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Abstrat

We study the determinization of transduers over �nite and in�nite

words. The �rst part of the paper is devoted to �nite words. We reall the

haraterization of subsequential funtions due to Cho�rut. We desribe

here a known algorithm to determinize a transduer.

In the ase of in�nite words, we onsider transduers with all their

states �nal. We give an e�etive haraterization of sequential funtions

over in�nite words. We desribe an algorithm to determinize transduers

over in�nite words. This part ontains the main novel results of the paper.

1 Introdution

The aim of this paper is the study of determinization of transduers, that is

of mahines realizing rational transdutions. A transduer is a �nite state au-

tomaton (or a �nite state mahine) whose edges are labeled by pairs of words

taken in �nite alphabets. The �rst omponent of eah pair is alled the input

label. The seond one the output label. The transduers that we onsider have

aepting (or �nal) states. Suh transduers are sometimes alled a-transduers

(a for aepting). The rational relation de�ned by a transduer is the set of

pairs of words whih are labels of an aepting path in the transduer. We

assume that the relations de�ned by our transduers are funtions. This is a

deidable property.

The study of transduers has many appliations. Transduers are used to

model oding shemes (ompression shemes, onvolutional oding shemes,
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oding shemes for onstrained hannels, for instane). They are widely used in

omputer arithmeti [16℄ and in natural language proessing [24℄. Transduers

are also used in programs analysis [14℄. The determinization of a transduer is

the onstrution of another transduer whih de�nes the same funtion and has

a deterministi (or right resolving) input automaton. Suh transduers allow a

sequential enoding and thus are alled sequential transduers.

In the �rst part of the paper, we present a short survey of the determiniza-

tion of transduers realizing funtions over �nite words. Our transduers may

have �nal states. We present some known results about subsequential funtions,

that is funtions that an be realized by transduers with a deterministi input

but that may have an output funtion de�ned on states. The notion of subse-

quential funtions has been introdued by Sh�utzenberger [27℄. We reall the

haraterization of subsequential funtions obtained by Cho�rut [11, 12℄. This

haraterization gives a deision proedure for the subsequentiality of funtions

de�ned by a transduer. It has been proved in [29, 30℄ that this an be deided

in polynomial time. We give another proof of this result whih is a onsequene

of the deidability in polynomial time of funtionality over in�nite words [10℄.

Another proof of the same result is given in [4℄. The deidability of funtionality

was already proved by Gire [17℄. We also desribe the algorithm to determinize

a transduer. This algorithm takes a real-time transduer whih realizes a sub-

sequential funtion and outputs a subsequential transduer. This algorithm is

atually ontained in the proof of Cho�rut [11, 12℄ (see also [5, p. 109{110℄).

This algorithm has also been desribed by Mohri [21℄ and Rohe and Shabes

[24, p. 223{233℄.

The determinization of a transduer realizing a subsequential funtion f

provides a subsequential transduer realizing f . If the funtion is sequential,

this subsequential transduer an be transformed into a sequential one. This

an be obtained by the normalization of a transduer introdued by Cho�rut

[12, 13℄. EÆient algorithms that ompute the normalization have been given

in [20, 22℄, [8, 9℄ and [2℄.

In the seond part of the paper, we onsider transduers and funtions over

in�nite words and our transduers have all their states �nal. The reason why we

assume that all states are �nal is that the ase of transduers with �nal states

seems to be muh more omplex. Indeed, the determinization of automata over

in�nite words is already very diÆult [25℄. In partiular, it is not true that any

rational set of in�nite words is reognized by a deterministi automaton with

�nal states. Other aepting onditions, as the Muller ondition for instane,

must be used.

We �rst give an e�etive haraterization of sequential funtions over in�nite

words. This haraterization extends to in�nite words the twinning property

introdued by Cho�rut [11℄. We prove that a funtion is sequential if it is

a ontinuous map whose domain an be reognized by a deterministi B�uhi

automaton, and suh that the transduer obtained after removing some speial

states has the twinning property. These onditions an be simpli�ed in the

ase where the transduer has no yling path with an empty output label. We

use this haraterization to desribe an algorithm heking whether a funtion
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realized by a transduer is sequential. This algorithm beomes polynomial when

the transduer has no yling path with an empty output label. Finally, we give

an algorithm to determinize a real-time transduer. The algorithm an be easily

adapted to the ase when the transduer is not real-time. The algorithm is muh

more omplex than in the ase of �nite words. It is the main result of the paper.

These determinizations do not preserve the dynami properties of the trans-

duers as the loality of its output. We mention that in [18℄, an algorithm is

given to determinize transduers over bi-in�nite words that have a right losing

input (or that are n-deterministi or deterministi with a �nite delay in the

input) and a loal output (see also [19, p. 143℄ and [1, p. 110{115℄). This al-

gorithm preserves the loality of the output. These features are important for

oding appliations.

The paper is organized as follows. Setion 2 is devoted to transduers over

�nite words. Basi notions of transduers of rational funtions are de�ned at

the beginning of this setion. The haraterization of subsequential funtions

is realled in Setion 2.1 while the algorithm for determinization of transduers

is desribed in Setion 2.2. The haraterization of sequential funtions among

subsequential ones is realled in Setion 2.3. Setion 3 is devoted to transduers

over in�nite words. We give in Setion 3.1 a haraterization of sequential

funtions while the algorithm for determinization of transduers is desribed

in Setion 3.2. In both ases of �nite and in�nite words, we give examples of

determinization of transduers.

Part of the results of the present paper was presented at the onferene

ICALP'2000 [3℄.

2 Transduers over �nite words

In the sequel, A and B denote �nite alphabets. The free monoid A

�

is the set

of �nite words or sequenes of letters of A. The empty word is denoted by ".

We denote the fat that a �nite word u is a pre�x of a �nite word v by u � v.

The relation � is a partial order. If u is a pre�x of v, we denote by u

�1

v the

unique word w suh that v = uw.

A transduer over the monoid A

�

� B

�

is omposed of a set Q of states, a

set E � Q � A

�

� B

�

� Q of edges and two sets I; F � Q of initial and �nal

states. An edge e = (p; u; v; q) from p to q is denoted by p

ujv

��! q. The state p

is the origin, u is the input label, v is the output label, and q is the end. Thus,

a transduer is the same objet as an automaton, exept that the labels of the

edges are pairs of words instead of letters.

A transduer is often denoted by A = (Q;E; I; F ), or also by (Q;E; I) if all

states are �nal, i.e., Q = F .

A path in the transduer T is a sequene

p

0

u

0

jv

0

���! p

1

u

1

jv

1

���! � � �

u

n

jv

n

����! p

n

of onseutive edges. Its input label is the word u = u

1

u

2

� � �u

n

whereas its

output label is the word v = v

1

v

2

� � � v

n

. The path leaves p

0

and ends in p

n

.
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The path is often denoted

p

0

ujv

��! p

n

:

A path is suessful if it leaves an initial state and ends in a �nal state. The set

reognized by the transduer is the set of labels of its suessful paths, whih is

atually a relation R � A

�

�B

�

. The transduer omputes a funtion if for any

word u 2 A

�

, there exists at most one word v 2 B

�

suh that (u; v) 2 R. We

all it the funtion realized by the transduer. A transduer whih realizes a

funtion is sometimes alled single-valued in the literature. Thus a transduer

an be seen as a mahine omputing nondeterministially output words from

input words. We denote by dom(f) the domain of the funtion f .

A transduer is �nite if its set of states and its set of transitions are �nite.

It is a onsequene of Kleene's theorem that a subset of A

�

� B

�

is a rational

relation if and only if it is the set reognized by a �nite transduer.

0

1 2

3 4

ajb

aj

ajb

ajb

aj

aj

Figure 1: A transduer for the relation (a

2

; b

2

)

�

[ (a

2

; 

2

)

�

(a; ).

Example 1 (from [5℄) The automaton of Figure 1 reognizes the relation (a

2

; b

2

)

�

[

(a

2

; 

2

)

�

(a; ) over the alphabets A = fag and B = fb; g. This relation is atu-

ally the funtion whih maps a

n

to b

n

if n is even and to 

n

if n is odd.

Let T be a transduer. The underlying input automaton (respetively un-

derlying output automaton) of T is obtained by omitting the output label (re-

spetively input label) of eah edge.

A transduer is said to be real-time if it is labeled in A�B

�

. It an be proved

that any rational funtion an be realized by a real-time transduer. Further-

more, from any transduer realizing a funtion an be omputed in polynomial

time an equivalent real-time transduer (see for instane [30, Prop. 1.1℄). We say

that a transduer T is sequential if it is real-time and if the following onditions

are satis�ed.

� it has a unique initial state,

� the underlying input automaton is deterministi.
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These onditions ensure that for eah word u 2 A

�

, there is at most one word

v 2 B

�

suh that (u; v) is reognized by T . Thus, the relation omputed by

T is a partial funtion from A

�

into B

�

. A funtion is sequential if it an be

realized by a sequential transduer.

Remark 2 In [15, p. 299℄, [5℄ and [6℄, it is assumed that all states of a sequen-

tial transduer are �nal. We follow the de�nition of Cho�rut [11, 12℄ where

sequential transduer may have �nal states. Thus, some haraterizations that

we give below di�er from those presented in [5℄ for this reason. When all states

are �nal, the domain of a sequential funtion is pre�x losed, i.e., if uv belongs

to the domain then u also belongs to the domain. As our de�nition allows �nal

states, the domain of a sequential funtion is not neessarily pre�x losed.

0 1

aja aja

bjb

bja

Figure 2: A sequential transduer.

Example 3 Let A = B = fa; bg be the input and the output alphabets. The

transduer of Figure 2, whose initial state is 0, is sequential. It replaes by a

those b's whih appear after an odd number of b. On the ontrary, the trans-

duer of Example 1 is not sequential. Atually, the funtion omputed by this

transduer is not sequential. Indeed, one may verify that if f is sequential, and

if u and v are two words of dom(f) suh that u � v, then f(u) � f(v).

Remark 4 If f is a sequential funtion and if f(") is de�ned, then f(") = ".

To remove this restrition, it is possible to add an initial word assoiated with

the initial state. This word is output before any omputation. This initial word

is neessary to get the uniity of a minimal sequential transduer [27, 12℄.

A subsequential transduer (A; �) over A

�

� B

�

is a pair omposed of a

sequential transduer A over A

�

� B

�

with F as set of �nal states, and of a

funtion � : F ! B

�

. The funtion f omputed by (A; �) is de�ned as follows.

Let u be a word in A

�

. The value f(u) is de�ned if and only if there is a path

i

ujv

��! q in A with input label u, from the initial state i to a �nal state q. In

this ase, one has f(u) = v�(q). Thus, the funtion � is used to append a word

to the output at the end of the omputation. A funtion is subsequential if it

an be realized by a subsequential transduer.
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Remark 5 Any sequential funtion is subsequential. It suÆes to onsider the

funtion � suh that �(q) = " for any �nal state q.

0 1

a

b

aja

aja

bjb

bjb

Figure 3: A subsequential transduer.

Example 6 The funtion f realized by the subsequential transduer pitured

in Figure 3 appends to eah word its last letter. The word u is mapped to ua

if it ends with an a and it is mapped to ub if it ends with a b. This funtion is

subsequential but it is not sequential. Indeed, for any word w, f(wa) is not a

pre�x of f(wab).

2.1 Subsequential funtions

In this setion, we present some known results about subsequential funtions.

We reall the haraterization of subsequential funtions obtained by Cho�rut

[11, 12℄. It is known that it is deidable whether a funtion realized by a

transduer is subsequential. It has been proved in [29, 30℄ that this an be

deided in polynomial time. We give here another proof of this result whih

is a onsequene of the deidability in polynomial time of funtionality over

in�nite words [10℄. We also desribe the algorithm to determinize a real-time

transduer. This algorithm takes a transduer whih realizes a subsequential

funtion and outputs a subsequential transduer. This algorithm is atually

ontained in the proof of Cho�rut [11, 12℄ and [5, p. 109{110℄. It has also been

desribed by Mohri [20, 22℄ and Rohe and Shabes [24, p. 223{233℄.

If the funtion is atually sequential, this subsequential transduer is again

transformed in a sequential transduer by the algorithm desribed in Setion 2.3.

We give below two haraterizations of subsequential funtions that have

been obtained by Cho�rut (see [11, 12℄ and [5, p. 105℄). The �rst harateriza-

tion is intrinsi to the funtion. It is based on metri properties of the funtion.

The seond haraterization is e�etive. It is based on a property alled twin-

ning property of a transduer realizing the funtion. As it has been shown in

[29, 30℄, this property an be deided in polynomial time.

Some notation is needed to state the haraterization of subsequential fun-

tions. We �rst introdue a distane d on �nite words. Let u; v be two �nite

words, we denote by d the distane suh that

d(u; v) = juj+ jvj � 2ju ^ vj;
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where u ^ v is the longest ommon pre�x of u and v (see [5, p. 104℄).

A partial funtion f : A

�

! B

�

has bounded variation if and only if:

8k � 0 9K � 0 8u; v 2 dom(f) d(u; v) � k ) d(f(u); f(v)) � K:

The deidability of the subsequentiality is essentially based on the following

notion introdued by Cho�rut [12, p. 133℄ (see also [5, p. 128℄). Two states q

and q

0

of a transduer are said to be twinned i� for any pair of paths

i

uju

0

��! q

vjv

0

��! q

i

0

uju

00

���! q

0

vjv

00

���! q

0

where i and i

0

are two initial states, the output labels satisfy the following

property. Either v

0

= v

00

= " or there exists a �nite word w suh that either

u

00

= u

0

w and wv

00

= v

0

w, or u

0

= u

00

w and wv

0

= v

00

w. The latter ase is

equivalent to the following two onditions:

(i) jv

0

j = jv

00

j,

(ii) u

0

v

0

!

= u

00

v

00

!

A transduer has the twinning property if any two states are twinned.

Proposition 7 (Choffrut) Let f : A

�

! B

�

be a partial funtion realized

by a transduer T . The following three propositions are equivalent.

� The funtion f is subsequential.

� The funtion f has bounded variation.

� The transduer T has the twinning property.

The equivalene between the �rst two statements is an intrinsi harateriza-

tion of subsequential funtions among rational funtions. It atually suÆes to

suppose that the inverse image by f of any rational set is still rational and that

f has bounded variation to insure that f is subsequential. However, we are in

his paper interested in e�etive matters and we always suppose that a funtion

on words is given by a transduer whih realizes it. The equivalene between

the last two statements allows us to deide the subsequentiality. The proof of

this equivalene is essentially the proof of Lemma 16 below.

We mention here another haraterization of the subsequentiality. For a

partial funtion f : A

�

! B

�

, de�ne the right ongruene � on A

�

by u � u

0

i�

there are two words �nite words v and v

0

suh that the following two properties

hold for any �nite word w. First, the word uw is in the domain of f i� u

0

w is

in the domain of f . Seond, if uw and u

0

w are in the domain, then v

�1

f(uw) =

v

0

�1

f(vw). The funtion f is then subsequential i� the right ongruene � has

�nite index. In that ase, the ongruene � allows one to onstrut diretly a

subsequential transduer realizing f . Furthermore, this sequential transduer is

minimal in the sense that any other subsequential transduer realizing f an be

projeted onto this one. The algorithm presented in Setion 2.2 allows one to

ompute e�etively the right ongruene �.
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Example 8 We have already mentioned in Example 3 that the funtion (a

2

; b

2

)

�

[

(a

2

; 

2

)

�

(a; ) of Example 1 is not sequential. Atually, this relation is not sub-

sequential as it an be easily shown with Proposition 7. Indeed, the funtion

does not have bounded variation. For any integer n, one has

d(a

2n

; a

2n+1

) = 1 while d(b

2n

; 

2n+1

) = 4n+ 1:

We now give two deidability results about rational relations. The �rst one

is due to Sh�utzenberger [26℄ (see also [7℄). The seond one is due to Cho�rut

[11, 12℄ (see also [5, p. 128℄).

Proposition 9 (Sh

�

utzenberger) Let T be a transduer over A

�

� B

�

. It

is deidable whether the relation de�ned by T is a funtion.

Cho�rut also proved the deidability of the subsequentiality. He showed that

it suÆes to hek the twinning property when the lengths of the words u and v

are bounded by the square of the number of states [12, p. 133℄ and [5, p. 128℄.

However, this algorithm does not seem to be polynomial.

Proposition 10 (Choffrut) Let T be a transduer labeled in A

�

�B

�

whih

realizes a funtion f , then the subsequentiality of f is deidable.

The following result is due to Weber and Klemm [29, 30℄.

Proposition 11 Let f be the funtion realized by a transduer labeled in A

�

�

B

�

. It is deidable in polynomial time whether f is subsequential.

The proof of the proposition follows diretly from Proposition 7 and from

the following lemma. We give below another proof based on the deidability in

polynomial time of the funtionality over in�nite words. A third proof is given

in [4℄.

Lemma 12 The twinning property of a transduer is deidable in polynomial

time.

Proof Let T = (Q;E; I; F ) be a transduer. We deide the twinning property

of T in two steps. We �rst deide in polynomial time the ondition (i) and then

the ondition (ii).

We de�ne an automaton A whose states are the pairs of states of T and

whose edges are labeled by integers. There is an edge (p; p

0

)

n

�! (q; q

0

) i� there

are two edges p

aju

��! q and p

0

aju

0

��! q

0

in A suh that n = ju

0

j � juj. The label

of a path in A is the sum of the labels of the edges of the path. We laim that

the transduer T satis�es ondition (i) i� the label of any yle around a pair

(q; q

0

) aessible from some pair (i; i

0

) for two initial states i and i

0

, is equal to

zero. This an be done by a depth-�rst searh.

We assume that the transduer already satis�es ondition (i). This �rst on-

dition insures that the output label v

0

is empty i� v

00

is empty. The ondition (ii)

is then equivalent to the funtionality of the relation on in�nite words de�ned

8



by the transduer T with all states being �nal. Indeed, it is lear that if the

relation de�ned by T is a funtion, then any two states are twinned. Conversely,

if this relation is not a funtion, there exist two in�nite paths labeled by xjy

and xjy

0

with y 6= y

0

. Let p

0

p

1

p

2

: : : and p

0

0

p

0

1

p

0

2

: : : be the states visited by the

two paths. Let k an index suh that y

k

6= y

0

k

. There exist indies m > n suh

that (p

m

; p

0

m

) = (p

n

; p

0

n

). Moreover, n may be hosen great enough suh that

the outputs along the paths from the initial state to p

n

and p

0

n

have a length

greater than k. Then the states p

m

and p

0

m

are not twinned.

It is deidable in polynomial time whether a relation on in�nite words real-

ized by a transduer is a funtion [10℄. �

2.2 Determinization of transduers over �nite words

In this setion, we desribe an algorithm whih determinizes a real-time trans-

duer whih has the twinning property. This algorithm proves that the ondi-

tions of Proposition 7 are suÆient.

Let T = (Q;E; I; F ) be a real-time transduer, that is labeled in A � B

�

,

realizing a funtion whih is subsequential. We give below an algorithm to de-

terminize the transduer T , that is, whih produes a subsequential transduer

realizing f . The algorithm is exponential in the number of states of T . The

determinization of an automaton is already exponential.

We de�ne a subsequential transduer D as follows. A state P of D is a set

of pairs (q; w) where q is a state of T and w is a word over B. We now desribe

the transitions of T . Let P be state of D and let a be a letter. The pair (P; a)

determines a set R de�ned by

R = f(q

0

; wu) j there exist (q; w) 2 P and q

aju

��! q

0

2 Eg:

If R is empty, there is no transition from P input labeled by a. Otherwise, let

v be the longest ommon pre�x of the words wu for (q

0

; wu) 2 R and

P

0

= f(q

0

; w

0

) j (q

0

; vw

0

) 2 Rg:

There is then a transition P

ajv

��! P

0

. The initial state of D is the set J = f(i; ") j

i 2 Ig where I is the set of initial states of T . It follows from the de�nition

of the transitions of D that if P is a state aessible from the initial state, the

longest ommon pre�x of the words w for (q; w) 2 P is the empty word. We

only keep in D the aessible part from the initial state. The transduer D has

a deterministi input automaton.

The following lemma states the main property of the transitions of D.

Lemma 13 Let u be a �nite word. Let J

ujv

��! P be the unique path in D with

input label u from the initial state. Then, the state P is equal to

P = f(q; w) j there exists a path i

ujvw

���! q in T where i 2 Ig:

9



Proof The proof of the lemma is by indution on the length of u. Let us

onsider the following path in D

J

ujv

��! P

ajt

��! P

0

where a is a letter. Let (q

0

; w

0

) be a pair in P

0

. By the de�nition of the

transitions of D, there is a pair (q; w) in P and a transition q

ajt

0

��! q

0

in T suh

that tw

0

= wt

0

. By the indution hypothesis, there is a path i

ujvw

���! q in T .

Finally, one has vtw

0

= vwt

0

. �

The preeding lemma has the following onsequene. If both pairs (q; w)

and (q

0

; w

0

) belong to a state P whih is aessible from the initial state and if

both q and q

0

are �nal states in T , then the equality w = w

0

neessarily holds.

Otherwise, the relation realized by T is not a funtion. This remark allows us

to de�ne the set of �nal states of D and the funtion �. A state P is �nal if it

ontains as least one pair (q; w) where q is a �nal state of T . The funtion �

maps suh a �nal state P to the word w.

0 1 2

3 4

5

ajb

ajba

ajba

aj"

aj"

aj"

aj"

bja

aja

Figure 4: Transduer of Example 14

Example 14 Consider the transduer pitured in Figure 4. If the algorithm

for determinization is applied to this transduer, one gets the subsequential

transduer pitured in Figure 5. This subsequential transduer is transformed

into a sequential transduer in Examples 19.

This de�nes a subsequential transduer whih may have an in�nite number

of states. However, we laim that the bounded variation property of T implies

that the lengths of the words in states of D are bounded. Thus the number of

states of D is atually �nite.

Lemma 15 Let v

1

, v

2

, v

0

1

and v

0

2

be four �nite words suh that jv

2

j = jv

0

2

j and

v

1

v

!

2

= v

0

1

v

0

2

!

. For any words v

3

and v

0

3

,

d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

) = d(v

1

v

3

; v

0

1

v

0

3

):

10



0; "

A

B

1; "

2; a

3; a

�

�

�

�

C

1; a

2; "

4; a

�

�

�

�

a

5; "

D

ajb

aj"aj"

aja

bjaa

bja

Figure 5: Determinization of the transduer of Figure 4

Proof By symmetry, we may suppose that jv

1

j � jv

0

1

j. There is then a �nite

word w suh that v

0

1

= v

1

w and wv

0

2

= v

2

w. Thus the word v

0

1

v

0

2

v

0

3

is equal to

v

1

v

2

wv

0

3

. It follows that

d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

) = d(v

3

; wv

0

3

) = d(v

1

v

3

; v

0

1

v

0

3

):

�

The following lemma states that if a transduer T has the twinning property,

then the outputs labels of two paths with the same input label have a long

ommon pre�x. It proves that if the relation realized by T is a funtion, it has

bounded variation. The proof is very lose to the proof of Proposition 6.4 in [5℄

but we do not assume that the relation realized by T is a funtion. This is

useful when transduers realizing relations on in�nite words are onsidered.

Lemma 16 Let T be a transduer whih has the twinning property. There is a

onstant K suh that the outputs of two paths i

ujv

��! q and i

0

ujv

0

��! q

0

from two

initial states i and i

0

satisfy

d(v; v

0

) � K:

Proof LetK be equal to 2n

2

M where n is the number of states of the transduer

and M is the maximal length of the output label of a transition. We prove

d(v; v

0

) � K by indution on the length of u. If juj � n

2

, the result holds by

de�nition of K. Otherwise, both paths an be fatorized

i

u

1

jv

1

���! p

u

2

jv

2

���! p

u

3

jv

3

���! q

i

0

u

1

jv

0

1

���! p

0

u

2

jv

0

2

���! p

0

u

3

jv

0

3

���! q

0

where u

1

u

2

u

3

= u, v

1

v

2

v

3

= v, v

0

1

v

0

2

v

0

3

= v

0

and ju

2

j > 0. By the twinning

property, one has d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

) = d(v

1

v

3

; v

0

1

v

0

3

) and the result follows from

the indution hypothesis. �
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The following lemma states that the lengths of the words w of the pairs

(q; w) in the states of D are bounded. This implies that the number of states

of D is �nite.

Lemma 17 There is a onstant K suh that for any pair (q; w) in a state P

of D, one has jwj � K.

Proof Let J

ujv

��! P be a path in D. Let (q; w) be a pair in some state P .

By de�nition of the transitions of D, there is another pair (q

0

; w

0

) in D suh

that w and w

0

have no ommon pre�x. By Lemma 13, there are two paths,

i

ujvw

���! q and i

0

ujvw

0

���! q

0

in T . By Lemma 16, there is a onstant K suh that

d(vw; vw

0

) � K and thus jwj � K. �

The following proposition �nally states that the subsequential transduer D

is equivalent to the transduer T . It follows diretly from Lemma 13 and the

de�nition of the funtion �.

Proposition 18 The sequential transduer D realizes the same funtion f as

the transduer T .

We have already mentioned in Proposition 11 that it an be deided in

polynomial time whether a funtion realized by a transduer is subsequential.

The algorithm desribed above is exponential but it provides another deision

proedure. Indeed, Lemma 17 gives a upper bound of the lengths of words whih

an appear in states of D. By Lemma 16, this upper bound is 2n

2

M where n is

the number of states of T and M is the maximal length of the output label of a

transition of T . Let T be a transduer realizing a funtion f . If the algorithm

is applied to T , either it stops and gives a subsequential transduer D or it

reates a state P ontaining a pair (q; w) suh that the length of w is greater

than 2n

2

M . In the former ase, the subsequential transduer D is equivalent

to T and the funtion f is subsequential. In the latter ase, the funtion f is

not subsequential.

2.3 Sequential funtions

The determinization of a transduer realizing a subsequential funtion f pro-

vides a subsequential transduer realizing f . Even if the funtion f is sequential,

the algorithm does not give a sequential transduer but this subsequential trans-

duer an be transformed into a sequential one.

This transformation is based on a normalization of subsequential transdu-

ers introdued by Cho�rut [12, 13℄. This normalization onsists in pushing as

muh as possible the output labels from �nal states towards the initial state.

Algorithms omputing the normalized transduer are given in [20, 22℄, [8, 9℄ and

[2℄. The algorithms given in [20, 22℄ and [2℄ run in time O(jEjP ) where E is the

set of transitions of the transduer, and where P is the maximal length of the

greatest ommon pre�x of the output labels of paths leaving eah state of the

transduer. If the normalization is applied to a subsequential transduer, the

12



resulting transduer is sequential i� the funtion is sequential. Sine the normal-

ization an be performed in polynomial time, it an be heked in polynomial

time whether a funtion realized by a subsequential transduer is sequential. It

an be shown that a funtion realized by a subsequential transduer is sequential

i� it preserves pre�xes. This was already proved in [29, 30℄ that this property

an be heked in polynomial time.

In order to transform a subsequential transduer into a sequential one, it is

not neessary to push as muh as possible the output labels from �nal states

towards the initial state, as the normalization does. It suÆes to push these

output labels until the output of all states are empty. Therefore, the algorithm

given in [2℄ an be adapted to meet this requirements. This gives a time om-

plexity of O(jEjL) instead of O(jEjP ) where L is the maximal length of the

output words.

A

B

C

D

ajba

aj"aj"

aja

bja

bj

Figure 6: Sequential transduer of Example 19

Example 19 Consider the transduer pitured in Figure 5 where the states

have been renamed A, B, C and D. If the normalization is applied to this sub-

sequential transduer, one gets the sequential transduer pitured in Figure 6.

3 Transduers over in�nite words

In this setion, we onsider transduers over in�nite words with all states being

�nal. We �rst give an e�etive haraterization of sequential funtions over in-

�nite words. This haraterization extends to in�nite words the twinning prop-

erty introdued by Cho�rut [11, 12℄. We use this haraterization to desribe

an algorithm to hek whether a funtion realized by a transduer is sequential.

Finally, we give an algorithm to determinize a transduer.

In this setion, we denote by A

!

the set of all (right-)in�nite words over

the alphabet A. We onsider transduers over in�nite words. The edges of the

transduers are still labeled in A

�

� B

�

. The transduer has initial states but

we suppose that all states are �nal. Thus we omit the set F of �nal states in

the notation. An in�nite path is then suessful if it leaves an initial state. The

relation over in�nite words de�ned by the transduer is the set R � A

!

� B

!

13



of labels of its suessful paths. The domain of the transduer is the set of

in�nite words x suh that there is some in�nite word y suh that (x; y) labels

a suessful path in the transduer. When the transduer realizes a funtion,

its domain is also the domain of the funtion. A funtion from A

!

to B

!

is

sequential if it is realized by a sequential transduer. We point out that the

notion of subsequential funtion is irrelevant in the ase of in�nite words.

3.1 Charaterization of sequential funtions

In this setion, we haraterize funtions realized by transduers with all states

�nal that an be realized by sequential transduers. This haraterization uses

topologial properties of the funtion and some twinning property of the trans-

duer. In this setion, we assume that all states of transduers are �nal.

We �rst introdue a de�nition. We de�ne a subset of states whih play

a partiular role in the sequel. We say that a state q of a transduer is non

onstant if there are two paths leaving q labelled by two pairs (x; y) and (x

0

; y

0

)

of in�nite words suh that y 6= y

0

. If a state q is onstant, either there is no path

leaving q labelled by a pair of in�nite words or there is an in�nite word y

q

alled

the onstant of q suh that for any pair (x; y) of in�nite words labelling a path

leaving q, then y = y

q

. In the former ase, the state q an be removed sine it

annot our in an aepting path labelled by a pair of in�nite words. In the

sequel, we always assume that suh states have been removed. The onstant y

q

is an ultimately periodi word. It should be notied that any state aessible

from a onstant state is also onstant. We now state the haraterization of

sequential funtions.

Proposition 20 Let f be a funtion realized by a transduer T with all states

�nal. Let T

0

be the transduer obtained by removing from T all onstant states.

Then the funtion f is sequential i� the following three properties hold:

� the domain of f an be reognized by a deterministi B�uhi automaton,

� the funtion f is ontinuous,

� the transduer T

0

has the twinning property.

Sine the funtion f is realized by a transduer, the domain of f is rational.

However, it is not true that any rational set of in�nite words is reognized by

a deterministi B�uhi automaton. Landweber's theorem states that a set of

in�nite words is reognized by a deterministi B�uhi automaton i� it is rational

and G

Æ

[28℄. Reall that a set is said to be G

Æ

is it is equal to a ountable

intersetion of open sets for the usual topology of A

!

.

It is worth pointing out that the domain of a funtion realized by a transduer

may be any rational set although it is supposed that all states of the transduer

are �nal. The �nal states of a B�uhi automaton an be enoded in the outputs of

a transduer in the following way. Let A = (Q;E; I; F ) be a B�uhi automaton.

We onstrut a transduer T by adding an output to any transition of A. A

transition p

a

�! q of A beomes p

ajv

��! q in T where v is empty if p is not �nal

14



and is equal to a �xed letter b if p is �nal. It is lear that the output of a path is

in�nite i� the path goes in�nitely often through a �nal state. Thus the domain

of the transduer T is the set reognized by A. For instane, the domain of

a transduer may be not reognizable by a deterministi B�uhi automaton as

in the following example. It is however true that the domain is losed if the

transduer has no yling path with an empty output.

0 1

aj"

bj"

bjb

bjb

Figure 7: Transduer of Example 21

Example 21 The domain of the funtion f realized by the transduer of Fig-

ure 7 is the set (a+ b)

�

b

!

of words having a �nite number of a. The funtion f

annot be realized by a sequential transduer sine its domain is not a G

Æ

set.

It must be also pointed out that a funtion realized by a transduer may be

not ontinuous although it is supposed that all states of the transduer are �nal

as it is shown in the following example.

0 1

aja

bj"

bjb

bjb

Figure 8: Transduer of Example 22

Example 22 The image of an in�nite word x by the funtion f realized by

the transduer of Figure 8 is f(x) = a

!

if x has an in�nite number of a and

15



f(x) = a

n

b

!

if the number of a in x is n. The funtion f is not ontinuous. For

instane, the sequene x

n

= b

n

ab

!

onverges to b

!

while f(x

n

) = ab

!

does not

onverge to f(b

!

) = b

!

.

Proof We �rst explain why the above three onditions of the proposition are

neessary. The fat that the onditions are suÆient follows from the algorithm

that we desribe in Setion 3.2.

If the funtion f is realized by a sequential transduer D, a deterministi

B�uhi automaton reognizing the domain of f an be dedued from the input

automaton of D in the following way. Eah state q is �rst split in two states q

1

and q

2

. We distribute then the edges arriving in q between q

1

and q

2

aording

to the emptiness of their output. Edges with an empty output arrive in q

1

while

edges with a nonempty output arrive in q

2

. The state q

2

is then �nal and q

1

is

not. If q was initial, exatly one among q

1

and q

2

is then initial. All edges going

out of q are dupliated in edges going out of q

1

and q

2

. In symboli dynamis,

suh a transformation is alled an input state splitting. It is lear that this

deterministi B�uhi automaton reognizes the domain of f . It is also lear that

any sequential funtion is ontinuous.

We now prove that the third ondition is neessary. We suppose that we

have the following piture representing paths in T .

0

1

2

3

uju

0

uju

00

vjv

0

vjv

00

where 0 and 1 are initial states, u, u

0

, u

00

, v, v

0

and v

00

are �nite words. Let

D be a sequential transduer realizing the same funtion as T . There are in D

paths

4 5

uv

l

jw

v

k

jw

0

where 0 is the initial state, w and w

0

are �nite words. By prolonging the path

in T from 0 to 2 (respetively from 1 to 3) with l iterations of the path around 2

(respetively around 3), we an assume without loss of generality that l = 0.

By replaing the yling path around 2 (respetively around 3) by k iterations

of this path, we an assume that k = 1.

We laim that if the state 2 is not onstant, then the equality jwj = jv

0

j

holds. Sine states 2 and 3 are not onstant, then if v = " then v

0

= v

00

= " and
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the twinning property is satis�ed. We now assume that v is not empty. Let xjx

0

and yjy

0

be the in�nite labels of two in�nite paths leaving 2 suh that x

0

6= y

0

.

There are in D two in�nite paths labeled by xjx

00

and yjy

00

leaving the state 5

suh that

u

0

v

0

n

x

0

= ww

0

n

x

00

u

0

v

0

n

y

0

= ww

0

n

y

00

:

If jv

0

j < jw

0

j, the words x

0

and y

0

have a ommon pre�x of length jwj � ju

0

j +

n(jw

0

j�jv

0

j) for any large n. This leads to the ontradition that x

0

= y

0

. If jv

0

j >

jw

0

j, the words x

00

and y

00

have a ommon pre�x of length juj�jwj+n(jv

0

j�jw

0

j)

for any large n. This leads to the ontradition that x

00

= y

00

and x

0

= y

0

.

By symmetry, if the state 3 is not either onstant, then the equality also

jwj = jv

00

j holds and therefore jv

0

j = jv

00

j.

If both words v

0

and v

00

are non empty, then f(uv

!

) = u

0

v

0

!

= u

00

v

00

!

. �

Before desribing the algorithm for determinization, we �rst study a parti-

ular ase. It turns out that the �rst two onditions of the proposition are due to

the fat that the transduer T may have yling paths with an empty output.

If the transduer T has no yling path with an empty output, the previous

proposition an be stated in the following way.

Proposition 23 Let f be a funtion realized by a transduer T with all states

�nal. Suppose also that T has no yling path with an empty output. Let T

0

be the transduer obtained by removing from T all onstant states. Then the

funtion f is sequential i� the transduer T

0

has the twinning property.

If the transduer T has no yling path with an empty output, any in�nite

path has an in�nite output. Thus, an in�nite word x belongs to the domain of f

i� it is the input label of an in�nite path in T . The domain of f is then a losed

set. It is then reognized by a deterministi B�uhi automaton whose all states

are �nal. This automaton an be obtained by the usual subset onstrution

on the input automaton of T . Furthermore, if the transduer T has no yling

path with an empty output, the funtion f is neessarily ontinuous. This ould

be proved diretly but it follows from Lemma 31.

We now study the deidability of the onditions of Propositions 20 and 23.

We have the following results.

Proposition 24 It is deidable if a funtion f given by a transduer with all

states �nal is sequential. Furthermore, if the transduer has no yling path

with an empty output, this an be deided in polynomial time.

Note that the result does not hold if it is not supposed that the transduer

has no yling path with an empty output. In the general ase, the problem

is NP-hard. For any B�uhi automaton, onsider the transduer obtained by

replaing eah transition p

a

�! q of the B�uhi automaton by a transition p

aj"

��! q

if p is not �nal and by p

ajb

��! q for a �xed letter b if p is �nal. The funtion

17



maps any in�nite word to b

!

and its domain is exalty the set of in�nite words

reognized by the B�uhi automaton. This funtion is sequential i� its domain

is deterministi. Sine testing whether the set of in�nite words reognized by a

given non deterministi B�uhi automaton is deterministi is an NP-hard prob-

lem, testing whether a funtion is sequential is also NP-hard.

Proof As explained in the proof of Proposition 20, a B�uhi automaton reogniz-

ing the domain of the funtion an be easily dedued from the transduer. It is

then deidable if this set an be reognized by a deterministi B�uhi automaton

[28, Thm 5.3℄.

It is deidable in polynomial time if a funtion given by a transduer with

�nal states is ontinuous [23℄.

We now show that the third ondition of Proposition 20 an be deided in

polynomial time. Sine we have already proved in Lemma 12 that the twinning

property an be deided in a polynomial time, it suÆes to prove that the

transduer T

0

an be omputed in polynomial time. We laim that it an be

deided in polynomial time whether a given state is onstant.

Let A be the output automaton of the transduer. By a depth �rst searh, it

an be found two �nite words u and v suh that juj+ jvj � n and suh that uv

!

labels a path leaving q. One onstruts a omplete deterministi automaton B

reognizing uv

!

with a sink state 0 whih is the only non aepting state. We

then onsider the synhronized produt automaton of A and B. There is a

transition from (p; r) to (p

0

; r

0

) labelled by a �nite word w (perhaps empty) i�

there is a transition from p to p

0

in A and a path from r to r

0

in B. The in�nite

word uv

!

is the label of all paths leaving q i� no state (q

0

; 0) is aessible from

(q; i

B

) where i

B

is the initial of B. This naive algorithm runs in quadrati time

for eah state q. Therefore the onstant states of a transduer an be omputed

in ubi time. It turns out that they an be omputed in linear time [10℄. �

3.2 Determinization of transduers over in�nite words

In this setion, we desribe an algorithm to determinize a real-time transduer

whih satis�es the properties of Proposition 20. This algorithm an easily be

adapted to the ase when the transduer is not real-time. This algorithm proves

that the onditions of the proposition are suÆient.

Let T = (Q;E; I) be a transduer and let T

0

be the transduer obtained

by removing from T all onstant states. We assume that T

0

has the twinning

property. We denote by S the set of onstant states. For a state q of S, we denote

by y

q

, the single output of q whih is an ultimately periodi word. We suppose

that the domain of f is reognized by the deterministi B�uhi automaton A.

This automaton is used in the onstruted transduer to insure that the output

is in�nite only when the input belongs to the domain of the funtion.

We desribe the deterministi transduer D realizing the funtion f . A state

of D is a pair (p; P ) where p is a state of A and P is a set ontaining two kinds

of pairs. The �rst kind are pairs (q; z) where q belong to Q n S and z is a �nite

word over B. The seond kind are pairs (q; z) where q belongs to S and z is

an ultimately periodi in�nite word over B. We now desribe the transitions
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of D. Let (p; P ) be a state of D and let a be a letter. Let R be equal to the set

de�ned as follows

R = f(q

0

; zw) j q

0

=2 S and 9(q; z) 2 P; q =2 S and q

ajw

��! q

0

2 Eg

[ f(q

0

; zwy

q

0

) j q

0

2 S and 9(q; z) 2 P; q =2 S and q

ajw

��! q

0

2 Eg

[ f(q

0

; z) j q

0

2 S and 9(q; z) 2 P; q 2 S and q

ajw

��! q

0

2 Eg:

We now de�ne the transition from the state (p; P ) input labeled by a. If R is

empty, there is no transition from (p; P ) input labeled by a. Otherwise, the

output of this transition is the word v de�ned as follows. Let p

a

�! p

0

be the

transition in A from p labeled by a. If p

0

is not a �nal state of A, we de�ne v as

the empty word. If p

0

is a �nal state, we de�ne v as the �rst letter of the words

z if R only ontains pairs (q

0

; z) with q

0

2 S and if all the in�nite words z are

equal. Otherwise, we de�ne v as the longest ommon pre�x of all the �nite or

in�nite words z for (q

0

; z) 2 R. The state P

0

is then de�ned as follows

P

0

= f(q

0

; z) j (q

0

; vz) 2 Rg:

There is then a transition (p; P )

ajv

��! (p

0

; P

0

) in D. The initial state of D is

the pair (i

A

; J) where i

A

is the initial state of A and where J = f(i; ") j i 2

I and i =2 Sg [ f(i; y

i

) j i 2 I and i 2 Sg. If the state p

0

is not �nal in A, the

output of the transition from (p; P ) to (p

0

; P

0

) is empty and the words z of the

pairs (q; z) in P , may have a nonempty ommon pre�x. We only keep in D the

aessible part from the initial state. The transduerD has a deterministi input

automaton. It turns out that the transduer D has a �nite number of states.

This will be proved in Lemma 33. It will be also proved in Proposition 34 that

the transduer D realizes the same funtion as T .

0 1

aja

bjb

aj"

aj"

jaa

Figure 9: Transduer of Example 25

Example 25 Consider the transduer pitured in Figure 9. A deterministi

B�uhi automaton reognizing the domain is pitured in Figure 10. If the algo-

rithm for determinization is applied to this transduer, one gets the transduer

pitured in Figure 11.

The following lemma states the main property of the transitions of D.
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A B C D

a

a

b

b





a

a



Figure 10: A deterministi B�uhi automaton for the domain

A

0; "

�

�

�

�

B

0; "

1; a

!

�

�

�

�

C

1; a

!

�

�

�

�

D

1; a

!

�

�

�

�

aja

aja

aj"

aj"bjb

bjb

ja

ja

ja

Figure 11: Determinization of the transduer of Figure 9

Lemma 26 Let u be a �nite word. Let (i

A

; J)

ujv

��! (p; P ) be the unique path

in D with input label u from the initial state. Then, the state p is the unique

state of A suh that i

A

u

�! p is a path in A and the set P is equal to

P = f(q; z) j 9 i

ujv

0

��! q in T suh that v

0

= vz if q =2 S

v

0

y

q

= vz if q 2 Sg:

Proof The proof of the lemma is by indution on the length of u. Let us

onsider the following path in D

(i

A

; J)

ujv

��! (p; P )

ajt

��! (p

0

; P

0

)

where a is a letter. Let (q

0

; z

0

) be a pair in P

0

. If q

0

=2 S, there is a pair (q; z)

in P and a transition q

ajt

0

��! q

0

in T . If both states q and q

0

do not belong

to S, the proof is similar to the proof of Lemma 13. If q =2 S and q

0

2 S, one

has tz

0

= zt

0

y

q

0

. By the indution hypothesis, there is a path i

ujvz

���! q in T .

One �nally gets vtz

0

= vzt

0

y

q

0

. If q 2 S and q

0

2 S, one has tz

0

= z. By the

indution hypothesis, there is a path i

ujv

0

��! q in T suh that v

0

y

q

= vz. Sine

y

q

= t

0

y

q

0

, one �nally gets vtz

0

= v

0

t

0

y

q

0

. �

The previous lemma has the orollary whih states that eah state q is the

�rst omponent of at most one pair (q; z) in the seond omponent P of a state

(p; P ) of D.

Corollary 27 Let q be a state of T and let (p; P ) be a state of D. The subset P

ontains at most one pair (q; z).
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Proof Let (i

A

; J)

ujv

��! (p; P ) be a path in D and let (q; z) and (q; z

0

) be two

pairs in P .

We �rst suppose that q is not onstant. Let xjy and x

0

jy

0

be two pairs

of in�nite words whih label two paths leaving q suh that y 6= y

0

. By the

previous lemma, there are two paths i

ujvz

���! q and i

0

ujvz

0

���! q in T . One has

f(ux) = vzy = vz

0

y and f(ux

0

) = vzy

0

= vz

0

y

0

. If z 6= z

0

, it may be assumed by

symmetry that jz

0

j > jzj and that z

0

= zw for some �nite word w. This leads

to the ontradition y = y

0

= w

!

.

We now suppose that q is onstant. Let xjy be a pair of in�nite words whih

labels a path leaving q. By the previous lemma, there are two paths i

ujw

��! q

and i

0

ujw

0

���! q in T suh that wy = vz and w

0

y = vz

0

. Furthermore, one has

f(ux) = wy = w

0

y and thus z = z

0

. �

We now introdue some tehnial property of the paths of a transduer. This

property is a kind of twinning property when the output of one of the yling

paths is empty. Its turns out that this property is equivalent to the ontinuity

of the funtion realized by the transduer when it is already supposed that the

transduer has the twinning property. Let T be a transduer and let S be its set

of onstant states. The transduer T is said to have the "-ompatibility property

i� for any pair of paths

i

uju

0

��! q

vjv

0

��! q

i

0

uju

00

���! q

0

vj"

��! q

0

suh that i and i

0

are two initial states and v

0

is a nonempty word, the state q

0

is onstant and its onstant y

q

0

satis�es u

00

y

q

0

= u

0

v

0

!

. If the states q and q

0

are

twinned, there annot be a pair of suh paths. If the output along the seond

yling path is empty, the output along the �rst yling path should also be

empty. The above onditions add some ompatibility of the outputs when q

and q

0

are not twinned.

The following lemma states that if the funtion realized by the transduer is

ontinuous, then the transduer has the "-ompatibility property. The onverse

is established in Lemma 31.

Lemma 28 Let T be transduer realizing a funtion f on in�nite words. If the

funtion f is ontinuous, then the transduer T has the "-ompatibility property.

Proof Let xjy be a pair of in�nite words whih labels a path leaving q

0

. For

any integer n, one has f(uv

n

x) = u

00

y and f(uv

!

) = u

00

y by ontinuity of f .

Sine f(uv

!

) = u

0

v

0

!

, the state q

0

is onstant and its onstant y

q

0

satis�es

u

00

y

q

0

= u

0

v

0

!

. �

For a �nite word w and an in�nite word x, we denote by d(w; x) the integer

jwj� jw^xj where w^x is the longest ommon pre�x of w and x. Remark that

d is not a distane but Lemma 15 still holds when v

0

3

is an in�nite word.
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Lemma 29 Let T be a transduer. Suppose that T has the "-ompatibility prop-

erty and that T

0

has the twinning property. There is a onstant K suh that for

any two paths i

ujv

��! q and i

0

ujv

0

��! q

0

where i and i

0

are initial states, q =2 S and

q

0

2 S, one has

d(v; v

0

y

q

0

) � K:

Proof LetK be equal to n

2

M where n is the number of states of the transduer

and M is the maximal length of the output label of a transition. We prove

d(v; v

0

y

q

0

) � K by indution on the length of u. If juj � n

2

, the result holds by

de�nition of K. Otherwise, both paths an be fatorized

i

u

1

jv

1

���! p

u

2

jv

2

���! p

u

3

jv

3

���! q

i

0

u

1

jv

0

1

���! p

0

u

2

jv

0

2

���! p

0

u

3

jv

0

3

���! q

0

:

where ju

2

j > 0 and ju

3

j � n

2

. If both words v

2

and v

0

2

are empty, the result

follows diretly from the indution hypothesis. Thus, we may assume that one

the words v

2

or v

0

2

is not empty. Sine q does not belong to S, p does not belong

to S either. The "-ompatibility property implies then that v

2

annot be empty.

We �rst suppose that p

0

=2 S. By the twinning property, Lemma 15 and

the above remark, one has d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

y

q

0

) = d(v

1

v

3

; v

0

1

v

0

3

y

q

0

) and the result

follows from the indution hypothesis.

We now suppose that p

0

2 S and we laim that v

0

1

v

0

2

v

0

3

y

q

0

= v

1

v

!

2

. Sine p

0

is onstant, y

p

0

= v

0

3

y

q

0

. If the word v

0

2

is empty, the "-ompatibility property

implies that v

0

1

y

p

0

= v

1

v

!

2

. If v

0

2

is nonempty, y

p

0

= v

0

2

!

. Sine f(u

1

u

!

2

) = v

1

v

!

2

=

v

0

1

v

0

2

!

, the laimed equality holds. In both ases, one has d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

y

q

0

) =

d(v

1

v

2

v

3

; v

1

v

!

2

) � jv

3

j � K. �

The following lemma states some tehnial onsequene of the "-ompatibility

property.

Lemma 30 Let T be a transduer whih has the "-ompatibility property and let

f the funtion realized by T . Then if x is in the domain of f and x is the input

label of a path entirely out of S, the output of this path is in�nite and is thus

equal to the image of x by f .

Proof Suppose that x is the input label of two paths  and 

0

. Suppose also

that all states of  do not belong to S and the output along 

0

is an in�nite

word. Sine the number of states is �nite, both paths  and 

0

an be fatorized

 = i

u

0

jv

0

���! q

u

1

jv

1

���! q

u

2

jv

2

���! q � � �



0

= i

0

u

0

jv

0

0

���! q

0

u

1

jv

0

1

���! q

0

u

2

jv

0

2

���! q

0

� � �

Furthermore, it an be assumed that eah v

0

k

is nonempty sine v

0

0

v

0

1

v

0

2

: : : is an

in�nite word. By hypothesis, this implies that eah v

k

is also nonempty. �

The following lemma states a kinf of onverse of Lemma 28. It shows in

partiular that if a transduer T has no yling path with an empty output and
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if T

0

has the twinning property, then the funtion realized by T is ontinuous.

If x and y are two in�nite words, d(x; y) denotes the usual distane between x

and y whih makes the set A

!

of all in�nite words a ompat spae.

Lemma 31 Let T be a transduer whih has the "-ompatibility and suh that

T

0

has the twinning property. Then the funtion realized by T is ontinuous.

Proof Let f be the funtion realized by the transduer T and let x be an

in�nite word in the domain of f . We laim that for any integer m there is an

integer k suh that for any in�nite word x

0

also in the domain f , the inequality

d(x; x

0

) � 2

�k

implies the inequality d(f(x); f(x

0

)) � 2

�m

. Let y = f(x) be the

image of x. Let  be a path labeled by xjy and let i be the initial state of .

Let 

0

be a path labelled by (x

0

; y

0

) where y

0

= f(x

0

). Aording to the previous

lemma, it an be assumed that either there is a path entirely out of S whih is

labeled by xjy or that x is not the input label of a path entirely out of S.

We �rst suppose that the path  is entirely out of S. By Lemma 15, there

is a onstant K suh that if i

ujv

��! q and i

0

ujv

0

��! q

0

are two paths with q =2 S

and q

0

=2 S, then one has d(v; v

0

) � K. By Lemmas 28 and 29, there is another

onstant K

0

suh that if i

ujv

��! q and i

0

ujv

0

��! q

0

are two paths with q =2 S and

q

0

2 S, then one has d(v; v

0

y

q

0

) � K. Let k be hosen suh that the output

along the �rst k transitions of  has a length greater then m + max(K;K

0

).

Let q be the state of  reahed after k transitions and let v be the output of 

0

along the �rst k transitions. Suppose that x

0

satis�es d(x; x

0

) � k and that 

0

is a path labeled by x

0

jy

0

where y

0

= f(x

0

). Let i

0

the initial state of 

0

and

let q

0

be the state of 

0

reahed after k transitions. If q

0

does not belong to S,

one has d(v; v

0

) � K where v

0

is the output of 

0

along the �rst k transitions.

Sine jvj � m+K, one has jv ^ v

0

j � m and thus d(y; y

0

) � 2

�m

. If q

0

belongs

to S, one has d(v; y

0

) � K

0

. Sine jvj � m+K

0

, one has jv ^ y

0

j � m and thus

d(y; y

0

) � 2

�m

.

We now suppose that x is not the input label of a path entirely out of S.

There is then an integer K suh that any path input labeled by a pre�x of x of

length greater than K ends in a state of S. Let k be equal to K +K

0

where K

0

is the length of part of  inside S whih ontains at least n

2

transitions with a

nonempty output. If d(x; x

0

) � 2

�k

, both paths  and 

0

an be fatorized

 = i

u

0

jv

0

���! q

u

1

jv

1

���! q

u

2

jv

2

���! � � �



0

= i

0

u

0

jv

0

0

���! q

0

u

1

jv

0

1

���! q

0

u

0

2

jv

0

2

���! � � �

where u

0

u

1

u

2

= x, u

0

u

1

u

0

2

= x

0

, v

1

is nonempty and q and q

0

belong to S. We

laim that y = y

0

. One has y = v

0

y

q

and y

0

= v

0

0

y

q

0

. Sine v

1

is nonempty,

one also has y

q

= v

!

1

. If v

0

1

is also nonempty, one has y

q

0

= v

0

1

!

and f(u

0

u

!

1

) =

v

0

v

!

1

= v

0

0

v

0

1

!

and thus y = y

0

. If the word v

0

1

is empty, the "-ompatibility

property implies v

0

y

q

= v

0

0

y

q

0

and y = y

0

.

In both ases, an integer k satisfying the laimed property has been found.

The funtion f is then ontinuous. �
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The following lemma states that the lengths of the words z of the pairs (q; z)

in the states of D are bounded. It is essentially due to the twinning property

of T

0

.

Lemma 32 There is a onstant K suh that for any pair (q; z) in P of a state

(p; P ) of D where q =2 S and z is a �nite word, one has jzj � K.

Proof Let m and n be the respetive numbers of states of A and T . By Lemma

16 and 29, there is a onstant K

0

suh that if i

ujv

��! q and i

0

ujv

0

��! q

0

are two

paths suh that q =2 S, then one has d(v; v

0

) � K

0

if q

0

=2 S or d(v; v

0

y

q

0

) � K

0

if q

0

2 S. Let K = K

0

+mnM where M is the maximal length of the output

label of a transition in T . Let (p; P ) be a state of D and onsider a path

(i

A

; J)

u

0

jv

0

���! (p

0

; P

0

)

ujv

��! (p; P )

where p

0

is a �nal state of A. If there is no path from (i

A

; J) to (p; P ) whih

goes through a state (p

0

; P

0

) with p

0

�nal, we assume that (p

0

; P

0

) is atually

(i

A

; J). The proof is by indution on the length of u. If juj = 0, the state p

is atually a �nal state of A. In the ase where p is �nal, the longest ommon

pre�x of the words z of the pairs (q; z) in P is empty. Lemmas 16, 26 and 29

imply that jzj � K

0

. We now suppose that p is not �nal. If juj � mn, the

result follows from the de�nition of the transitions of D. We now suppose that

juj > mn and that (p

0

; P

0

) is the last state along the path from (i

A

; J) to (p; P )

suh that p

0

is a �nal state of A. Let (q; z) be a pair in P suh that q =2 S and

z is a �nite word. By de�nition of the transitions of D, there is a pair (q

0

; z

0

)

in P

0

and a path q

0

ujw

��! q in T suh that z

0

w = vz. There is also a path p

0

u

�! p

in A. Sine juj > mn, both paths an be fatorized

p

0

u

1

���! p

00

u

2

���! p

00

u

3

���! p

q

0

u

1

jw

1

����! q

00

u

2

jw

2

����! q

00

u

3

jw

3

����! q

where u

1

u

2

u

3

= u and w

1

w

2

w

3

= w. Sine the yling path p

00

u

2

�! p

00

in A

does not ontain any �nal state, the in�nite word u

0

u

1

u

!

2

does not belong to

the domain of f . This implies that the word w

2

is empty. We then onsider the

path

(p

0

; P

0

)

u

1

u

3

jv

00

�����! (p; P

00

)

in D. The subset P

00

ontains a pair (q; z

00

) for some �nite word z

00

. We laim

that z

00

= z. Indeed, one has z

0

w

1

w

2

w

3

= z

0

w

1

w

3

= vz = v

00

z

00

. As both

paths p

0

u

1

u

2

u

3

�����! p and p

0

u

1

u

3

���! p in A ontain no other �nal state than p, both

outputs v and v

00

along the orresponding paths in D are empty. Thus one gets

z = z

00

. By the indution hypothesis, one has jzj = jz

00

j � K. �

It is now possible to prove that the transduer D has a �nite number of

states. However, the number of states of D an be exponential as in the ase of

�nite words.
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Lemma 33 The number of states of D is �nite.

Proof We have proved in the preeding lemma that the lengths of the �nite

words z are bounded. It remains to show that there is a �nite number of

di�erent in�nite words z whih an appear in some pair (q; z). By de�nition of

the transitions, any in�nite word z of a pair is the suÆx of z

0

wy

q

where (q

0

; z

0

)

is a pair suh that q

0

=2 S and z

0

is �nite and where q 2 S and q

0

ajw

��! q is a

transition of T . Sine the length of z

0

is bounded, the number of suh words

z

0

wy

q

is �nite and they are ultimately periodi. There are then a �nite number

of suÆxes of suh words. �

The following proposition �nally states that the sequential transduer D is

equivalent to the transduer T . Both transduers realize the same funtion over

in�nite words.

Proposition 34 The sequential transduer D realizes the same funtion f as

the transduer T .

Proof We respetively denote by f and f

0

the funtions realized by the trans-

duer T and D. We �rst prove that if an in�nite word x belongs to the domain

of f , it also belongs to the domain of f

0

and f(x) = f

0

(x).

Let x = a

0

a

1

a

2

: : : be an in�nite word whih is in the domain of f . Let  be

a path

 = i

a

0

jv

0

���! q

1

a

1

jv

1

���! q

2

a

2

jv

2

���! � � � (1)

be a path in T input labeled by x and whose output v

0

v

1

v

2

: : : is an in�nite

word. Consider the unique path � in D input labeled by x

� = (i

A

; J)

a

0

jv

0

0

���! (p

1

; P

1

)

a

1

jv

0

1

���! (p

2

; P

2

)

a

2

jv

0

2

���! � � � (2)

By Lemma 26, eah state P

n

ontains a pair (q

n

; z

n

).

We �rst suppose that x input labels a path in T entirely out of S. By

Lemma 30, it an be assumed that eah state q

n

does not belong to S and that

eah z

n

is �nite. By Lemma 26, the equality v

0

: : : v

n

= v

0

0

: : : v

0

n

z

n

holds for

any integer n. By Lemma 32, the lengths of the words z

n

are bounded. This

implies the equality v

0

v

1

v

2

: : : = v

0

0

v

0

1

v

0

2

: : : of the two outputs.

We now suppose that x is not the input label of a path entirely out of S.

There is then an integer n suh that for any m � n, P

m

only ontains pairs

(q; z) with q 2 S and z in�nite. Both path  and � an be fatorized

 = i

u

0

jv

0

���! q

u

1

jv

1

���! q

u

2

jv

2

���! q � � �

� = (i

A

; J)

u

0

jv

0

0

���! (p; P )

u

1

jv

0

1

���! (p; P )

u

2

jv

0

2

���! (p; P ) � � �

Furthermore, it an be assumed that eah v

n

is nonempty. Thus eah path

p

u

k

�! p in A ontains a �nal state of A. The single output of the state q is v

!

1

.

By Lemma 26, the subset P ontains a pair (q; z) and v

0

y

q

= v

0

v

!

1

= v

0

0

z.
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Let (q

0

; z

0

) be another pair in P . By de�nition of the transitions of D, there

is a sequene (q

n

)

n�0

of states suh that the pairs (q

n

; v

0

1

n

z

0

) belong to P . Sine

there is a �nite number of states, there are n < m suh that q

n

= q

m

. This

implies that there is in T a yling path around q

n

input labeled by u

m�n

1

. Let

q

00

= q

n

= q

m

. We �rst laim that v

0

1

n

z

0

= z

0

. If the word v

0

1

is empty, this is

obvious. Otherwise, Corollary 27 implies that v

0

1

n

z

0

= v

0

1

m

z

0

. Thus z

0

= v

0

1

!

and the equality v

0

1

n

z

0

= z

0

also holds. The subset P ontains a pair (q

00

; z

0

).

By Lemma 26, there is a path i

u

0

jv

00

���! q

00

in T suh that v

0

0

z

0

= v

00

y

q

00

. By

onstrution, there is also a yling path around q

00

input labeled by u

m�n

1

. We

suppose that the output label of this yling path is the word w. If the word w

is empty, Lemma 28, states that v

00

y

q

00

= v

0

v

!

1

. Thus, one has v

0

0

z

0

= v

00

y

q

00

=

v

0

v

!

1

= v

0

0

z and z = z

0

. If the word w is nonempty, one has y

q

00

= w

!

and

f(u

0

u

!

1

) = v

00

w

!

= v

0

v

!

1

. This implies z = z

0

.

Sine we have proved that all pairs (q; z) in P share the same in�nite word z

and sine eah path p

u

i

�! p ontains a �nal state, eah word v

0

i

is nonempty by

de�nition of the transitions of D and the equality v

0

1

v

0

2

v

0

3

: : : = z holds. This

last equality implies that v

0

y

q

= v

0

0

z = v

0

0

v

0

1

v

0

2

: : : and that f(x) = f

0

(x).

Conversely, the de�nition of the transitions of D implies that the domain

of f

0

is ontained in the domain of f . Thus both funtions f and f

0

have the

same domain and f = f

0

. �

We have already mentioned in Proposition 24 that it an be deided whether

a funtion over in�nite words realized by a transduer with all states �nal is

sequential. As in the ase of �nite words, the algorithm desribed above provides

another deision proedure. Indeed, Lemma 32 gives an upper bound K of the

lengths of �nite words whih an appear in states of D. Let T be a transduer

with all states �nal realizing a funtion f . If the algorithm is applied to T ,

either it stops and gives a sequential transduer D or it reates a state (p; P )

ontaining a pair (q; z) suh that the length of z is greater than K. In the

former ase, the sequential transduer D is equivalent to T and the funtion f

is sequential. In the latter ase, the funtion f is not sequential.
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