MPRI 2.8.2: Foundations of real-time and hybrid systems

Eugene Asarin (IRIF)
Laurent Fribourg (LSV)

Thursday 12h45-15h15, salle 2035 (period 1)
Classical view of control

Example #11: Roll-angle control

\[\ddot{\theta} + 50.875\dot{\theta} + 43.75\theta = -1000u \]

set-point control \(\equiv \) drive the roll angle \(\theta \) to a desired value \(\theta_{\text{reference}} \)

measurement noise \(n \)
Classical view of control

\[d(k) = d(k-1) + K_i T_s e(k) + K_p (e(k) - e(k-1)) \]

State-space realization of the closed-loop system

\[x(k+1) = Ax(k) + Dr(k) \]
\[x := \begin{bmatrix} i_L \\ \xi \end{bmatrix}, \quad \xi(k) := K_i T_s \sum_{i=0}^{k} e(i) \]
How to guarantee safety of the closed loop system?

How to guarantee safety of the closed loop system by design?

PI is valid only locally

- **Saturation** \(d \in [-1, 1] \)

- **Hard constraints** \(i_L \leq i_{\text{max}} \)

- **Numeric representation**

Industrial Solution

Extensive simulation
New context: interplay between discrete and continuous commands

- Transmission

 discrete command $(R,N,1,2,3,4,5)$ + continuous dynamical variables (velocities, torques)

- Four-stroke engines

 automaton, dependent on crankshaft angle
A suitable model: Hybrid systems

Hybrid Systems

\[x \in \{1, 2, 3, 4, 5\} \]
\[u \in \{A, B, C\} \]

\[x \in \mathbb{R}^n \]
\[u \in \mathbb{R}^m \]
\[y \in \mathbb{R}^p \]

\[\frac{dx(t)}{dt} = f(x(t), u(t)) \]
\[y(t) = g(x(t), u(t)) \]
The thermostat example

Hybrid systems: Motivating examples

- Hybrid: combination of continuous and discrete dynamics
- Temperature control system:

\[T > T_{\text{upp}} \]

- on mode: \(\dot{T} = f_{\text{on}}(T, w) \)
- off mode: \(T = f_{\text{off}}(T, w) \)

\[T < T_{\text{low}} \]
The thermostat example
A basic verification technique: Reachability analysis

- **Main Talk:**
 - Reachability Analysis
 - Linear Systems with Uncertain Parameters
 - Nonlinear Systems
 - Hybrid Systems

- **Stochastic Reachability Analysis of Linear Systems**
 - Basic Idea
 - Examples

- **Safety Assessment of Autonomous Cars**
 - Basic Idea
 - Examples
Computation of Post (« Successor Set »)

Goal: Given an initial set I, compute the set of reachable states to check if a bad state in F is reachable.

Symbolic breadth-first search by applying Post:

Post(R): Set of successors of states in R
System is safe, if no trajectory enters the unsafe set.

Efficient Data structures: Zonotopes

Definition of a zonotope Z

$$Z = \left\{ x \in \mathbb{R}^n \mid x = c + \sum_{i=1}^{p} \beta_i g^{(i)}, \quad -1 \leq \beta_i \leq 1 \right\}, \quad c, g^{(i)} \in \mathbb{R}^n$$

- Interpretation: Minkowski sum of line segments $l_i = [-1, 1]g^{(i)}$.
- Zonotopes are centrally symmetric to c.
- Short notation: $Z = (c, g^{(1\ldots p)})$.

![Diagrams showing examples of zonotopes](image-url)
Symbolic integration

1. Compute reachable set $\hat{R}^h(r)$ at time r (without input).
2. Obtain convex hull of $\hat{R}(0)$ and $\hat{R}^h(r)$.
3. Enlarge reachable set to guarantee enclosure of all trajectories.

$$\hat{R}([0, r]) = \mathcal{C}\mathcal{H}(\hat{R}(0), e^{Ar}\hat{R}(0)) + F\hat{R}(0) + \hat{R}^i([0, r])$$

F: Error interval due to the curvature of trajectories within $t \in [0, r]$.
$\hat{R}^i([0, r])$: Reachable set of the input (inhomogeneous solution).
Overapproximation of tubes

- System is safe, if no trajectory enters the unsafe set.
Overapproximation of tubes

Computation with systems of higher dimensions for 125 time intervals:

| Dimension n | 5 | 10 | 20 | 50 | 100 |
Application to traffic control

Trajectory planner:
- Planned trajectory

Environment sensors:
- Road geometry
- Static obstacles
- Dynamic obstacles

Cycle time ≈ 0.5 sec

Prediction horizon $> \text{Cycle time}$
\rightarrow Prediction has to be faster than real time.

Safety Verification: Predict situation for each cycle \rightarrow Crash probabilities
Optimisation in the symbolic context

Minimize an Absolute Criterion

- Achieve a specific objective
 - Minimum time
 - Minimum fuel
 - Minimum financial cost
- to achieve a goal

- What is the control variable?
Game Theory

Example: Pursuit-Evasion: Competitive Optimization Problem

- Pursuer’s goal: minimize final miss distance
- Evader’s goal: maximize final miss distance

- “Minimax” (saddle-point) cost function

$$u(t) = \begin{bmatrix} u_p(t) \\ u_E(t) \end{bmatrix} = \begin{bmatrix} C_p(t) & C_{PE}(t) \\ C_{EP}(t) & C_E(t) \end{bmatrix} \begin{bmatrix} \hat{x}_p(t) \\ \hat{x}_E(t) \end{bmatrix}$$

Example of a differential game, Isaacs (1965), Bryson & Ho (1969)
MPRI 2.8.2: Foundations of real-time and hybrid systems (Thursday 12h45)

Continuous AND Discrete Systems

Control Theory
Continuous systems approximation, stability control, robustness

Computer Science
Discrete systems abstraction, composition concurrency, verification

Hybrid Systems
Software controlled systems
Embedded real-time systems
Multi-agent systems
MPRI 2.9.1: Mathematical foundations of the theory of infinite transitions
(Monday 16h15)
Background

Classical Approach
Finite-State Systems

Model Checking
Model \models (safety) property

Challenge:
Infinite-State Systems

Sources of “Infiniteness”:

- Unbounded Data Structures
 - stacks (recursion)
 - queues (protocols)
 - counters (programs)
 - clocks (time)
 - lists, trees, graphs (heaps)

- Unbounded Control Structures
 - parameterized systems
 - multithreaded programs
 - concurrent libraries
 - Petri nets
Monotonicity
Backward Reachability
System Safe!

symbolic representation = finite multisets

Termination: multisets well quasi-ordered
MPRI 2.8.1: Non-sequential theory of distributed systems

Wednesdays
1st Lecture on September 12, 2018

13:15 — 15:45 (2,5 hours per lecture)

Bat. Sophie Germain, room 2036
Graph automata

Communication
- single process
- shared memory
- message passing

Architecture
- static & known
- static & unknown (parameterized)
- dynamic

Process
- finite state
- recursive
- timed

Behavior
- Graphs

System model
- Graph automata

Specification
- Linear-time temporal logic (LTL)
- Monadic second-order logic (MSO)

... in a uniform framework.
2.9.2. Algorithmic Verification of Programs

- **Teachers:** Ahmed Bouajjani (www.irif.fr/~abou), Constantin Enea (www.irif.fr/~cnea)

- **Course objectives:** algorithmic approach for the verification of concurrent and distributed software
 - correctness criteria for concurrent and distributed data structures
 - concurrent queues, hash maps, etc for multi-threading programming: java.util.concurrent, Intel Thread Building Blocks
 - distributed key-value stores for distributed applications (web services/cloud): Amazon SS3, MongoDB
 - correctness criteria: linearizability (atomicity), eventual/causal consistency, etc
 - analysis techniques based on automata, logic, model checking, deductive verification

MERCI !