and automata
2.26.1 Logic, descriptive complexity and database theory
Automata can be used to represent objects (languages, relations).

This can be used to represent infinite objects such as infinite groups.
Automata can be used to represent objects (languages, relations).

This can be used to represent infinite objects such as infinite groups.

[Aleshin—Grigorchuk] the following automaton describes a group of intermediate growth:
Automata can be used to represent objects (languages, relations).

This can be used to represent infinite objects such as infinite groups.

[\text{Aleshin—Grigorchuk}] the following automaton describes a group of intermediate growth:
Some modules related to automata

1.28 Tree automata and applications
1.22 Basics of verification
2.9.1 Well-quasi-orders for algorithms
 Beaux préordres et algorithmes
2.9.2 Algorithmic verification of programs
 Vérification algorithmique des programmes
2.20.1 Games theory techniques in computer science
 Techniques de théorie des jeux en informatique
2.16 Computation models and
 Modèles de calcul et automates finis
2.20.2 Mathematical foundations of automata theory
 Fondations mathématiques de la théorie des automates
2.26.1 Logic, descriptive complexity and database theory
 Logique, complexité descriptive et théorie des bases de données
2.27.1 Computational structures and logics for natural language modeling
 Structures informatiques et logiques pour la modélisation linguistique