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Abstra
t

We study the determinization of transdu
ers over �nite and in�nite

words. The �rst part of the paper is devoted to �nite words. We re
all the


hara
terization of subsequential fun
tions due to Cho�rut. We des
ribe

here a known algorithm to determinize a transdu
er.

In the 
ase of in�nite words, we 
onsider transdu
ers with all their

states �nal. We give an e�e
tive 
hara
terization of sequential fun
tions

over in�nite words. We des
ribe an algorithm to determinize transdu
ers

over in�nite words. This part 
ontains the main novel results of the paper.

1 Introdu
tion

The aim of this paper is the study of determinization of transdu
ers, that is

of ma
hines realizing rational transdu
tions. A transdu
er is a �nite state au-

tomaton (or a �nite state ma
hine) whose edges are labeled by pairs of words

taken in �nite alphabets. The �rst 
omponent of ea
h pair is 
alled the input

label. The se
ond one the output label. The transdu
ers that we 
onsider have

a

epting (or �nal) states. Su
h transdu
ers are sometimes 
alled a-transdu
ers

(a for a

epting). The rational relation de�ned by a transdu
er is the set of

pairs of words whi
h are labels of an a

epting path in the transdu
er. We

assume that the relations de�ned by our transdu
ers are fun
tions. This is a

de
idable property.

The study of transdu
ers has many appli
ations. Transdu
ers are used to

model 
oding s
hemes (
ompression s
hemes, 
onvolutional 
oding s
hemes,
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oding s
hemes for 
onstrained 
hannels, for instan
e). They are widely used in


omputer arithmeti
 [16℄ and in natural language pro
essing [24℄. Transdu
ers

are also used in programs analysis [14℄. The determinization of a transdu
er is

the 
onstru
tion of another transdu
er whi
h de�nes the same fun
tion and has

a deterministi
 (or right resolving) input automaton. Su
h transdu
ers allow a

sequential en
oding and thus are 
alled sequential transdu
ers.

In the �rst part of the paper, we present a short survey of the determiniza-

tion of transdu
ers realizing fun
tions over �nite words. Our transdu
ers may

have �nal states. We present some known results about subsequential fun
tions,

that is fun
tions that 
an be realized by transdu
ers with a deterministi
 input

but that may have an output fun
tion de�ned on states. The notion of subse-

quential fun
tions has been introdu
ed by S
h�utzenberger [27℄. We re
all the


hara
terization of subsequential fun
tions obtained by Cho�rut [11, 12℄. This


hara
terization gives a de
ision pro
edure for the subsequentiality of fun
tions

de�ned by a transdu
er. It has been proved in [29, 30℄ that this 
an be de
ided

in polynomial time. We give another proof of this result whi
h is a 
onsequen
e

of the de
idability in polynomial time of fun
tionality over in�nite words [10℄.

Another proof of the same result is given in [4℄. The de
idability of fun
tionality

was already proved by Gire [17℄. We also des
ribe the algorithm to determinize

a transdu
er. This algorithm takes a real-time transdu
er whi
h realizes a sub-

sequential fun
tion and outputs a subsequential transdu
er. This algorithm is

a
tually 
ontained in the proof of Cho�rut [11, 12℄ (see also [5, p. 109{110℄).

This algorithm has also been des
ribed by Mohri [21℄ and Ro
he and Shabes

[24, p. 223{233℄.

The determinization of a transdu
er realizing a subsequential fun
tion f

provides a subsequential transdu
er realizing f . If the fun
tion is sequential,

this subsequential transdu
er 
an be transformed into a sequential one. This


an be obtained by the normalization of a transdu
er introdu
ed by Cho�rut

[12, 13℄. EÆ
ient algorithms that 
ompute the normalization have been given

in [20, 22℄, [8, 9℄ and [2℄.

In the se
ond part of the paper, we 
onsider transdu
ers and fun
tions over

in�nite words and our transdu
ers have all their states �nal. The reason why we

assume that all states are �nal is that the 
ase of transdu
ers with �nal states

seems to be mu
h more 
omplex. Indeed, the determinization of automata over

in�nite words is already very diÆ
ult [25℄. In parti
ular, it is not true that any

rational set of in�nite words is re
ognized by a deterministi
 automaton with

�nal states. Other a

epting 
onditions, as the Muller 
ondition for instan
e,

must be used.

We �rst give an e�e
tive 
hara
terization of sequential fun
tions over in�nite

words. This 
hara
terization extends to in�nite words the twinning property

introdu
ed by Cho�rut [11℄. We prove that a fun
tion is sequential if it is

a 
ontinuous map whose domain 
an be re
ognized by a deterministi
 B�u
hi

automaton, and su
h that the transdu
er obtained after removing some spe
ial

states has the twinning property. These 
onditions 
an be simpli�ed in the


ase where the transdu
er has no 
y
ling path with an empty output label. We

use this 
hara
terization to des
ribe an algorithm 
he
king whether a fun
tion
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realized by a transdu
er is sequential. This algorithm be
omes polynomial when

the transdu
er has no 
y
ling path with an empty output label. Finally, we give

an algorithm to determinize a real-time transdu
er. The algorithm 
an be easily

adapted to the 
ase when the transdu
er is not real-time. The algorithm is mu
h

more 
omplex than in the 
ase of �nite words. It is the main result of the paper.

These determinizations do not preserve the dynami
 properties of the trans-

du
ers as the lo
ality of its output. We mention that in [18℄, an algorithm is

given to determinize transdu
ers over bi-in�nite words that have a right 
losing

input (or that are n-deterministi
 or deterministi
 with a �nite delay in the

input) and a lo
al output (see also [19, p. 143℄ and [1, p. 110{115℄). This al-

gorithm preserves the lo
ality of the output. These features are important for


oding appli
ations.

The paper is organized as follows. Se
tion 2 is devoted to transdu
ers over

�nite words. Basi
 notions of transdu
ers of rational fun
tions are de�ned at

the beginning of this se
tion. The 
hara
terization of subsequential fun
tions

is re
alled in Se
tion 2.1 while the algorithm for determinization of transdu
ers

is des
ribed in Se
tion 2.2. The 
hara
terization of sequential fun
tions among

subsequential ones is re
alled in Se
tion 2.3. Se
tion 3 is devoted to transdu
ers

over in�nite words. We give in Se
tion 3.1 a 
hara
terization of sequential

fun
tions while the algorithm for determinization of transdu
ers is des
ribed

in Se
tion 3.2. In both 
ases of �nite and in�nite words, we give examples of

determinization of transdu
ers.

Part of the results of the present paper was presented at the 
onferen
e

ICALP'2000 [3℄.

2 Transdu
ers over �nite words

In the sequel, A and B denote �nite alphabets. The free monoid A

�

is the set

of �nite words or sequen
es of letters of A. The empty word is denoted by ".

We denote the fa
t that a �nite word u is a pre�x of a �nite word v by u � v.

The relation � is a partial order. If u is a pre�x of v, we denote by u

�1

v the

unique word w su
h that v = uw.

A transdu
er over the monoid A

�

� B

�

is 
omposed of a set Q of states, a

set E � Q � A

�

� B

�

� Q of edges and two sets I; F � Q of initial and �nal

states. An edge e = (p; u; v; q) from p to q is denoted by p

ujv

��! q. The state p

is the origin, u is the input label, v is the output label, and q is the end. Thus,

a transdu
er is the same obje
t as an automaton, ex
ept that the labels of the

edges are pairs of words instead of letters.

A transdu
er is often denoted by A = (Q;E; I; F ), or also by (Q;E; I) if all

states are �nal, i.e., Q = F .

A path in the transdu
er T is a sequen
e

p

0

u

0

jv

0

���! p

1

u

1

jv

1

���! � � �

u

n

jv

n

����! p

n

of 
onse
utive edges. Its input label is the word u = u

1

u

2

� � �u

n

whereas its

output label is the word v = v

1

v

2

� � � v

n

. The path leaves p

0

and ends in p

n

.
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The path is often denoted

p

0

ujv

��! p

n

:

A path is su

essful if it leaves an initial state and ends in a �nal state. The set

re
ognized by the transdu
er is the set of labels of its su

essful paths, whi
h is

a
tually a relation R � A

�

�B

�

. The transdu
er 
omputes a fun
tion if for any

word u 2 A

�

, there exists at most one word v 2 B

�

su
h that (u; v) 2 R. We


all it the fun
tion realized by the transdu
er. A transdu
er whi
h realizes a

fun
tion is sometimes 
alled single-valued in the literature. Thus a transdu
er


an be seen as a ma
hine 
omputing nondeterministi
ally output words from

input words. We denote by dom(f) the domain of the fun
tion f .

A transdu
er is �nite if its set of states and its set of transitions are �nite.

It is a 
onsequen
e of Kleene's theorem that a subset of A

�

� B

�

is a rational

relation if and only if it is the set re
ognized by a �nite transdu
er.

0

1 2

3 4

ajb

aj


ajb

ajb

aj


aj


Figure 1: A transdu
er for the relation (a

2

; b

2

)

�

[ (a

2

; 


2

)

�

(a; 
).

Example 1 (from [5℄) The automaton of Figure 1 re
ognizes the relation (a

2

; b

2

)

�

[

(a

2

; 


2

)

�

(a; 
) over the alphabets A = fag and B = fb; 
g. This relation is a
tu-

ally the fun
tion whi
h maps a

n

to b

n

if n is even and to 


n

if n is odd.

Let T be a transdu
er. The underlying input automaton (respe
tively un-

derlying output automaton) of T is obtained by omitting the output label (re-

spe
tively input label) of ea
h edge.

A transdu
er is said to be real-time if it is labeled in A�B

�

. It 
an be proved

that any rational fun
tion 
an be realized by a real-time transdu
er. Further-

more, from any transdu
er realizing a fun
tion 
an be 
omputed in polynomial

time an equivalent real-time transdu
er (see for instan
e [30, Prop. 1.1℄). We say

that a transdu
er T is sequential if it is real-time and if the following 
onditions

are satis�ed.

� it has a unique initial state,

� the underlying input automaton is deterministi
.
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These 
onditions ensure that for ea
h word u 2 A

�

, there is at most one word

v 2 B

�

su
h that (u; v) is re
ognized by T . Thus, the relation 
omputed by

T is a partial fun
tion from A

�

into B

�

. A fun
tion is sequential if it 
an be

realized by a sequential transdu
er.

Remark 2 In [15, p. 299℄, [5℄ and [6℄, it is assumed that all states of a sequen-

tial transdu
er are �nal. We follow the de�nition of Cho�rut [11, 12℄ where

sequential transdu
er may have �nal states. Thus, some 
hara
terizations that

we give below di�er from those presented in [5℄ for this reason. When all states

are �nal, the domain of a sequential fun
tion is pre�x 
losed, i.e., if uv belongs

to the domain then u also belongs to the domain. As our de�nition allows �nal

states, the domain of a sequential fun
tion is not ne
essarily pre�x 
losed.

0 1

aja aja

bjb

bja

Figure 2: A sequential transdu
er.

Example 3 Let A = B = fa; bg be the input and the output alphabets. The

transdu
er of Figure 2, whose initial state is 0, is sequential. It repla
es by a

those b's whi
h appear after an odd number of b. On the 
ontrary, the trans-

du
er of Example 1 is not sequential. A
tually, the fun
tion 
omputed by this

transdu
er is not sequential. Indeed, one may verify that if f is sequential, and

if u and v are two words of dom(f) su
h that u � v, then f(u) � f(v).

Remark 4 If f is a sequential fun
tion and if f(") is de�ned, then f(") = ".

To remove this restri
tion, it is possible to add an initial word asso
iated with

the initial state. This word is output before any 
omputation. This initial word

is ne
essary to get the uni
ity of a minimal sequential transdu
er [27, 12℄.

A subsequential transdu
er (A; �) over A

�

� B

�

is a pair 
omposed of a

sequential transdu
er A over A

�

� B

�

with F as set of �nal states, and of a

fun
tion � : F ! B

�

. The fun
tion f 
omputed by (A; �) is de�ned as follows.

Let u be a word in A

�

. The value f(u) is de�ned if and only if there is a path

i

ujv

��! q in A with input label u, from the initial state i to a �nal state q. In

this 
ase, one has f(u) = v�(q). Thus, the fun
tion � is used to append a word

to the output at the end of the 
omputation. A fun
tion is subsequential if it


an be realized by a subsequential transdu
er.
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Remark 5 Any sequential fun
tion is subsequential. It suÆ
es to 
onsider the

fun
tion � su
h that �(q) = " for any �nal state q.

0 1

a

b

aja

aja

bjb

bjb

Figure 3: A subsequential transdu
er.

Example 6 The fun
tion f realized by the subsequential transdu
er pi
tured

in Figure 3 appends to ea
h word its last letter. The word u is mapped to ua

if it ends with an a and it is mapped to ub if it ends with a b. This fun
tion is

subsequential but it is not sequential. Indeed, for any word w, f(wa) is not a

pre�x of f(wab).

2.1 Subsequential fun
tions

In this se
tion, we present some known results about subsequential fun
tions.

We re
all the 
hara
terization of subsequential fun
tions obtained by Cho�rut

[11, 12℄. It is known that it is de
idable whether a fun
tion realized by a

transdu
er is subsequential. It has been proved in [29, 30℄ that this 
an be

de
ided in polynomial time. We give here another proof of this result whi
h

is a 
onsequen
e of the de
idability in polynomial time of fun
tionality over

in�nite words [10℄. We also des
ribe the algorithm to determinize a real-time

transdu
er. This algorithm takes a transdu
er whi
h realizes a subsequential

fun
tion and outputs a subsequential transdu
er. This algorithm is a
tually


ontained in the proof of Cho�rut [11, 12℄ and [5, p. 109{110℄. It has also been

des
ribed by Mohri [20, 22℄ and Ro
he and Shabes [24, p. 223{233℄.

If the fun
tion is a
tually sequential, this subsequential transdu
er is again

transformed in a sequential transdu
er by the algorithm des
ribed in Se
tion 2.3.

We give below two 
hara
terizations of subsequential fun
tions that have

been obtained by Cho�rut (see [11, 12℄ and [5, p. 105℄). The �rst 
hara
teriza-

tion is intrinsi
 to the fun
tion. It is based on metri
 properties of the fun
tion.

The se
ond 
hara
terization is e�e
tive. It is based on a property 
alled twin-

ning property of a transdu
er realizing the fun
tion. As it has been shown in

[29, 30℄, this property 
an be de
ided in polynomial time.

Some notation is needed to state the 
hara
terization of subsequential fun
-

tions. We �rst introdu
e a distan
e d on �nite words. Let u; v be two �nite

words, we denote by d the distan
e su
h that

d(u; v) = juj+ jvj � 2ju ^ vj;

6



where u ^ v is the longest 
ommon pre�x of u and v (see [5, p. 104℄).

A partial fun
tion f : A

�

! B

�

has bounded variation if and only if:

8k � 0 9K � 0 8u; v 2 dom(f) d(u; v) � k ) d(f(u); f(v)) � K:

The de
idability of the subsequentiality is essentially based on the following

notion introdu
ed by Cho�rut [12, p. 133℄ (see also [5, p. 128℄). Two states q

and q

0

of a transdu
er are said to be twinned i� for any pair of paths

i

uju

0

��! q

vjv

0

��! q

i

0

uju

00

���! q

0

vjv

00

���! q

0

where i and i

0

are two initial states, the output labels satisfy the following

property. Either v

0

= v

00

= " or there exists a �nite word w su
h that either

u

00

= u

0

w and wv

00

= v

0

w, or u

0

= u

00

w and wv

0

= v

00

w. The latter 
ase is

equivalent to the following two 
onditions:

(i) jv

0

j = jv

00

j,

(ii) u

0

v

0

!

= u

00

v

00

!

A transdu
er has the twinning property if any two states are twinned.

Proposition 7 (Choffrut) Let f : A

�

! B

�

be a partial fun
tion realized

by a transdu
er T . The following three propositions are equivalent.

� The fun
tion f is subsequential.

� The fun
tion f has bounded variation.

� The transdu
er T has the twinning property.

The equivalen
e between the �rst two statements is an intrinsi
 
hara
teriza-

tion of subsequential fun
tions among rational fun
tions. It a
tually suÆ
es to

suppose that the inverse image by f of any rational set is still rational and that

f has bounded variation to insure that f is subsequential. However, we are in

his paper interested in e�e
tive matters and we always suppose that a fun
tion

on words is given by a transdu
er whi
h realizes it. The equivalen
e between

the last two statements allows us to de
ide the subsequentiality. The proof of

this equivalen
e is essentially the proof of Lemma 16 below.

We mention here another 
hara
terization of the subsequentiality. For a

partial fun
tion f : A

�

! B

�

, de�ne the right 
ongruen
e � on A

�

by u � u

0

i�

there are two words �nite words v and v

0

su
h that the following two properties

hold for any �nite word w. First, the word uw is in the domain of f i� u

0

w is

in the domain of f . Se
ond, if uw and u

0

w are in the domain, then v

�1

f(uw) =

v

0

�1

f(vw). The fun
tion f is then subsequential i� the right 
ongruen
e � has

�nite index. In that 
ase, the 
ongruen
e � allows one to 
onstru
t dire
tly a

subsequential transdu
er realizing f . Furthermore, this sequential transdu
er is

minimal in the sense that any other subsequential transdu
er realizing f 
an be

proje
ted onto this one. The algorithm presented in Se
tion 2.2 allows one to


ompute e�e
tively the right 
ongruen
e �.
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Example 8 We have already mentioned in Example 3 that the fun
tion (a

2

; b

2

)

�

[

(a

2

; 


2

)

�

(a; 
) of Example 1 is not sequential. A
tually, this relation is not sub-

sequential as it 
an be easily shown with Proposition 7. Indeed, the fun
tion

does not have bounded variation. For any integer n, one has

d(a

2n

; a

2n+1

) = 1 while d(b

2n

; 


2n+1

) = 4n+ 1:

We now give two de
idability results about rational relations. The �rst one

is due to S
h�utzenberger [26℄ (see also [7℄). The se
ond one is due to Cho�rut

[11, 12℄ (see also [5, p. 128℄).

Proposition 9 (S
h

�

utzenberger) Let T be a transdu
er over A

�

� B

�

. It

is de
idable whether the relation de�ned by T is a fun
tion.

Cho�rut also proved the de
idability of the subsequentiality. He showed that

it suÆ
es to 
he
k the twinning property when the lengths of the words u and v

are bounded by the square of the number of states [12, p. 133℄ and [5, p. 128℄.

However, this algorithm does not seem to be polynomial.

Proposition 10 (Choffrut) Let T be a transdu
er labeled in A

�

�B

�

whi
h

realizes a fun
tion f , then the subsequentiality of f is de
idable.

The following result is due to Weber and Klemm [29, 30℄.

Proposition 11 Let f be the fun
tion realized by a transdu
er labeled in A

�

�

B

�

. It is de
idable in polynomial time whether f is subsequential.

The proof of the proposition follows dire
tly from Proposition 7 and from

the following lemma. We give below another proof based on the de
idability in

polynomial time of the fun
tionality over in�nite words. A third proof is given

in [4℄.

Lemma 12 The twinning property of a transdu
er is de
idable in polynomial

time.

Proof Let T = (Q;E; I; F ) be a transdu
er. We de
ide the twinning property

of T in two steps. We �rst de
ide in polynomial time the 
ondition (i) and then

the 
ondition (ii).

We de�ne an automaton A whose states are the pairs of states of T and

whose edges are labeled by integers. There is an edge (p; p

0

)

n

�! (q; q

0

) i� there

are two edges p

aju

��! q and p

0

aju

0

��! q

0

in A su
h that n = ju

0

j � juj. The label

of a path in A is the sum of the labels of the edges of the path. We 
laim that

the transdu
er T satis�es 
ondition (i) i� the label of any 
y
le around a pair

(q; q

0

) a

essible from some pair (i; i

0

) for two initial states i and i

0

, is equal to

zero. This 
an be done by a depth-�rst sear
h.

We assume that the transdu
er already satis�es 
ondition (i). This �rst 
on-

dition insures that the output label v

0

is empty i� v

00

is empty. The 
ondition (ii)

is then equivalent to the fun
tionality of the relation on in�nite words de�ned

8



by the transdu
er T with all states being �nal. Indeed, it is 
lear that if the

relation de�ned by T is a fun
tion, then any two states are twinned. Conversely,

if this relation is not a fun
tion, there exist two in�nite paths labeled by xjy

and xjy

0

with y 6= y

0

. Let p

0

p

1

p

2

: : : and p

0

0

p

0

1

p

0

2

: : : be the states visited by the

two paths. Let k an index su
h that y

k

6= y

0

k

. There exist indi
es m > n su
h

that (p

m

; p

0

m

) = (p

n

; p

0

n

). Moreover, n may be 
hosen great enough su
h that

the outputs along the paths from the initial state to p

n

and p

0

n

have a length

greater than k. Then the states p

m

and p

0

m

are not twinned.

It is de
idable in polynomial time whether a relation on in�nite words real-

ized by a transdu
er is a fun
tion [10℄. �

2.2 Determinization of transdu
ers over �nite words

In this se
tion, we des
ribe an algorithm whi
h determinizes a real-time trans-

du
er whi
h has the twinning property. This algorithm proves that the 
ondi-

tions of Proposition 7 are suÆ
ient.

Let T = (Q;E; I; F ) be a real-time transdu
er, that is labeled in A � B

�

,

realizing a fun
tion whi
h is subsequential. We give below an algorithm to de-

terminize the transdu
er T , that is, whi
h produ
es a subsequential transdu
er

realizing f . The algorithm is exponential in the number of states of T . The

determinization of an automaton is already exponential.

We de�ne a subsequential transdu
er D as follows. A state P of D is a set

of pairs (q; w) where q is a state of T and w is a word over B. We now des
ribe

the transitions of T . Let P be state of D and let a be a letter. The pair (P; a)

determines a set R de�ned by

R = f(q

0

; wu) j there exist (q; w) 2 P and q

aju

��! q

0

2 Eg:

If R is empty, there is no transition from P input labeled by a. Otherwise, let

v be the longest 
ommon pre�x of the words wu for (q

0

; wu) 2 R and

P

0

= f(q

0

; w

0

) j (q

0

; vw

0

) 2 Rg:

There is then a transition P

ajv

��! P

0

. The initial state of D is the set J = f(i; ") j

i 2 Ig where I is the set of initial states of T . It follows from the de�nition

of the transitions of D that if P is a state a

essible from the initial state, the

longest 
ommon pre�x of the words w for (q; w) 2 P is the empty word. We

only keep in D the a

essible part from the initial state. The transdu
er D has

a deterministi
 input automaton.

The following lemma states the main property of the transitions of D.

Lemma 13 Let u be a �nite word. Let J

ujv

��! P be the unique path in D with

input label u from the initial state. Then, the state P is equal to

P = f(q; w) j there exists a path i

ujvw

���! q in T where i 2 Ig:

9



Proof The proof of the lemma is by indu
tion on the length of u. Let us


onsider the following path in D

J

ujv

��! P

ajt

��! P

0

where a is a letter. Let (q

0

; w

0

) be a pair in P

0

. By the de�nition of the

transitions of D, there is a pair (q; w) in P and a transition q

ajt

0

��! q

0

in T su
h

that tw

0

= wt

0

. By the indu
tion hypothesis, there is a path i

ujvw

���! q in T .

Finally, one has vtw

0

= vwt

0

. �

The pre
eding lemma has the following 
onsequen
e. If both pairs (q; w)

and (q

0

; w

0

) belong to a state P whi
h is a

essible from the initial state and if

both q and q

0

are �nal states in T , then the equality w = w

0

ne
essarily holds.

Otherwise, the relation realized by T is not a fun
tion. This remark allows us

to de�ne the set of �nal states of D and the fun
tion �. A state P is �nal if it


ontains as least one pair (q; w) where q is a �nal state of T . The fun
tion �

maps su
h a �nal state P to the word w.

0 1 2

3 4

5

ajb

ajba

ajba

aj"

aj"

aj"

aj"

bja


aja

Figure 4: Transdu
er of Example 14

Example 14 Consider the transdu
er pi
tured in Figure 4. If the algorithm

for determinization is applied to this transdu
er, one gets the subsequential

transdu
er pi
tured in Figure 5. This subsequential transdu
er is transformed

into a sequential transdu
er in Examples 19.

This de�nes a subsequential transdu
er whi
h may have an in�nite number

of states. However, we 
laim that the bounded variation property of T implies

that the lengths of the words in states of D are bounded. Thus the number of

states of D is a
tually �nite.

Lemma 15 Let v

1

, v

2

, v

0

1

and v

0

2

be four �nite words su
h that jv

2

j = jv

0

2

j and

v

1

v

!

2

= v

0

1

v

0

2

!

. For any words v

3

and v

0

3

,

d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

) = d(v

1

v

3

; v

0

1

v

0

3

):

10



0; "

A

B

1; "

2; a

3; a

�

�

�

�

C

1; a

2; "

4; a

�

�

�

�

a

5; "

D

ajb

aj"aj"

aja

bjaa


bja


Figure 5: Determinization of the transdu
er of Figure 4

Proof By symmetry, we may suppose that jv

1

j � jv

0

1

j. There is then a �nite

word w su
h that v

0

1

= v

1

w and wv

0

2

= v

2

w. Thus the word v

0

1

v

0

2

v

0

3

is equal to

v

1

v

2

wv

0

3

. It follows that

d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

) = d(v

3

; wv

0

3

) = d(v

1

v

3

; v

0

1

v

0

3

):

�

The following lemma states that if a transdu
er T has the twinning property,

then the outputs labels of two paths with the same input label have a long


ommon pre�x. It proves that if the relation realized by T is a fun
tion, it has

bounded variation. The proof is very 
lose to the proof of Proposition 6.4 in [5℄

but we do not assume that the relation realized by T is a fun
tion. This is

useful when transdu
ers realizing relations on in�nite words are 
onsidered.

Lemma 16 Let T be a transdu
er whi
h has the twinning property. There is a


onstant K su
h that the outputs of two paths i

ujv

��! q and i

0

ujv

0

��! q

0

from two

initial states i and i

0

satisfy

d(v; v

0

) � K:

Proof LetK be equal to 2n

2

M where n is the number of states of the transdu
er

and M is the maximal length of the output label of a transition. We prove

d(v; v

0

) � K by indu
tion on the length of u. If juj � n

2

, the result holds by

de�nition of K. Otherwise, both paths 
an be fa
torized

i

u

1

jv

1

���! p

u

2

jv

2

���! p

u

3

jv

3

���! q

i

0

u

1

jv

0

1

���! p

0

u

2

jv

0

2

���! p

0

u

3

jv

0

3

���! q

0

where u

1

u

2

u

3

= u, v

1

v

2

v

3

= v, v

0

1

v

0

2

v

0

3

= v

0

and ju

2

j > 0. By the twinning

property, one has d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

) = d(v

1

v

3

; v

0

1

v

0

3

) and the result follows from

the indu
tion hypothesis. �

11



The following lemma states that the lengths of the words w of the pairs

(q; w) in the states of D are bounded. This implies that the number of states

of D is �nite.

Lemma 17 There is a 
onstant K su
h that for any pair (q; w) in a state P

of D, one has jwj � K.

Proof Let J

ujv

��! P be a path in D. Let (q; w) be a pair in some state P .

By de�nition of the transitions of D, there is another pair (q

0

; w

0

) in D su
h

that w and w

0

have no 
ommon pre�x. By Lemma 13, there are two paths,

i

ujvw

���! q and i

0

ujvw

0

���! q

0

in T . By Lemma 16, there is a 
onstant K su
h that

d(vw; vw

0

) � K and thus jwj � K. �

The following proposition �nally states that the subsequential transdu
er D

is equivalent to the transdu
er T . It follows dire
tly from Lemma 13 and the

de�nition of the fun
tion �.

Proposition 18 The sequential transdu
er D realizes the same fun
tion f as

the transdu
er T .

We have already mentioned in Proposition 11 that it 
an be de
ided in

polynomial time whether a fun
tion realized by a transdu
er is subsequential.

The algorithm des
ribed above is exponential but it provides another de
ision

pro
edure. Indeed, Lemma 17 gives a upper bound of the lengths of words whi
h


an appear in states of D. By Lemma 16, this upper bound is 2n

2

M where n is

the number of states of T and M is the maximal length of the output label of a

transition of T . Let T be a transdu
er realizing a fun
tion f . If the algorithm

is applied to T , either it stops and gives a subsequential transdu
er D or it


reates a state P 
ontaining a pair (q; w) su
h that the length of w is greater

than 2n

2

M . In the former 
ase, the subsequential transdu
er D is equivalent

to T and the fun
tion f is subsequential. In the latter 
ase, the fun
tion f is

not subsequential.

2.3 Sequential fun
tions

The determinization of a transdu
er realizing a subsequential fun
tion f pro-

vides a subsequential transdu
er realizing f . Even if the fun
tion f is sequential,

the algorithm does not give a sequential transdu
er but this subsequential trans-

du
er 
an be transformed into a sequential one.

This transformation is based on a normalization of subsequential transdu
-

ers introdu
ed by Cho�rut [12, 13℄. This normalization 
onsists in pushing as

mu
h as possible the output labels from �nal states towards the initial state.

Algorithms 
omputing the normalized transdu
er are given in [20, 22℄, [8, 9℄ and

[2℄. The algorithms given in [20, 22℄ and [2℄ run in time O(jEjP ) where E is the

set of transitions of the transdu
er, and where P is the maximal length of the

greatest 
ommon pre�x of the output labels of paths leaving ea
h state of the

transdu
er. If the normalization is applied to a subsequential transdu
er, the

12



resulting transdu
er is sequential i� the fun
tion is sequential. Sin
e the normal-

ization 
an be performed in polynomial time, it 
an be 
he
ked in polynomial

time whether a fun
tion realized by a subsequential transdu
er is sequential. It


an be shown that a fun
tion realized by a subsequential transdu
er is sequential

i� it preserves pre�xes. This was already proved in [29, 30℄ that this property


an be 
he
ked in polynomial time.

In order to transform a subsequential transdu
er into a sequential one, it is

not ne
essary to push as mu
h as possible the output labels from �nal states

towards the initial state, as the normalization does. It suÆ
es to push these

output labels until the output of all states are empty. Therefore, the algorithm

given in [2℄ 
an be adapted to meet this requirements. This gives a time 
om-

plexity of O(jEjL) instead of O(jEjP ) where L is the maximal length of the

output words.

A

B

C

D

ajba

aj"aj"

aja

bja


bj


Figure 6: Sequential transdu
er of Example 19

Example 19 Consider the transdu
er pi
tured in Figure 5 where the states

have been renamed A, B, C and D. If the normalization is applied to this sub-

sequential transdu
er, one gets the sequential transdu
er pi
tured in Figure 6.

3 Transdu
ers over in�nite words

In this se
tion, we 
onsider transdu
ers over in�nite words with all states being

�nal. We �rst give an e�e
tive 
hara
terization of sequential fun
tions over in-

�nite words. This 
hara
terization extends to in�nite words the twinning prop-

erty introdu
ed by Cho�rut [11, 12℄. We use this 
hara
terization to des
ribe

an algorithm to 
he
k whether a fun
tion realized by a transdu
er is sequential.

Finally, we give an algorithm to determinize a transdu
er.

In this se
tion, we denote by A

!

the set of all (right-)in�nite words over

the alphabet A. We 
onsider transdu
ers over in�nite words. The edges of the

transdu
ers are still labeled in A

�

� B

�

. The transdu
er has initial states but

we suppose that all states are �nal. Thus we omit the set F of �nal states in

the notation. An in�nite path is then su

essful if it leaves an initial state. The

relation over in�nite words de�ned by the transdu
er is the set R � A

!

� B

!

13



of labels of its su

essful paths. The domain of the transdu
er is the set of

in�nite words x su
h that there is some in�nite word y su
h that (x; y) labels

a su

essful path in the transdu
er. When the transdu
er realizes a fun
tion,

its domain is also the domain of the fun
tion. A fun
tion from A

!

to B

!

is

sequential if it is realized by a sequential transdu
er. We point out that the

notion of subsequential fun
tion is irrelevant in the 
ase of in�nite words.

3.1 Chara
terization of sequential fun
tions

In this se
tion, we 
hara
terize fun
tions realized by transdu
ers with all states

�nal that 
an be realized by sequential transdu
ers. This 
hara
terization uses

topologi
al properties of the fun
tion and some twinning property of the trans-

du
er. In this se
tion, we assume that all states of transdu
ers are �nal.

We �rst introdu
e a de�nition. We de�ne a subset of states whi
h play

a parti
ular role in the sequel. We say that a state q of a transdu
er is non


onstant if there are two paths leaving q labelled by two pairs (x; y) and (x

0

; y

0

)

of in�nite words su
h that y 6= y

0

. If a state q is 
onstant, either there is no path

leaving q labelled by a pair of in�nite words or there is an in�nite word y

q


alled

the 
onstant of q su
h that for any pair (x; y) of in�nite words labelling a path

leaving q, then y = y

q

. In the former 
ase, the state q 
an be removed sin
e it


annot o

ur in an a

epting path labelled by a pair of in�nite words. In the

sequel, we always assume that su
h states have been removed. The 
onstant y

q

is an ultimately periodi
 word. It should be noti
ed that any state a

essible

from a 
onstant state is also 
onstant. We now state the 
hara
terization of

sequential fun
tions.

Proposition 20 Let f be a fun
tion realized by a transdu
er T with all states

�nal. Let T

0

be the transdu
er obtained by removing from T all 
onstant states.

Then the fun
tion f is sequential i� the following three properties hold:

� the domain of f 
an be re
ognized by a deterministi
 B�u
hi automaton,

� the fun
tion f is 
ontinuous,

� the transdu
er T

0

has the twinning property.

Sin
e the fun
tion f is realized by a transdu
er, the domain of f is rational.

However, it is not true that any rational set of in�nite words is re
ognized by

a deterministi
 B�u
hi automaton. Landweber's theorem states that a set of

in�nite words is re
ognized by a deterministi
 B�u
hi automaton i� it is rational

and G

Æ

[28℄. Re
all that a set is said to be G

Æ

is it is equal to a 
ountable

interse
tion of open sets for the usual topology of A

!

.

It is worth pointing out that the domain of a fun
tion realized by a transdu
er

may be any rational set although it is supposed that all states of the transdu
er

are �nal. The �nal states of a B�u
hi automaton 
an be en
oded in the outputs of

a transdu
er in the following way. Let A = (Q;E; I; F ) be a B�u
hi automaton.

We 
onstru
t a transdu
er T by adding an output to any transition of A. A

transition p

a

�! q of A be
omes p

ajv

��! q in T where v is empty if p is not �nal

14



and is equal to a �xed letter b if p is �nal. It is 
lear that the output of a path is

in�nite i� the path goes in�nitely often through a �nal state. Thus the domain

of the transdu
er T is the set re
ognized by A. For instan
e, the domain of

a transdu
er may be not re
ognizable by a deterministi
 B�u
hi automaton as

in the following example. It is however true that the domain is 
losed if the

transdu
er has no 
y
ling path with an empty output.

0 1

aj"

bj"

bjb

bjb

Figure 7: Transdu
er of Example 21

Example 21 The domain of the fun
tion f realized by the transdu
er of Fig-

ure 7 is the set (a+ b)

�

b

!

of words having a �nite number of a. The fun
tion f


annot be realized by a sequential transdu
er sin
e its domain is not a G

Æ

set.

It must be also pointed out that a fun
tion realized by a transdu
er may be

not 
ontinuous although it is supposed that all states of the transdu
er are �nal

as it is shown in the following example.

0 1

aja

bj"

bjb

bjb

Figure 8: Transdu
er of Example 22

Example 22 The image of an in�nite word x by the fun
tion f realized by

the transdu
er of Figure 8 is f(x) = a

!

if x has an in�nite number of a and

15



f(x) = a

n

b

!

if the number of a in x is n. The fun
tion f is not 
ontinuous. For

instan
e, the sequen
e x

n

= b

n

ab

!


onverges to b

!

while f(x

n

) = ab

!

does not


onverge to f(b

!

) = b

!

.

Proof We �rst explain why the above three 
onditions of the proposition are

ne
essary. The fa
t that the 
onditions are suÆ
ient follows from the algorithm

that we des
ribe in Se
tion 3.2.

If the fun
tion f is realized by a sequential transdu
er D, a deterministi


B�u
hi automaton re
ognizing the domain of f 
an be dedu
ed from the input

automaton of D in the following way. Ea
h state q is �rst split in two states q

1

and q

2

. We distribute then the edges arriving in q between q

1

and q

2

a

ording

to the emptiness of their output. Edges with an empty output arrive in q

1

while

edges with a nonempty output arrive in q

2

. The state q

2

is then �nal and q

1

is

not. If q was initial, exa
tly one among q

1

and q

2

is then initial. All edges going

out of q are dupli
ated in edges going out of q

1

and q

2

. In symboli
 dynami
s,

su
h a transformation is 
alled an input state splitting. It is 
lear that this

deterministi
 B�u
hi automaton re
ognizes the domain of f . It is also 
lear that

any sequential fun
tion is 
ontinuous.

We now prove that the third 
ondition is ne
essary. We suppose that we

have the following pi
ture representing paths in T .

0

1

2

3

uju

0

uju

00

vjv

0

vjv

00

where 0 and 1 are initial states, u, u

0

, u

00

, v, v

0

and v

00

are �nite words. Let

D be a sequential transdu
er realizing the same fun
tion as T . There are in D

paths

4 5

uv

l

jw

v

k

jw

0

where 0 is the initial state, w and w

0

are �nite words. By prolonging the path

in T from 0 to 2 (respe
tively from 1 to 3) with l iterations of the path around 2

(respe
tively around 3), we 
an assume without loss of generality that l = 0.

By repla
ing the 
y
ling path around 2 (respe
tively around 3) by k iterations

of this path, we 
an assume that k = 1.

We 
laim that if the state 2 is not 
onstant, then the equality jwj = jv

0

j

holds. Sin
e states 2 and 3 are not 
onstant, then if v = " then v

0

= v

00

= " and

16



the twinning property is satis�ed. We now assume that v is not empty. Let xjx

0

and yjy

0

be the in�nite labels of two in�nite paths leaving 2 su
h that x

0

6= y

0

.

There are in D two in�nite paths labeled by xjx

00

and yjy

00

leaving the state 5

su
h that

u

0

v

0

n

x

0

= ww

0

n

x

00

u

0

v

0

n

y

0

= ww

0

n

y

00

:

If jv

0

j < jw

0

j, the words x

0

and y

0

have a 
ommon pre�x of length jwj � ju

0

j +

n(jw

0

j�jv

0

j) for any large n. This leads to the 
ontradi
tion that x

0

= y

0

. If jv

0

j >

jw

0

j, the words x

00

and y

00

have a 
ommon pre�x of length juj�jwj+n(jv

0

j�jw

0

j)

for any large n. This leads to the 
ontradi
tion that x

00

= y

00

and x

0

= y

0

.

By symmetry, if the state 3 is not either 
onstant, then the equality also

jwj = jv

00

j holds and therefore jv

0

j = jv

00

j.

If both words v

0

and v

00

are non empty, then f(uv

!

) = u

0

v

0

!

= u

00

v

00

!

. �

Before des
ribing the algorithm for determinization, we �rst study a parti
-

ular 
ase. It turns out that the �rst two 
onditions of the proposition are due to

the fa
t that the transdu
er T may have 
y
ling paths with an empty output.

If the transdu
er T has no 
y
ling path with an empty output, the previous

proposition 
an be stated in the following way.

Proposition 23 Let f be a fun
tion realized by a transdu
er T with all states

�nal. Suppose also that T has no 
y
ling path with an empty output. Let T

0

be the transdu
er obtained by removing from T all 
onstant states. Then the

fun
tion f is sequential i� the transdu
er T

0

has the twinning property.

If the transdu
er T has no 
y
ling path with an empty output, any in�nite

path has an in�nite output. Thus, an in�nite word x belongs to the domain of f

i� it is the input label of an in�nite path in T . The domain of f is then a 
losed

set. It is then re
ognized by a deterministi
 B�u
hi automaton whose all states

are �nal. This automaton 
an be obtained by the usual subset 
onstru
tion

on the input automaton of T . Furthermore, if the transdu
er T has no 
y
ling

path with an empty output, the fun
tion f is ne
essarily 
ontinuous. This 
ould

be proved dire
tly but it follows from Lemma 31.

We now study the de
idability of the 
onditions of Propositions 20 and 23.

We have the following results.

Proposition 24 It is de
idable if a fun
tion f given by a transdu
er with all

states �nal is sequential. Furthermore, if the transdu
er has no 
y
ling path

with an empty output, this 
an be de
ided in polynomial time.

Note that the result does not hold if it is not supposed that the transdu
er

has no 
y
ling path with an empty output. In the general 
ase, the problem

is NP-hard. For any B�u
hi automaton, 
onsider the transdu
er obtained by

repla
ing ea
h transition p

a

�! q of the B�u
hi automaton by a transition p

aj"

��! q

if p is not �nal and by p

ajb

��! q for a �xed letter b if p is �nal. The fun
tion

17



maps any in�nite word to b

!

and its domain is exa
lty the set of in�nite words

re
ognized by the B�u
hi automaton. This fun
tion is sequential i� its domain

is deterministi
. Sin
e testing whether the set of in�nite words re
ognized by a

given non deterministi
 B�u
hi automaton is deterministi
 is an NP-hard prob-

lem, testing whether a fun
tion is sequential is also NP-hard.

Proof As explained in the proof of Proposition 20, a B�u
hi automaton re
ogniz-

ing the domain of the fun
tion 
an be easily dedu
ed from the transdu
er. It is

then de
idable if this set 
an be re
ognized by a deterministi
 B�u
hi automaton

[28, Thm 5.3℄.

It is de
idable in polynomial time if a fun
tion given by a transdu
er with

�nal states is 
ontinuous [23℄.

We now show that the third 
ondition of Proposition 20 
an be de
ided in

polynomial time. Sin
e we have already proved in Lemma 12 that the twinning

property 
an be de
ided in a polynomial time, it suÆ
es to prove that the

transdu
er T

0


an be 
omputed in polynomial time. We 
laim that it 
an be

de
ided in polynomial time whether a given state is 
onstant.

Let A be the output automaton of the transdu
er. By a depth �rst sear
h, it


an be found two �nite words u and v su
h that juj+ jvj � n and su
h that uv

!

labels a path leaving q. One 
onstru
ts a 
omplete deterministi
 automaton B

re
ognizing uv

!

with a sink state 0 whi
h is the only non a

epting state. We

then 
onsider the syn
hronized produ
t automaton of A and B. There is a

transition from (p; r) to (p

0

; r

0

) labelled by a �nite word w (perhaps empty) i�

there is a transition from p to p

0

in A and a path from r to r

0

in B. The in�nite

word uv

!

is the label of all paths leaving q i� no state (q

0

; 0) is a

essible from

(q; i

B

) where i

B

is the initial of B. This naive algorithm runs in quadrati
 time

for ea
h state q. Therefore the 
onstant states of a transdu
er 
an be 
omputed

in 
ubi
 time. It turns out that they 
an be 
omputed in linear time [10℄. �

3.2 Determinization of transdu
ers over in�nite words

In this se
tion, we des
ribe an algorithm to determinize a real-time transdu
er

whi
h satis�es the properties of Proposition 20. This algorithm 
an easily be

adapted to the 
ase when the transdu
er is not real-time. This algorithm proves

that the 
onditions of the proposition are suÆ
ient.

Let T = (Q;E; I) be a transdu
er and let T

0

be the transdu
er obtained

by removing from T all 
onstant states. We assume that T

0

has the twinning

property. We denote by S the set of 
onstant states. For a state q of S, we denote

by y

q

, the single output of q whi
h is an ultimately periodi
 word. We suppose

that the domain of f is re
ognized by the deterministi
 B�u
hi automaton A.

This automaton is used in the 
onstru
ted transdu
er to insure that the output

is in�nite only when the input belongs to the domain of the fun
tion.

We des
ribe the deterministi
 transdu
er D realizing the fun
tion f . A state

of D is a pair (p; P ) where p is a state of A and P is a set 
ontaining two kinds

of pairs. The �rst kind are pairs (q; z) where q belong to Q n S and z is a �nite

word over B. The se
ond kind are pairs (q; z) where q belongs to S and z is

an ultimately periodi
 in�nite word over B. We now des
ribe the transitions
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of D. Let (p; P ) be a state of D and let a be a letter. Let R be equal to the set

de�ned as follows

R = f(q

0

; zw) j q

0

=2 S and 9(q; z) 2 P; q =2 S and q

ajw

��! q

0

2 Eg

[ f(q

0

; zwy

q

0

) j q

0

2 S and 9(q; z) 2 P; q =2 S and q

ajw

��! q

0

2 Eg

[ f(q

0

; z) j q

0

2 S and 9(q; z) 2 P; q 2 S and q

ajw

��! q

0

2 Eg:

We now de�ne the transition from the state (p; P ) input labeled by a. If R is

empty, there is no transition from (p; P ) input labeled by a. Otherwise, the

output of this transition is the word v de�ned as follows. Let p

a

�! p

0

be the

transition in A from p labeled by a. If p

0

is not a �nal state of A, we de�ne v as

the empty word. If p

0

is a �nal state, we de�ne v as the �rst letter of the words

z if R only 
ontains pairs (q

0

; z) with q

0

2 S and if all the in�nite words z are

equal. Otherwise, we de�ne v as the longest 
ommon pre�x of all the �nite or

in�nite words z for (q

0

; z) 2 R. The state P

0

is then de�ned as follows

P

0

= f(q

0

; z) j (q

0

; vz) 2 Rg:

There is then a transition (p; P )

ajv

��! (p

0

; P

0

) in D. The initial state of D is

the pair (i

A

; J) where i

A

is the initial state of A and where J = f(i; ") j i 2

I and i =2 Sg [ f(i; y

i

) j i 2 I and i 2 Sg. If the state p

0

is not �nal in A, the

output of the transition from (p; P ) to (p

0

; P

0

) is empty and the words z of the

pairs (q; z) in P , may have a nonempty 
ommon pre�x. We only keep in D the

a

essible part from the initial state. The transdu
erD has a deterministi
 input

automaton. It turns out that the transdu
er D has a �nite number of states.

This will be proved in Lemma 33. It will be also proved in Proposition 34 that

the transdu
er D realizes the same fun
tion as T .

0 1

aja

bjb

aj"

aj"


jaa

Figure 9: Transdu
er of Example 25

Example 25 Consider the transdu
er pi
tured in Figure 9. A deterministi


B�u
hi automaton re
ognizing the domain is pi
tured in Figure 10. If the algo-

rithm for determinization is applied to this transdu
er, one gets the transdu
er

pi
tured in Figure 11.

The following lemma states the main property of the transitions of D.
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A B C D

a

a

b

b







a

a




Figure 10: A deterministi
 B�u
hi automaton for the domain

A

0; "

�

�

�

�

B

0; "

1; a

!

�

�

�

�

C

1; a

!

�

�

�

�

D

1; a

!

�

�

�

�

aja

aja

aj"

aj"bjb

bjb


ja


ja


ja

Figure 11: Determinization of the transdu
er of Figure 9

Lemma 26 Let u be a �nite word. Let (i

A

; J)

ujv

��! (p; P ) be the unique path

in D with input label u from the initial state. Then, the state p is the unique

state of A su
h that i

A

u

�! p is a path in A and the set P is equal to

P = f(q; z) j 9 i

ujv

0

��! q in T su
h that v

0

= vz if q =2 S

v

0

y

q

= vz if q 2 Sg:

Proof The proof of the lemma is by indu
tion on the length of u. Let us


onsider the following path in D

(i

A

; J)

ujv

��! (p; P )

ajt

��! (p

0

; P

0

)

where a is a letter. Let (q

0

; z

0

) be a pair in P

0

. If q

0

=2 S, there is a pair (q; z)

in P and a transition q

ajt

0

��! q

0

in T . If both states q and q

0

do not belong

to S, the proof is similar to the proof of Lemma 13. If q =2 S and q

0

2 S, one

has tz

0

= zt

0

y

q

0

. By the indu
tion hypothesis, there is a path i

ujvz

���! q in T .

One �nally gets vtz

0

= vzt

0

y

q

0

. If q 2 S and q

0

2 S, one has tz

0

= z. By the

indu
tion hypothesis, there is a path i

ujv

0

��! q in T su
h that v

0

y

q

= vz. Sin
e

y

q

= t

0

y

q

0

, one �nally gets vtz

0

= v

0

t

0

y

q

0

. �

The previous lemma has the 
orollary whi
h states that ea
h state q is the

�rst 
omponent of at most one pair (q; z) in the se
ond 
omponent P of a state

(p; P ) of D.

Corollary 27 Let q be a state of T and let (p; P ) be a state of D. The subset P


ontains at most one pair (q; z).
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Proof Let (i

A

; J)

ujv

��! (p; P ) be a path in D and let (q; z) and (q; z

0

) be two

pairs in P .

We �rst suppose that q is not 
onstant. Let xjy and x

0

jy

0

be two pairs

of in�nite words whi
h label two paths leaving q su
h that y 6= y

0

. By the

previous lemma, there are two paths i

ujvz

���! q and i

0

ujvz

0

���! q in T . One has

f(ux) = vzy = vz

0

y and f(ux

0

) = vzy

0

= vz

0

y

0

. If z 6= z

0

, it may be assumed by

symmetry that jz

0

j > jzj and that z

0

= zw for some �nite word w. This leads

to the 
ontradi
tion y = y

0

= w

!

.

We now suppose that q is 
onstant. Let xjy be a pair of in�nite words whi
h

labels a path leaving q. By the previous lemma, there are two paths i

ujw

��! q

and i

0

ujw

0

���! q in T su
h that wy = vz and w

0

y = vz

0

. Furthermore, one has

f(ux) = wy = w

0

y and thus z = z

0

. �

We now introdu
e some te
hni
al property of the paths of a transdu
er. This

property is a kind of twinning property when the output of one of the 
y
ling

paths is empty. Its turns out that this property is equivalent to the 
ontinuity

of the fun
tion realized by the transdu
er when it is already supposed that the

transdu
er has the twinning property. Let T be a transdu
er and let S be its set

of 
onstant states. The transdu
er T is said to have the "-
ompatibility property

i� for any pair of paths

i

uju

0

��! q

vjv

0

��! q

i

0

uju

00

���! q

0

vj"

��! q

0

su
h that i and i

0

are two initial states and v

0

is a nonempty word, the state q

0

is 
onstant and its 
onstant y

q

0

satis�es u

00

y

q

0

= u

0

v

0

!

. If the states q and q

0

are

twinned, there 
annot be a pair of su
h paths. If the output along the se
ond


y
ling path is empty, the output along the �rst 
y
ling path should also be

empty. The above 
onditions add some 
ompatibility of the outputs when q

and q

0

are not twinned.

The following lemma states that if the fun
tion realized by the transdu
er is


ontinuous, then the transdu
er has the "-
ompatibility property. The 
onverse

is established in Lemma 31.

Lemma 28 Let T be transdu
er realizing a fun
tion f on in�nite words. If the

fun
tion f is 
ontinuous, then the transdu
er T has the "-
ompatibility property.

Proof Let xjy be a pair of in�nite words whi
h labels a path leaving q

0

. For

any integer n, one has f(uv

n

x) = u

00

y and f(uv

!

) = u

00

y by 
ontinuity of f .

Sin
e f(uv

!

) = u

0

v

0

!

, the state q

0

is 
onstant and its 
onstant y

q

0

satis�es

u

00

y

q

0

= u

0

v

0

!

. �

For a �nite word w and an in�nite word x, we denote by d(w; x) the integer

jwj� jw^xj where w^x is the longest 
ommon pre�x of w and x. Remark that

d is not a distan
e but Lemma 15 still holds when v

0

3

is an in�nite word.
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Lemma 29 Let T be a transdu
er. Suppose that T has the "-
ompatibility prop-

erty and that T

0

has the twinning property. There is a 
onstant K su
h that for

any two paths i

ujv

��! q and i

0

ujv

0

��! q

0

where i and i

0

are initial states, q =2 S and

q

0

2 S, one has

d(v; v

0

y

q

0

) � K:

Proof LetK be equal to n

2

M where n is the number of states of the transdu
er

and M is the maximal length of the output label of a transition. We prove

d(v; v

0

y

q

0

) � K by indu
tion on the length of u. If juj � n

2

, the result holds by

de�nition of K. Otherwise, both paths 
an be fa
torized

i

u

1

jv

1

���! p

u

2

jv

2

���! p

u

3

jv

3

���! q

i

0

u

1

jv

0

1

���! p

0

u

2

jv

0

2

���! p

0

u

3

jv

0

3

���! q

0

:

where ju

2

j > 0 and ju

3

j � n

2

. If both words v

2

and v

0

2

are empty, the result

follows dire
tly from the indu
tion hypothesis. Thus, we may assume that one

the words v

2

or v

0

2

is not empty. Sin
e q does not belong to S, p does not belong

to S either. The "-
ompatibility property implies then that v

2


annot be empty.

We �rst suppose that p

0

=2 S. By the twinning property, Lemma 15 and

the above remark, one has d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

y

q

0

) = d(v

1

v

3

; v

0

1

v

0

3

y

q

0

) and the result

follows from the indu
tion hypothesis.

We now suppose that p

0

2 S and we 
laim that v

0

1

v

0

2

v

0

3

y

q

0

= v

1

v

!

2

. Sin
e p

0

is 
onstant, y

p

0

= v

0

3

y

q

0

. If the word v

0

2

is empty, the "-
ompatibility property

implies that v

0

1

y

p

0

= v

1

v

!

2

. If v

0

2

is nonempty, y

p

0

= v

0

2

!

. Sin
e f(u

1

u

!

2

) = v

1

v

!

2

=

v

0

1

v

0

2

!

, the 
laimed equality holds. In both 
ases, one has d(v

1

v

2

v

3

; v

0

1

v

0

2

v

0

3

y

q

0

) =

d(v

1

v

2

v

3

; v

1

v

!

2

) � jv

3

j � K. �

The following lemma states some te
hni
al 
onsequen
e of the "-
ompatibility

property.

Lemma 30 Let T be a transdu
er whi
h has the "-
ompatibility property and let

f the fun
tion realized by T . Then if x is in the domain of f and x is the input

label of a path entirely out of S, the output of this path is in�nite and is thus

equal to the image of x by f .

Proof Suppose that x is the input label of two paths 
 and 


0

. Suppose also

that all states of 
 do not belong to S and the output along 


0

is an in�nite

word. Sin
e the number of states is �nite, both paths 
 and 


0


an be fa
torized


 = i

u

0

jv

0

���! q

u

1

jv

1

���! q

u

2

jv

2

���! q � � �




0

= i

0

u

0

jv

0

0

���! q

0

u

1

jv

0

1

���! q

0

u

2

jv

0

2

���! q

0

� � �

Furthermore, it 
an be assumed that ea
h v

0

k

is nonempty sin
e v

0

0

v

0

1

v

0

2

: : : is an

in�nite word. By hypothesis, this implies that ea
h v

k

is also nonempty. �

The following lemma states a kinf of 
onverse of Lemma 28. It shows in

parti
ular that if a transdu
er T has no 
y
ling path with an empty output and

22



if T

0

has the twinning property, then the fun
tion realized by T is 
ontinuous.

If x and y are two in�nite words, d(x; y) denotes the usual distan
e between x

and y whi
h makes the set A

!

of all in�nite words a 
ompa
t spa
e.

Lemma 31 Let T be a transdu
er whi
h has the "-
ompatibility and su
h that

T

0

has the twinning property. Then the fun
tion realized by T is 
ontinuous.

Proof Let f be the fun
tion realized by the transdu
er T and let x be an

in�nite word in the domain of f . We 
laim that for any integer m there is an

integer k su
h that for any in�nite word x

0

also in the domain f , the inequality

d(x; x

0

) � 2

�k

implies the inequality d(f(x); f(x

0

)) � 2

�m

. Let y = f(x) be the

image of x. Let 
 be a path labeled by xjy and let i be the initial state of 
.

Let 


0

be a path labelled by (x

0

; y

0

) where y

0

= f(x

0

). A

ording to the previous

lemma, it 
an be assumed that either there is a path entirely out of S whi
h is

labeled by xjy or that x is not the input label of a path entirely out of S.

We �rst suppose that the path 
 is entirely out of S. By Lemma 15, there

is a 
onstant K su
h that if i

ujv

��! q and i

0

ujv

0

��! q

0

are two paths with q =2 S

and q

0

=2 S, then one has d(v; v

0

) � K. By Lemmas 28 and 29, there is another


onstant K

0

su
h that if i

ujv

��! q and i

0

ujv

0

��! q

0

are two paths with q =2 S and

q

0

2 S, then one has d(v; v

0

y

q

0

) � K. Let k be 
hosen su
h that the output

along the �rst k transitions of 
 has a length greater then m + max(K;K

0

).

Let q be the state of 
 rea
hed after k transitions and let v be the output of 


0

along the �rst k transitions. Suppose that x

0

satis�es d(x; x

0

) � k and that 


0

is a path labeled by x

0

jy

0

where y

0

= f(x

0

). Let i

0

the initial state of 


0

and

let q

0

be the state of 


0

rea
hed after k transitions. If q

0

does not belong to S,

one has d(v; v

0

) � K where v

0

is the output of 


0

along the �rst k transitions.

Sin
e jvj � m+K, one has jv ^ v

0

j � m and thus d(y; y

0

) � 2

�m

. If q

0

belongs

to S, one has d(v; y

0

) � K

0

. Sin
e jvj � m+K

0

, one has jv ^ y

0

j � m and thus

d(y; y

0

) � 2

�m

.

We now suppose that x is not the input label of a path entirely out of S.

There is then an integer K su
h that any path input labeled by a pre�x of x of

length greater than K ends in a state of S. Let k be equal to K +K

0

where K

0

is the length of part of 
 inside S whi
h 
ontains at least n

2

transitions with a

nonempty output. If d(x; x

0

) � 2

�k

, both paths 
 and 


0


an be fa
torized


 = i

u

0

jv

0

���! q

u

1

jv

1

���! q

u

2

jv

2

���! � � �




0

= i

0

u

0

jv

0

0

���! q

0

u

1

jv

0

1

���! q

0

u

0

2

jv

0

2

���! � � �

where u

0

u

1

u

2

= x, u

0

u

1

u

0

2

= x

0

, v

1

is nonempty and q and q

0

belong to S. We


laim that y = y

0

. One has y = v

0

y

q

and y

0

= v

0

0

y

q

0

. Sin
e v

1

is nonempty,

one also has y

q

= v

!

1

. If v

0

1

is also nonempty, one has y

q

0

= v

0

1

!

and f(u

0

u

!

1

) =

v

0

v

!

1

= v

0

0

v

0

1

!

and thus y = y

0

. If the word v

0

1

is empty, the "-
ompatibility

property implies v

0

y

q

= v

0

0

y

q

0

and y = y

0

.

In both 
ases, an integer k satisfying the 
laimed property has been found.

The fun
tion f is then 
ontinuous. �
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The following lemma states that the lengths of the words z of the pairs (q; z)

in the states of D are bounded. It is essentially due to the twinning property

of T

0

.

Lemma 32 There is a 
onstant K su
h that for any pair (q; z) in P of a state

(p; P ) of D where q =2 S and z is a �nite word, one has jzj � K.

Proof Let m and n be the respe
tive numbers of states of A and T . By Lemma

16 and 29, there is a 
onstant K

0

su
h that if i

ujv

��! q and i

0

ujv

0

��! q

0

are two

paths su
h that q =2 S, then one has d(v; v

0

) � K

0

if q

0

=2 S or d(v; v

0

y

q

0

) � K

0

if q

0

2 S. Let K = K

0

+mnM where M is the maximal length of the output

label of a transition in T . Let (p; P ) be a state of D and 
onsider a path

(i

A

; J)

u

0

jv

0

���! (p

0

; P

0

)

ujv

��! (p; P )

where p

0

is a �nal state of A. If there is no path from (i

A

; J) to (p; P ) whi
h

goes through a state (p

0

; P

0

) with p

0

�nal, we assume that (p

0

; P

0

) is a
tually

(i

A

; J). The proof is by indu
tion on the length of u. If juj = 0, the state p

is a
tually a �nal state of A. In the 
ase where p is �nal, the longest 
ommon

pre�x of the words z of the pairs (q; z) in P is empty. Lemmas 16, 26 and 29

imply that jzj � K

0

. We now suppose that p is not �nal. If juj � mn, the

result follows from the de�nition of the transitions of D. We now suppose that

juj > mn and that (p

0

; P

0

) is the last state along the path from (i

A

; J) to (p; P )

su
h that p

0

is a �nal state of A. Let (q; z) be a pair in P su
h that q =2 S and

z is a �nite word. By de�nition of the transitions of D, there is a pair (q

0

; z

0

)

in P

0

and a path q

0

ujw

��! q in T su
h that z

0

w = vz. There is also a path p

0

u

�! p

in A. Sin
e juj > mn, both paths 
an be fa
torized

p

0

u

1

���! p

00

u

2

���! p

00

u

3

���! p

q

0

u

1

jw

1

����! q

00

u

2

jw

2

����! q

00

u

3

jw

3

����! q

where u

1

u

2

u

3

= u and w

1

w

2

w

3

= w. Sin
e the 
y
ling path p

00

u

2

�! p

00

in A

does not 
ontain any �nal state, the in�nite word u

0

u

1

u

!

2

does not belong to

the domain of f . This implies that the word w

2

is empty. We then 
onsider the

path

(p

0

; P

0

)

u

1

u

3

jv

00

�����! (p; P

00

)

in D. The subset P

00


ontains a pair (q; z

00

) for some �nite word z

00

. We 
laim

that z

00

= z. Indeed, one has z

0

w

1

w

2

w

3

= z

0

w

1

w

3

= vz = v

00

z

00

. As both

paths p

0

u

1

u

2

u

3

�����! p and p

0

u

1

u

3

���! p in A 
ontain no other �nal state than p, both

outputs v and v

00

along the 
orresponding paths in D are empty. Thus one gets

z = z

00

. By the indu
tion hypothesis, one has jzj = jz

00

j � K. �

It is now possible to prove that the transdu
er D has a �nite number of

states. However, the number of states of D 
an be exponential as in the 
ase of

�nite words.
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Lemma 33 The number of states of D is �nite.

Proof We have proved in the pre
eding lemma that the lengths of the �nite

words z are bounded. It remains to show that there is a �nite number of

di�erent in�nite words z whi
h 
an appear in some pair (q; z). By de�nition of

the transitions, any in�nite word z of a pair is the suÆx of z

0

wy

q

where (q

0

; z

0

)

is a pair su
h that q

0

=2 S and z

0

is �nite and where q 2 S and q

0

ajw

��! q is a

transition of T . Sin
e the length of z

0

is bounded, the number of su
h words

z

0

wy

q

is �nite and they are ultimately periodi
. There are then a �nite number

of suÆxes of su
h words. �

The following proposition �nally states that the sequential transdu
er D is

equivalent to the transdu
er T . Both transdu
ers realize the same fun
tion over

in�nite words.

Proposition 34 The sequential transdu
er D realizes the same fun
tion f as

the transdu
er T .

Proof We respe
tively denote by f and f

0

the fun
tions realized by the trans-

du
er T and D. We �rst prove that if an in�nite word x belongs to the domain

of f , it also belongs to the domain of f

0

and f(x) = f

0

(x).

Let x = a

0

a

1

a

2

: : : be an in�nite word whi
h is in the domain of f . Let 
 be

a path


 = i

a

0

jv

0

���! q

1

a

1

jv

1

���! q

2

a

2

jv

2

���! � � � (1)

be a path in T input labeled by x and whose output v

0

v

1

v

2

: : : is an in�nite

word. Consider the unique path � in D input labeled by x

� = (i

A

; J)

a

0

jv

0

0

���! (p

1

; P

1

)

a

1

jv

0

1

���! (p

2

; P

2

)

a

2

jv

0

2

���! � � � (2)

By Lemma 26, ea
h state P

n


ontains a pair (q

n

; z

n

).

We �rst suppose that x input labels a path in T entirely out of S. By

Lemma 30, it 
an be assumed that ea
h state q

n

does not belong to S and that

ea
h z

n

is �nite. By Lemma 26, the equality v

0

: : : v

n

= v

0

0

: : : v

0

n

z

n

holds for

any integer n. By Lemma 32, the lengths of the words z

n

are bounded. This

implies the equality v

0

v

1

v

2

: : : = v

0

0

v

0

1

v

0

2

: : : of the two outputs.

We now suppose that x is not the input label of a path entirely out of S.

There is then an integer n su
h that for any m � n, P

m

only 
ontains pairs

(q; z) with q 2 S and z in�nite. Both path 
 and � 
an be fa
torized


 = i

u

0

jv

0

���! q

u

1

jv

1

���! q

u

2

jv

2

���! q � � �

� = (i

A

; J)

u

0

jv

0

0

���! (p; P )

u

1

jv

0

1

���! (p; P )

u

2

jv

0

2

���! (p; P ) � � �

Furthermore, it 
an be assumed that ea
h v

n

is nonempty. Thus ea
h path

p

u

k

�! p in A 
ontains a �nal state of A. The single output of the state q is v

!

1

.

By Lemma 26, the subset P 
ontains a pair (q; z) and v

0

y

q

= v

0

v

!

1

= v

0

0

z.
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Let (q

0

; z

0

) be another pair in P . By de�nition of the transitions of D, there

is a sequen
e (q

n

)

n�0

of states su
h that the pairs (q

n

; v

0

1

n

z

0

) belong to P . Sin
e

there is a �nite number of states, there are n < m su
h that q

n

= q

m

. This

implies that there is in T a 
y
ling path around q

n

input labeled by u

m�n

1

. Let

q

00

= q

n

= q

m

. We �rst 
laim that v

0

1

n

z

0

= z

0

. If the word v

0

1

is empty, this is

obvious. Otherwise, Corollary 27 implies that v

0

1

n

z

0

= v

0

1

m

z

0

. Thus z

0

= v

0

1

!

and the equality v

0

1

n

z

0

= z

0

also holds. The subset P 
ontains a pair (q

00

; z

0

).

By Lemma 26, there is a path i

u

0

jv

00

���! q

00

in T su
h that v

0

0

z

0

= v

00

y

q

00

. By


onstru
tion, there is also a 
y
ling path around q

00

input labeled by u

m�n

1

. We

suppose that the output label of this 
y
ling path is the word w. If the word w

is empty, Lemma 28, states that v

00

y

q

00

= v

0

v

!

1

. Thus, one has v

0

0

z

0

= v

00

y

q

00

=

v

0

v

!

1

= v

0

0

z and z = z

0

. If the word w is nonempty, one has y

q

00

= w

!

and

f(u

0

u

!

1

) = v

00

w

!

= v

0

v

!

1

. This implies z = z

0

.

Sin
e we have proved that all pairs (q; z) in P share the same in�nite word z

and sin
e ea
h path p

u

i

�! p 
ontains a �nal state, ea
h word v

0

i

is nonempty by

de�nition of the transitions of D and the equality v

0

1

v

0

2

v

0

3

: : : = z holds. This

last equality implies that v

0

y

q

= v

0

0

z = v

0

0

v

0

1

v

0

2

: : : and that f(x) = f

0

(x).

Conversely, the de�nition of the transitions of D implies that the domain

of f

0

is 
ontained in the domain of f . Thus both fun
tions f and f

0

have the

same domain and f = f

0

. �

We have already mentioned in Proposition 24 that it 
an be de
ided whether

a fun
tion over in�nite words realized by a transdu
er with all states �nal is

sequential. As in the 
ase of �nite words, the algorithm des
ribed above provides

another de
ision pro
edure. Indeed, Lemma 32 gives an upper bound K of the

lengths of �nite words whi
h 
an appear in states of D. Let T be a transdu
er

with all states �nal realizing a fun
tion f . If the algorithm is applied to T ,

either it stops and gives a sequential transdu
er D or it 
reates a state (p; P )


ontaining a pair (q; z) su
h that the length of z is greater than K. In the

former 
ase, the sequential transdu
er D is equivalent to T and the fun
tion f

is sequential. In the latter 
ase, the fun
tion f is not sequential.
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