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Abstra
t. We study the determinization of transdu
ers over in�nite

words. We 
onsider transdu
ers with all their states �nal. We give an

e�e
tive 
hara
terization of sequential fun
tions over in�nite words. We

also des
ribe an algorithm to determinize transdu
ers over in�nite words.

1 Introdu
tion

The aim of this paper is the study of determinization of transdu
ers over in�nite

words, that is of ma
hines realizing rational transdu
tions. A transdu
er is a

�nite state automaton (or a �nite state ma
hine) whose edges are labeled by

pairs of words taken in �nite alphabets. The �rst 
omponent of ea
h pair is 
alled

the input label. The se
ond one the output label. The rational relation de�ned

by a transdu
er is the set of pairs of words whi
h are labels of an a

epting

path in the transdu
er. We assume that the relations de�ned by our transdu
ers

are fun
tions whi
h ea
h string of the domain to a string. This is a de
idable

property [8℄.

The study of transdu
ers has many appli
ations. Transdu
ers are used to

model 
oding s
hemes (
ompression s
hemes, 
onvolutional 
oding s
hemes, 
od-

ing s
hemes for 
onstrained 
hannels, for instan
e). They are widely used in


omputer arithmeti
 [7℄ and in natural language pro
essing [13℄. Transdu
ers

are also used in programs analysis [6℄. The determinization of a transdu
er is

the 
onstru
tion of another transdu
er whi
h de�nes the same fun
tion and has

a deterministi
 (or right resolving) input automaton. Su
h transdu
ers allow a

sequential en
oding and thus are 
alled sequential transdu
ers.

The 
hara
terization of sequential fun
tions on �nite words was obtained by

Cho�rut [4, 5℄. His proof 
ontains impli
itly an algorithm for determinization of

a transdu
er. This algorithm has also been des
ribed by Mohri [11℄ and Ro
he

and Shabes [13, p. 223{233℄. In this paper, we address the same problem for

in�nite words. We 
onsider transdu
ers and fun
tions over in�nite words and



our transdu
ers have all their states �nal. The reason why we assume that all

states are �nal is that the 
ase of transdu
ers with �nal states seems to be mu
h

more 
omplex. Indeed, the determinization of automata over in�nite words is

already very diÆ
ult [14℄. In parti
ular, it is not true that any rational set of

in�nite words is re
ognized by a deterministi
 automaton with �nal states and

B�u
hi a

eptan
e 
ondition. Other a

epting 
onditions, as the Muller 
ondition

for instan
e, must be used.

We �rst give an e�e
tive 
hara
terization of sequential fun
tions over in�nite

words. This 
hara
terization extends to in�nite words the twinning property

introdu
ed by Cho�rut [4℄. We prove that a fun
tion is sequential if it is a


ontinuous map whose domain 
an be re
ognized by a deterministi
 B�u
hi au-

tomaton, and su
h that the transdu
er obtained after removing some spe
ial

states has the twinning property. These 
onditions 
an be simpli�ed in the 
ase

where the transdu
er has no 
y
ling path with an empty output label. We use

this 
hara
terization to des
ribe an algorithm 
he
king whether a fun
tion re-

alized by a transdu
er is sequential. This algorithm be
omes polynomial when

the transdu
er has no 
y
ling path with an empty output label. Finally, we give

an algorithm to determinize a transdu
er. The algorithm is mu
h more 
omplex

than in the 
ase of �nite words.

The paper is organized as follows. Se
tion 2 is devoted to basi
 notions of

transdu
ers and rational fun
tions. We give in Se
t. 3 a 
hara
terization of se-

quential fun
tions while the algorithm for determinization of transdu
ers is de-

s
ribed in Se
t. 4.

2 Transdu
ers

In the sequel, A and B denote �nite alphabets. The set of �nite and right-

in�nite words over A are respe
tively denoted by A

�

and A

!

. The empty word

is denoted by ". The set A

!

is endowed with the usual topology indu
ed by

the following metri
: the distan
e d(x; y) is equal 2

�n

where n is the minimum

minfi j x

i

6= y

i

g. In this paper, a fun
tion from A

!

to B

!

is said to be 
ontinuous

i� it is 
ontinuous with respe
t to this topology.

A transdu
er over A � B is 
omposed of a �nite set Q of states, a set E �

Q�A

�

�B

�

�Q of edges and a set I � Q of initial states. An edge e = (p; u; v; q)

from p to q is denoted by p

ujv

��! q. The words u and v are 
alled the input label

and the output label. Thus, a transdu
er is the same obje
t as an automaton,

ex
ept that the labels of the edges are pairs of words instead of letters. In the

literature, transdu
ers also have a set of �nal states. In this paper, we only


onsider transdu
ers all of whi
h states are �nal and with B�u
hi a

eptan
e


ondition. Any in�nite path whi
h starts at an initial state is then su

essful.

We omit the set of �nal states in the notation.

An in�nite path in the transdu
er A is an in�nite sequen
e

q

0

u

0

jv

0

���! q

1

u

1

jv

1

���! q

2

u

2

jv

2

���! q

3

� � �



of 
onse
utive edges. Its input label is the word x = u

0

u

1

u

2

: : : whereas its

output label is the word y = v

0

v

1

v

2

: : : . The path is said to start at q

0

.

An in�nite path is then su

essful if it starts at an initial state. A pair (x; y)

of in�nite words is re
ognized by the transdu
er if it labels a su

essful path.

A transdu
er de�nes then a relation R � A

!

� B

!

. The transdu
er 
omputes

a fun
tion if for any word x 2 A

!

, there exists at most one word y 2 B

!

su
h that (x; y) 2 R. We 
all it the fun
tion realized by the transdu
er. Thus

a transdu
er 
an be seen as a ma
hine 
omputing nondeterministi
ally output

words from input words. We denote by dom(f) the domain of the fun
tion f . A

transdu
er that realizes a fun
tion 
an be transformed in an e�e
tive way in a

transdu
er labelled in A�B

�

that realizes the same fun
tion. These transdu
ers

are sometimes 
alled real time transdu
ers.

Let T be a transdu
er. The underlying input automaton of T is obtained by

omitting the output label of ea
h edge. A transdu
er T is said to be sequential

if it is labeled in A�B

�

and if the following 
onditions are satis�ed.

{ it has a unique initial state,

{ the underlying input automaton is deterministi
.

These 
onditions ensure that for ea
h word x 2 A

!

, there is at most one word

y 2 B

!

su
h that (x; y) is re
ognized by T . Thus, the relation 
omputed by T is

a partial fun
tion from A

!

into B

!

. A fun
tion is sequential if it 
an be realized

by a sequential transdu
er.

0 1 2

0j0

1j0

1j1

0j0

0j1

1j1

Fig. 1. Transdu
er of Example 1

Example 1. Let A = f0; 1g be the binary alphabet. Consider the sequential

transdu
er T pi
tured in Fig. 1. If the in�nite word x is the binary expansion of

a real number � 2 [0; 1), the output 
orresponding to x in T is the binary expan-

sion of �=3. The transdu
er T realizes the division by 3 on binary expansions.

The transdu
er obtained by ex
hanging the input and output labels of ea
h edge

realizes of 
ourse the multipli
ation by 3. However, this new transdu
er is not

sequential.



3 Chara
terization of Sequential Fun
tions

In this se
tion, we 
hara
terize fun
tions realized by transdu
ers with all states

�nal that 
an be realized by sequential transdu
ers. This 
hara
terization uses

topologi
al properties of the fun
tion and some twinning property of the trans-

du
er. It extends the result of Cho�rut [4, 5℄ to in�nite words.

The 
hara
terization of the sequentiality is essentially based on the following

notion introdu
ed by Cho�rut [5, p. 133℄ (see also [3, p. 128℄). Two states q

and q

0

of a transdu
er are said to be twinned if and only if for any pair of paths

i

uju

0

��! q

vjv

0

��! q

i

0

uju

00

���! q

0

vjv

00

���! q

0

;

where i and i

0

are two initial states, the output labels satisfy the following

property. Either v

0

= v

00

= " or there exists a �nite word w su
h that either

u

00

= u

0

w and wv

00

= v

0

w, or u

0

= u

00

w and wv

0

= v

00

w. The latter 
ase is

equivalent to the following two 
onditions:

(i) jv

0

j = jv

00

j,

(ii) u

0

v

0

!

= u

00

v

00

!

A transdu
er has the twinning property if any two states are twinned.

Before stating the main result, we de�ne a subset of states whi
h play a par-

ti
ular role in the sequel. We say that a state q of a transdu
er is 
onstant if

all in�nite paths starting at this state have the same output label. This unique

output is an ultimately periodi
 word. It should be noti
ed that any state a

es-

sible from a 
onstant state is also 
onstant. We now state the 
hara
terization

of sequential fun
tions.

Proposition 1. Let f be a fun
tion realized by a transdu
er T . Let T

0

be the

transdu
er obtained by removing from T all states whi
h are 
onstant. Then the

fun
tion f is sequential if and only if the following three properties hold:

{ the domain of f 
an be re
ognized by a deterministi
 B�u
hi automaton,

{ the fun
tion f is 
ontinuous,

{ the transdu
er T

0

has the twinning property.

Sin
e the fun
tion f is realized by a transdu
er, the domain of f is rational.

However, it is not true that any rational set of in�nite words is re
ognized by a

deterministi
 B�u
hi automaton. Landweber's theorem states that a set of in�nite

words is re
ognized by a deterministi
 B�u
hi automaton if and only if it is

rational and G

Æ

[16℄. Re
all that a set is said to be G

Æ

is it is equal to a 
ountable

union of open sets for the usual topology of A

!

.

It is worth pointing out that the domain of a fun
tion realized by a transdu
er

may be any rational set although it is supposed that all states of the transdu
er

are �nal. The �nal states of a B�u
hi automaton 
an be en
oded in the outputs of

a transdu
er in the following way. Let A = (Q;E; I; F ) be a B�u
hi automaton.



We 
onstru
t a transdu
er T by adding an output to any transition of A. A

transition p

a

�! q of A be
omes p

ajv

��! q in T where v is empty if p is not �nal

and is equal to a �xed letter b if p is �nal. It is 
lear that the output of a path is

in�nite if and only if the path goes in�nitely often through a �nal state. Thus the

domain of the transdu
er T is the set re
ognized by A. For instan
e, the domain

of a transdu
er may be not re
ognizable by a deterministi
 B�u
hi automaton

as in the following example. It is however true that the domain is 
losed if the

transdu
er has no 
y
ling path with an empty output.

0 1

aj"

bj"

bjb

bjb

Fig. 2. Transdu
er of Example 2

Example 2. The domain of the fun
tion f realized by the transdu
er of Fig. 2 is

the set (a+ b)

�

b

!

of words having a �nite number of a. The fun
tion f 
annot

be realized by a sequential transdu
er sin
e its domain is not a G

Æ

set.

It must be also pointed out that a fun
tion realized by a transdu
er may be

not 
ontinuous although it is supposed that all states of the transdu
er are �nal

as it is shown in the following example.

Example 3. The image of an in�nite word x by the fun
tion f realized by the

transdu
er of Fig. 3 is f(x) = a

!

if x has an in�nite number of a and f(x) = a

n

b

!

if the number of a in x is n. The fun
tion f is not 
ontinuous. For instan
e, the

sequen
e x

n

= b

n

ab

!


onverges to b

!

while f(x

n

) = ab

!

does not 
onverge

to f(b

!

) = b

!

.

Before des
ribing the algorithm for determinization, we �rst study a parti
-

ular 
ase. It turns out that the �rst two 
onditions of the proposition are due to

the fa
t that the transdu
er T may have 
y
ling paths with an empty output.

If the transdu
er T has no 
y
ling path with an empty output, the previous

proposition 
an be stated in the following way.

Proposition 2. Let f be a fun
tion realized by a transdu
er T whi
h has no


y
ling path with an empty output. Let T

0

be the transdu
er obtained by removing



0 1

aja

bj"

bjb

bjb

Fig. 3. Transdu
er of Example 3

from T all states whi
h are 
onstant. Then the fun
tion f is sequential if and

only if the transdu
er T

0

has the twinning property.

The previous proposition 
an be dire
tly dedu
ed from Proposition 1 as fol-

lows. If the transdu
er T has no 
y
ling path with an empty output, any in�nite

path has an in�nite output. Thus, an in�nite word x belongs to the domain of f

if and only if it is the input label of an in�nite path in T . The domain of f

is then a 
losed set. It is then re
ognized by a deterministi
 B�u
hi automaton

whose all states are �nal. This automaton 
an be obtained by the usual subset


onstru
tion on the input automaton of T . Furthermore, if the transdu
er T has

no 
y
ling path with an empty output, the fun
tion f is ne
essarily 
ontinuous.

We now study the de
idability of the 
onditions of Propositions 1 and 2. We

have the following results.

Proposition 3. It is de
idable if a fun
tion f given by a transdu
er with all

states �nal is sequential. Furthermore, if the transdu
er has no 
y
ling path with

an empty output, this 
an be de
ided in polynomial time.

A B�u
hi automaton re
ognizing the domain of the fun
tion 
an be easily dedu
ed

from the transdu
er. It is then de
idable if this set 
an be re
ognized by a

deterministi
 B�u
hi automaton [16, thm 5.3℄. However, this de
ision problem is

NP-
omplete.

It is de
idable in polynomial time whether a fun
tion given by a transdu
er

with �nal states is 
ontinuous [12℄. The twinning property of a transdu
er is

de
idable in polynomial time [2℄.

4 Determinization of Transdu
ers

In this se
tion, we des
ribe an algorithm to determinize a transdu
er whi
h sat-

is�es the properties of Proposition 1. This algorithm proves that the 
onditions

of the proposition are suÆ
ient. The algorithm is exponential in the number of

states of the transdu
er.



Let T = (Q;E; I) be a transdu
er labelled in A�B

�

that realizes a fun
tion f .

Let T

0

be the transdu
er obtained by removing from T all states whi
h are


onstant. We assume that T

0

has the twinning property. We denote by C the

set of states whi
h are 
onstant. For a state q of C, we denote by y

q

, the unique

output of q whi
h is an ultimately periodi
 word. We suppose that the domain

of f is re
ognized by the deterministi
 B�u
hi automaton A. This automaton is

used in the 
onstru
ted transdu
er to ensure that the output is in�nite only

when the input belongs to the domain of the fun
tion.

We des
ribe the deterministi
 transdu
er D realizing the fun
tion f . Roughly

speaking, this transdu
er is the syn
hronized produ
t of the automaton A of the

domain and of an automaton obtained by a variant of the subset 
onstru
tion

applied on the transdu
er. In the usual subset 
ontru
tion, a state of the deter-

ministi
 automaton is a subset of states whi
h memorizes all a

essible states.

In our variant of the subset 
onstru
tion, a state is a subset of pairs formed of

a state and a word whi
h is either �nite of in�nite.

A state of D is a pair (p; P ) where p is a state of A and P is a set 
ontaining

two kinds of pairs. The �rst kind are pairs (q; z) where q belong to QnC and z is

a �nite word over B. The se
ond kind are pairs (q; z) where q belongs to C and

z is an ultimately periodi
 in�nite word over B. We now des
ribe the transitions

of D. Let (p; P ) be a state of D and let a be a letter. Let R be equal to the set

de�ned as follows

R = f(q

0

; zw) j q

0

=2 C and 9(q; z) 2 P; q =2 C and q

ajw

��! q

0

2 Eg

[ f(q

0

; zwy

q

0

) j q

0

2 C and 9(q; z) 2 P; q =2 C and q

ajw

��! q

0

2 Eg

[ f(q

0

; z) j q

0

2 C and 9(q; z) 2 P; q 2 C and q

ajw

��! q

0

2 Eg

We now de�ne the transition from the state (p; P ) input labeled by a. If R

is empty, there is no transition from (p; P ) input labeled by a. Otherwise, the

output of this transition is the word v de�ned as follows. Let p

a

�! p

0

be the

transition in A from p labeled by a. If p

0

is not a �nal state of A, we de�ne v as

the empty word. If p

0

is a �nal state, we de�ne v as the �rst letter of the words

z if R only 
ontains pairs (q

0

; z) with q

0

2 C and if all the in�nite words z are

equal. Otherwise, we de�ne v as the longest 
ommon pre�x of all the �nite or

in�nite words z for (q

0

; z) 2 R. The state P

0

is then de�ned as follows

P

0

= f(q

0

; z) j (q

0

; vz) 2 Rg

There is then a transition (p; P )

ajv

��! (p

0

; P

0

) in D. The initial state of D is

the pair (i

A

; J) where i

A

is the initial state of A and where J = f(i; ") j i 2

I and i =2 Cg [ f(i; y

i

) j i 2 I and i 2 Cg. If the state p

0

is not �nal in A, the

output of the transition from (p; P ) to (p

0

; P

0

) is empty and the words z of the

pairs (q; z) in P , may have a nonempty 
ommon pre�x. We only keep in D the

a

essible part from the initial state. The transdu
er D has a deterministi
 input

automaton. It turns out that the transdu
er D has a �nite number of states.



The following proposition �nally states that the sequential transdu
er D is

�nite and that it is equivalent to the transdu
er T . Both transdu
ers realize the

same fun
tion over in�nite words.

Proposition 4. The sequential transdu
er D has a �nite number of states and

it realizes the same fun
tion f as the transdu
er T .

It is not straightforward that the transdu
er D has a
tually a �nite number of

states. It must be proved that the �nite words whi
h o

ur as se
ond 
omponent

of the pairs in the states are bounded. It follows then that the in�nite words

o

uring as se
ond 
omponent of the pairs are suÆxes of a �nite number of

ultimately periodi
 words. Therefore, there are �nitely many su
h words.

It must also be proved that the transdu
er D realizes the same fun
tion as T .

This follows mainly from the following lemma whi
h states the key property of

the edges in D.

Lemma 1. Let u be a �nite word. Let (i

A

; J)

ujv

��! (p; P ) be the unique path

in D with input label u from the initial state. Then, the state p is the unique

state of A su
h that i

A

u

�! p is a path in A and the set P is equal to

P = f(q; z) j 9 i

ujv

0

��! q in T su
h that v

0

= vz if q =2 C

v

0

y

q

= vz if q 2 Cg

This 
onstru
tion is illustrated by the following example.

0 1

aja

bjb

aj"

aj"


jaa

Fig. 4. Transdu
er of Example 4

Example 4. Consider the transdu
er pi
tured in Fig. 4. A deterministi
 B�u
hi

automaton re
ognizing the domain is pi
tured in Fig. 5. If the algorithm for

determinization is applied to this transdu
er, one gets the transdu
er pi
tured

in Fig. 6.

These determinizations do not preserve the dynami
 properties of the trans-

du
ers as the lo
ality of its output automaton. Re
all that a �nite automaton is

lo
al if any two biin�nite paths with the same label are equal. We mention that

in [9℄, an algorithm is given to determinize transdu
ers over bi-in�nite words



A B C D

a

a

b

b







a

a




Fig. 5. A deterministi
 B�u
hi automaton for the domain

A

0; "

�

�

�

�

B

0; "

1; a

!

�

�

�

�

C

1; a

!

�

�

�

�

D

1; a

!

�

�

�

�

aja

aja

aj"

aj"bjb

bjb


ja


ja


ja

Fig. 6. Determinization of the transdu
er of Fig. 4

that have a right 
losing input (or that are n-deterministi
 or deterministi
 with

a �nite delay in the input) and a lo
al output (see also [10, p. 143℄ and [1,

p. 110{115℄). This algorithm preserves the lo
ality of the output. These features

are important for 
oding appli
ations.
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