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Abstract

We introduce a hierarchy of cyclic languages based on the boolean com-

binations of strongly cyclic languages. We then show how this hierarchy

can be characterized by chains of idempotents in semigroups. Finally, we

give a method to compute an optimal decomposition of a cyclic language

into strongly cyclic languages.

R�esum�e

Nous introduisons une hi�erarchie des langages cycliques bas�ee sur les

combinaisons bool�eennes de langages fortement cycliques. Nous mon-

trons ensuite comment cette hi�erarchie peut être caract�eris�ee par des

châ�nes d'idempotents dans des semigroupes. Finalement, nous donnons

une m�ethode pour calculer une d�ecomposition optimale d'un langage cy-

clique en des langages fortement cycliques.

1 Introduction

Cyclic languages and strongly cyclic languages are two classes of languages of

�nite words over a �nite alphabet. A cyclic language is conjugation-closed

and for any two words having a power in common, if one of them is in the

language, then so is the other. A strongly cyclic language is the set of words

stabilizing a subset of the set of states of a �nite deterministic automaton,

the stabilized subset depending on the word stabilizing it. A strongly cyclic

language is rational.

It has been proved in [BCR] that any cyclic language is a boolean combi-

nation of strongly cyclic languages. This result allows us to extend the compu-

tation of the zeta functions of strongly cyclic languages described in [B�ea95] to

cyclic languages. The connections of cyclic languages with algebraic geometry

and symbolic dynamics are also discussed in [BR90]. We introduce in this pa-

per a hierarchy among cyclic languages. This hierarchy measures the number of
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strongly cyclic languages needed to express a given cyclic language as a boolean

combination. We prove that this hierarchy can be characterized by chains of

idempotents in semigroups. The level of the hierarchy to which a given cyclic

language belongs can be computed in a semigroup recognizing this language. In

particular, it can be done in the syntactic semigroup of the language.

We assume that the reader is familiar with the basic notions of automata

and semigroup theory. For example notions like syntactic semigroup, Green

relations, regular D-classes are supposed to be known. We refer to [Lal79] and

[Pin86] for a presentation of this subject.

The paper is organized as follows. Section 2 and 3 give the basic properties

of cyclic languages and strongly cyclic languages. The chains of strongly cyclic

languages and the hierarchy of cyclic languages are introduced in section 4. In

section 5, we de�ne chains of idempotents in semigroups which characterize the

classes of the hierarchy. In section 6, we de�ne the closure of a cyclic language.

This notion gives a method to decompose a cyclic language into strongly cyclic

languages. This method is described in section 7.

2 Cyclic languages

In this section, we introduce cyclic languages and give some basic properties.

In the following, we denote by A a �nite alphabet. In a �nite semigroup S,

every element s of S has a power which is an idempotent. We denote by s

!

this

idempotent.

De�nition 1 A language L of A

�

is said to be cyclic if it satis�es

8u 2 A

�

; 8n > 0 u 2 L , u

n

2 L

8u; v 2 A

�

uv 2 L , vu 2 L

A language is cyclic if it is closed under conjugation, power and root.

Example 1 If A = fa; bg, the language L = A

�

aA

�

= A

�

� b

�

is cyclic.

Cyclic languages have the following straightforward characterization in terms of

�nite semigroups.

Proposition 1 Let L � A

�

be a rational language. Let ' : A

�

!!S be a mor-

phism from A

�

onto a semigroup S such that L = '

�1

(P ). The language L is

cyclic if and only if

8s 2 S; 8n > 0 s 2 P , s

n

2 P

8s; t 2 S st 2 P , ts 2 P
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3 Strongly cyclic languages

We now de�ne the notion of a strongly cyclic language.

De�nition 2 Let A = (Q;A;E) be a deterministic automaton where Q is the

set of states and E the set of transitions. We say that a word w stabilizes a

subset P � Q of states if we have P:w = P . This means

8p 2 P p:w 2 P

8p

0

2 P 9p 2 P p:w = p

0

We denote by Stab(A) the set of the words w such that w stabilizes a sub-

set P of states in the automaton A. It should be noticed that in this de�nition

the subset P of states stabilized by w may depend on w. We say that a lan-

guage L is strongly cyclic if there is automaton A such that L = Stab(A). In

this case, we say that the language L stabilizes the automaton A.

b

1 2

a

a

Figure 1: Automaton A

1

Example 2 The language (b+ aa)

�

+(ab

�

a)

�

+ a

�

and b

�

is the strongly cyclic

language associated with the automaton A

1

of Figure 1.

The following result gives a characterization of the words w stabilizing a

subset of states in an automaton. The proof of this proposition can be found in

[BCR].

Proposition 2 Let A = (Q;A;E) be a deterministic automaton. A word w

stabilizes a subset P of states in A if and only if there is some state q of A such

that for any integer n, the transition q:w

n

exists.

We now give some basic results. We �rst recall a characterization of strongly

cyclic language and we state another characterization of these languages among

rational cyclic languages. These results will be useful in the sequel.

The following theorem gives a characterization of the strongly cyclic lan-

guages. The proof of this theorem can be found in [BCR].

Theorem 1 Let L be a rational language di�erent from A

�

. The following

conditions are equivalent.
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1. The language L is strongly cyclic.

2. There is a morphism ' from A

�

onto a semigroup S having a zero such

that L = '

�1

(fs 2 S j s

!

6= 0g).

3. The syntactic semigroup S(L) of L has a zero and the image of L in S(L)

is fs 2 S j s

!

6= 0g.

The following theorem characterizes strongly cyclic languages among cyclic

languages. The proof of this theorem is based on the former one.

Theorem 2 Let L be a rational cyclic language. Let  : A

�

!!S be a morphism

from A

�

onto a �nite semigroup S such that L =  

�1

(P ). The language L is

strongly cyclic if and only if for any idempotents e and f of S,

e 2 P

e �

J

f

�

=) f 2 P (1)

Proof : We prove �rst that the Property (1) implies that the language L is

strongly cyclic. Let J be the set of idempotents of S not belonging to the

image P of L and let I be the ideal of S generated by J . We have J = E(S)�P

and I = S

1

JS

1

where E(S) denotes the set of idempotents of the semigroup S.

We prove �rst prove that I \ P = ;. Let s 2 S be a element of I. The

element s can be written s = xfy where f is an idempotent of J and x; y 2 S

1

.

The idempotent e = s

!

satis�es e �

J

f . Since f 62 P , we have e 62 P by

Property (1). Since the language L is cyclic, we also have s 62 P . We now prove

that all the elements of I are equivalent for the Nerode congruence. For any

x; y 2 S

1

and s 2 I, the element xsy also belongs to I. Since I \ P = ;, the

contexts of s are ;�;. The language L is then recognized by the Rees quotient

S=I. The language L is then recognized by a semigroup having a zero and this

zero is the only idempotent not belonging to the image of L. By Theorem 1,

the language L is strongly cyclic.

Suppose now that the languageL is strongly cyclic. Let S(L) be the syntactic

semigroup of L and ' the canonical morphism from A

�

onto S(L). Since the

morphism  is onto, the syntactic semigroup S(L) is a quotient of S : there is

a morphism � : S!!S(L) from S onto S(L) such that � �  = '. Let e; f be

two idempotents of S satisfying e 2 P and e �

J

f . The images �(e) and �(f)

are two idempotents of S(L) satisfying �(e) 2 �(P ) and �(e) �

J

�(f) because

� �  = '. Both idempotents �(e) and �(f) are then di�erent from the zero

of S(L). We have then �(f) 2 �(P ) by Theorem 1 and f 2 P . This �nishes the

proof of the theorem. 2

4 Chains of strongly cyclic languages

In this section, we introduce the notion of a chain of sets. We use this general

notion to de�ne a hierarchy among cyclic languages. This hierarchy is based on
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the fact that every cyclic language can be decomposed as a chain of strongly

cyclic languages. We show then that this hierarchy can be characterized by

chains of idempotents in semigroups. Indeed, the level of the hierarchy to which

a given cyclic language belongs is completely determined by the length of chains

of idempotents in a semigroup recognizing the language.

For X and Y two subsets of a set E, the complement of X is denoted by X

c

.

The union of X and Y is denoted by X + Y and the intersection is denoted by

XY . The di�erence set X n Y = X \ Y

c

is denoted by X � Y . The symmetric

di�erence is denoted by X 4 Y = XY

c

+X

c

Y .

Let F be a family of sets closed under union and intersection but not nec-

essarily under complement. Every set X of the boolean closure of F is equal to

a �nite union of intersections of sets of F and complements of sets of F .

A sum of di�erences of length m is an expression

X = (X

1

�X

2

) + (X

3

�X

4

) + � � �+ (X

m�1

�X

m

) if m is even

X = (X

1

�X

2

) + (X

3

�X

4

) + � � �+X

m

if m is odd

Every set X of the boolean closure of F is then equal to sum of di�erences

X = (X

1

�X

2

) + (X

3

�X

4

) + � � � where the sets X

i

belong to F .

A chain of di�erences (or simply a chain) is a sum of di�erences where the

sequence of subsets X

1

; : : : ; X

m

satis�es the additional condition X

1

� � � � �

X

m

. In this case, we write

X = X

1

�X

2

+X

3

� � � � �X

m

where the sign � in front of X

m

depends on the parity of m.

X

5

X

4

X

3

X

2

X

1

Figure 2: Chain of length 5

Example 3 A chains of di�erences of length 5 is shown in Figure 2. The

sets X

i

are represented by circles of decreasing sizes. The set X = X

1

�X

2

+

X

3

�X

4

+X

5

is marked in grey.

The chains of di�erences and the sums of di�erences are related by the

following result due to F. Hausdor� [Hau57].
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Proposition 3 If the family F is closed under union and intersection, every

sum of di�erences is equal to a chain of di�erences of the same length.

The proof of this result is based of the following property of chains. If the

subsets X and Y are respectively equal to chains length m and n, the sets X+Y

and XY are equal to chains of length at most m + n. For a new proof of this

result, see [Car93].

We can now de�ne the hierarchy of cyclic languages over an alphabet A. Let

S the class of strongly cyclic languages. The boolean closure of S is the class C

of cyclic languages. We de�ne the class C

m

of cyclic languages in the following

way. For m = 0, we set C

0

= fA

�

g and for m � 1, we denote by C

m

the class

of cyclic languages X that are equal to a chain of length at most m of strongly

cyclic languages, i.e.,

X = X

1

�X

2

+X

3

� � � � �X

m

where X

i

2 S:

For m = 1, the class C

1

= S is the class of strongly cyclic languages. For

m

0

� m, we have C

m

0

� C

m

. Since every cyclic language can be written

as a boolean combination of strongly cyclic languages, we have the equality

C =

S

m�0

C

m

.

This hierarchy classi�es the cyclic languages according to their complexity.

The strongly cyclic languages are simple languages. The level of the hierarchy

to which a cyclic language belongs is the minimal number of strongly cyclic

languages needed to express it as a boolean combination.

The results about chains of subsets (see [Hau57, Car93]) implies the following

properties of the hierarchy introduced above.

Proposition 4 If X 2 C

m

and Y 2 C

n

, we have then

XY 2

�

C

m+n�2

if m and n even

C

m+n�1

otherwise

X + Y 2

�

C

m+n�1

if m and n odd

C

m+n

otherwise

5 Chains of idempotents

In this section we de�ne the chains of idempotents. This notion allows to char-

acterize the classes of cyclic languages introduced above.

De�nition 3 Let S be a semigroup and P a subset of P . A chain of idem-

potents of length m is a sequence e

0

; : : : ; e

m

of idempotents of S satisfying the

following two conditions:

(i) e

0

�

J

e

1

�

J

� � � �

J

e

m

.
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(ii) e

0

2 P and e

i

2 P , e

i+1

62 P .

The �rst condition means that the sequence e

0

; : : : ; e

m

is a increasing sequence

for the J -order. The second one means that the idempotents e

i

are alternately

in P and out of P and that the �rst idempotent e

0

of the sequence is in P .

We denote by m(S; P ) the maximal length of a chains. We set m(S; P ) =

+1 if the length of the chains is not bounded.

The following theorem states that the maximal length of the chains is a

syntactic invariant. The integer m(S; P ) does not depend of the semigroup

considered, it just depends on the language recognized.

Theorem 3 Let L be a rational language. Let ' : A

�

!!S and  : A

�

!!T be

two morphisms from A

�

onto �nite semigroups S and T such that L = '

�1

(P )

and L =  

�1

(Q). We have then m(S; P ) = m(T;Q).

Proof : It is su�cient to prove the result when S is the syntactic semigroup

S(L) of L. We suppose then that S is the syntactic semigroup of L and that '

is the canonical morphism from A

�

onto S. Since the morphism  is onto, the

semigroup S is a quotient of T : there is a morphism � : T!!S from T to S such

that � �  = '. We show that we can associate to any chain of idempotents of

length m in T , a chain of idempotents of the same length in S and conversely.

Let e

0

; : : : ; e

m

be a chain of idempotents in T . The sequence �(e

0

); : : : ; �(e

m

)

is then a chain of idempotents in S. Obviously, the elements �(e

i

) are idempo-

tents and these idempotents are ordered for the J -order. Since �� = ', we also

have e

i

2 Q, �(e

i

) 2 P . This implies �(e

0

) 2 P and �(e

i

) 2 P , �(e

i+1

) 62 P .

Let f

0

; : : : ; f

m

be a chain of idempotents in S. Since f

0

�

J

� � � �

J

f

m

, there

are 2m elements y

i

; y

0

i

of S

1

such that y

i

f

i

y

0

i

= f

i�1

for 1 � i � m. We choose

elements t

i

, x

i

and x

0

i

of T such that �(t

i

) = f

i

, �(x

i

) = y

i

and �(x

0

i

) = y

0

i

. We

de�ne the idempotents e

i

of T by

e

m

= t

!

m

e

m�1

= (x

m

e

m

x

0

m

)

!

e

m�2

= (x

m�1

e

m�1

x

0

m�1

)

!

.

.

.

e

0

= (x

1

e

1

x

0

1

)

!

By de�nition, the sequence e

0

; : : : ; e

m

is a sequence of idempotents ordered for

the J -order. Since �(e

i

) = f

i

, we have e

0

2 Q and e

i

2 Q, e

i+1

2 Q and the

sequence e

0

; : : : ; e

m

is a chain of idempotents.

Since the chains of idempotents in S relative to P are in correspondence with

the chains of idempotents in T relative to Q, we have proved that m(S; P ) =

m(T;Q). 2
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Since the integer m(S; P ) only depends on the language recognized and not

on the semigroup considered, we can de�ne m(L) as m(S; P ) for any morphism

' : A

�

!!S such that L = '

�1

(P ).

The de�nition of chains of idempotents is motivated by the following result.

Theorem 4 Let L be a rational cyclic language. Let ' : A

�

!!S be a morphism

from A

�

onto a �nite semigroup S such that L = '

�1

(P ). We have then

L 2 C

m

() m(S; P ) � m � 1

We �rst prove the following lemma which states that the function m is

subadditive.

Lemma 1 Let X and Y two rational languages. We have then

m(X 4 Y ) � m(X) +m(Y ) + 1

Proof : We suppose that the languages X and Y are respectively recognized by

the morphisms ' : A

�

!!S and  : A

�

!!T from A

�

onto the �nite semigroups

S and T . Let P and Q the images of X and Y in S and T . We have X =

'

�1

(P ) and Y =  

�1

(Q). By de�nition, we have m(X) = m(S; P ) and m(Y ) =

m(T;Q). The languageX4Y is recognized by the morphism'� : A

�

! S�T

where S�T is the product of S and T . The morphism'� maynot be onto. Let

R be the subsemigroup of S�T de�ned by '� (A

�

) = R. The languageX4Y

is then recognized by the morphism ' �  : A

�

!!R and the image of X 4 Y

in R is given by

'�  (X 4 Y ) = P � (T � Q) + (S � P )�Q

We prove that if there is a chain in R of length m, there are two integers

p and q satisfying p + q � m � 1, a chain in S of length p and a chain in T of

length q. Let (e

0

; f

0

); : : : ; (e

m

; f

m

) be a chain of idempotents in R. We consider

the integers i for which one of the idempotents e

i�1

; e

i

belongs to P and the

other does not. We also consider the integers j for which one of the idempotents

f

j�1

; f

j

belongs to Q and the other does not. Formally, we de�ne the sets of

integers I and J by

I = fi 2 [1;m] j e

i�1

2 P , e

i

62 Pg

J = fj 2 [1;m] j f

j�1

2 Q, f

j

62 Qg

The sequence (e

0

; f

0

); : : : ; (e

m

; f

m

) is a chain in R. every integer k (in [1;m])

belongs to exactly one on the sets I and J . Otherwise, both idempotents

(e

k�1

; f

k�1

) and (e

k

; f

k

) of R are in the image of X 4 Y or out of the im-

age of X 4 Y . We set I = fi

1

< � � � < i

p

g and J = fj

1

< : : : < j

l

g where p and

l are the cardinals of I and J . We have then p+ l � m. Since the idempotent

(e

0

; f

0

) belongs to the image of X 4 Y in R, if e

0

belongs to P , f

0

does not
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belong to Q and conversely. By symmetry, we suppose that e

0

belongs to P .

The sequences e

0

; e

i

1

; : : : ; e

i

p

and f

j

1

; : : : ; f

j

l

are respectively chains in S and T

of length p and q = l � 1. We have then p + q � m � 1. In particular, if the

integer m is strictly greater than m(X) +m(Y ) + 1, p is greater than m(X) or

q is greater than m(Y ) and this leads to a contradiction. 2

We can now complete the proof of the theorem.

Proof : We suppose �rst that L 2 C

m

. The language L can be written L =

X

1

�X

2

+ � � ��X

m

or equivalently L = X

1

4� � �4X

m

with X

i

strongly cyclic

language. By Theorem 2, we have m(X

i

) = 0 and the preceding lemma implies

that m(L) � m� 1.

We suppose now that m(X) � m� 1. For an idempotent e of S, we denote

by m(e), the maximal length of a chain e

0

; : : : ; e

n

such that e

n

= e. We have

of course the inequality m(e) � m(S; P ) for any idempotent e of S. Let J

k

be

the set of idempotents J

k

= fe 2 S j m(e) � kg. By construction, we have that

e 2 J

k

and e �

J

f imply that f 2 J

k

. The language X

k

= '

�1

(P

k

) where

P

k

= fs 2 S j s

!

2 J

k

g is then strongly cyclic language by Theorem 2 and we

have L = X

0

�X

1

� � � �X

m�1

. 2

The previous theorem can be used to give an another proof that any cyclic

language is a boolean combination of strongly cyclic languages. To get this

result, we must prove that any cyclic language belong to the class C

m

for some

integer m. By the previous Theorem, it is su�cient to prove that the length of

chains of idempotents in a semigroup recognizing L is bounded. We have have

the following proposition.

Proposition 5 Let L be a rational cyclic language. Let ' : A

�

!!S be a mor-

phism from A

�

onto a �nite semigroup S such that L = '

�1

(P ). Let n be the

number of D-classes of the semigroup S. We have then the inequality

m(S; P ) � n

Proof : Let e

0

; : : : ; e

m

be a chain of idempotents in S. The idempotents e

i

satisfy e

k�1

�

J

e

k

for 1 � k � m. We will see that all these equalities are

strict. The idempotents e

i

satisfy in fact e

k�1

<

J

e

k

. Suppose that one of

the equality is not strict. Two idempotent e

k�1

and e

k

belong to the same D-

class and are then conjugated. There are two elements x and y of S such that

xy = e

k�1

and yx = e

k

. Since the language L is cyclic, we have by Proposition 1,

e

k�1

2 P , e

k

2 P and this leads to a contradiction. The idempotents e

i

belong

to di�erent D-classes and the length of the chain is bounded by the number of

D-classes of the semigroup S. 2

6 Closure of a cyclic language

In this section, we �rst prove that for any cyclic language L, there is a smallest

strongly cyclic language containing L.
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Theorem 5 Let L be a rational cyclic language and ' : A

�

!!S the canonical

morphism from A

�

onto the syntactic semigroup S of L. There is then a smallest

strongly cyclic language containing L. This language is L = '

�1

(P ) where

P = fs j s

!

6= 0g if the zero of S does not belong to the image of L in S and is

A

�

otherwise.

We point out that the result is false if the semigroup considered is not the

syntactic semigroup. Let consider the strongly cyclic language L = b

�

over

the alphabet A = fa; bg. The syntactic semigroup of L is the semigroup fb =

1; a = 0g. The language L is also recognized by the idempotent semigroup S =

fa; b; ab = ba = 0g with the canonical morphism from A

�

onto this semigroup.

The image of L in S is P = fbg but the the subset P is fa; bg. The language L

is then a

�

+ b

�

which is not the smallest strongly cyclic language containing L.

*

*

P
*

*

*

1*

ab

bab = 0

P
aab

b
aa

aba

ba

a

Figure 3: Structure of the syntactic semigroup of L.

Proof : We �rst consider the case in which the zero of S does not belong to

the image of L in S. The language L = '

�1

(P ) where P = fs j s

!

6= 0g is

strongly cyclic by Theorem 1 and contains the language L. Let prove now that

this language is the smallest one.

Let X be a strongly cyclic language containing L and w be a word of L.

Let A = (Q;A;E) be a deterministic automaton such that X = Stab(A). By

de�nition, we have '(w) = s where s

!

6= 0. For every integer n, the element

'(s)

n

is di�erent from the zero of S. There two words x

n

and y

n

such that

x

n

w

n

y

n

belongs to L. By Proposition 2, there is a state q

n

of A such the

transition q

n

:x

n

w

n

y

n

. The transition (q

n

:x

n

):w

n

is then de�ned and the word w

belongs to X. We have proved that L � X. The language L is then the smallest

strongly cyclic language containing L.
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Let now consider the case in which the zero of S does belong to the image

of L in S. In this case, the languages L intersects every ideal I of A

�

, i.e.,

L \ I 6= ;. Let X a strongly cyclic language di�erent from A

�

. By Theorem 1,

the syntactic semigroup of X has a zero which does not belong to the image

of X. The language X does not intersect the ideal equal to the inverse image

of 0 and can not contain the language L. The only strongly cyclic language

containing L is then A

�

. 2

Example 4 Let L be the language (b+ aa)

�

+ (ab

�

a)

�

+ a

�

� b

�

. The structure

of the syntactic semigroup of L is given on �gure 3. The image P of L in S(L)

is equal to P = fa; aa; aba; aabg.

The subset P de�ned in the proof is equal to P = f1; a; aa; b; aba; aabg and

the language L is (b+ aa)

�

+ (ab

�

a)

�

+ a

�

.

7 Approximations by chains

In this section, we will see how the existence of a smallest strongly cyclic lan-

guage L containing a cyclic language L can be used to compute a chain of

strongly cyclic languages equal to the language L.

We remark that if the language L is equal to the chain L = X

1

� � � � �X

m

,

the languages L

k

for 1 � k � m de�ned by L

k

= X

1

� � � � �X

k

satisfy

L

k

� L if k is odd

L

k

� L if k is even

Suppose now that the language L is equal to the chain L = X

1

� � � � �X

m

where the languages X

i

are strongly cyclic. We set L

k

= X

1

� � � � � X

k

for

1 � k � m. We introduce two other sequences of languages Y

i

and M

i

de�ned

by Y

1

= M

1

= L and

Y

k

=M �M

k�1

and M

k

= M

k�1

+ Y

k

if k is odd

Y

k

= M

k�1

�M and M

k

= M

k�1

� Y

k

if k is even

In particular, we have Y

2

= L� L and M

2

= L� L� L.

By de�nition, the languages Y

i

are strongly cyclic. The following theorem

states that the languages Y

i

form a chain and this chain is the best approxima-

tion of the language L.

Theorem 6 The languages Y

i

and M

i

satisfy the following inclusions

1. Y

1

� � � � � Y

m

.

2. For any 1 � k � m,

L

k

� M

k

� L if k is odd

L

k

� M

k

� L if k is even
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The last inclusions mean that each set M

i

is closer to L than the set L

i

.

In particular, if L is equal to a chain of length m of cyclic languages, the

language M

m

computed by the previous procedure is equal to L. The chain

L = Y

1

� � � � � Y

m

computed is then the closest (in the sense of the inclusions)

and shortest chain of strongly cyclic languages equal to L.

Proof : We introduce the functions f and g de�ned on P(A

�

) by:

f(X) = X + L �X

g(X) = X �X � L

The key property is expressed in the following lemma

Lemma 2 The functions f and g verify the following properties:

X � Y � L =) f(X) � f(Y ) � f(L) = L

X � Y � L =) g(X) � g(Y ) � g(L) = L

Proof : An easy calculation proves that L is �x point of f and g, i.e., f(L) = L

and g(L) = L:

f(L) = X + L� L = X + ; = X

g(L) = X � L� L = X � ; = X

Suppose now that X � Y � L. The inclusion L�X � Y �X implies L �X �

Y �X. We have X +L �X = Y +L �X � Y +L � Y since L�X � L� Y .

This ends the proof of property of f . The property of g is handled in the same

way. 2

Since the languages M

i

can be de�ned by

M

k

= f(M

k�1

) if k is odd

M

k

= g(M

k�1

) if k is even

we can easily complete the proof of the theorem. 2
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