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Abstract

In a preceding paper [6], automata have been introduced for words
indexed by linear orderings. These automata are a generalization of au-
tomata for finite, infinite, bi-infinite, and even transfinite words studied
by Büchi. Kleene’s theorem has been generalized to these words. We
show that deterministic automata do not have the same expressive power.
Despite this negative result, we prove that rational sets of words of finite
ranks are closed under complementation.

1 Introduction

Automata were first introduced by Kleene who showed that they have the same
expressive power as rational expressions [13]. Since then, many extensions of
this deep result have been proved. Different kinds of structures have been
considered such as infinite words [8, 14], bi-infinite words [2, 15] and transfinite
words [10, 11], finite and infinite trees [18], finite and infinite traces and pictures.

In [6, 7], automata that accept linearly-ordered structures were introduced.
These automata are a simple and natural generalization of usual automata with
additional limit transitions of the form P → q and q → P where P is a subset of
states. They allow finite words, infinite words, bi-infinite words and transfinite
words to be treated in the same framework. These automata have been shown
to be equivalent to certain rational expressions when the orderings are restricted
to scattered orderings [6]. Recall that scattered orderings are those orderings
which do not contain a dense sub-ordering like Q. Scattered orderings include
the ordinals and their mirrors.
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One main property of rational sets is the closure under complementation.
This property means that for any automaton A, there exists another automa-
ton B which accepts exactly the structures not accepted by A. This property
holds for almost all structures: finite and infinite words, finite and infinite trees
and even for transfinite words on ordinals.

This property is important both from the practical and the theoretical point
of view. The effective closure under complementation means that the class of
rational sets forms an effective boolean algebra. This closure property is used
whenever some logic is translated into automata. For instance, in the proof of
the decidability of the monadic second-order theory of the integers by Büchi
[9], and also in the proof of the decidability of the monadic second-order theory
of the infinite binary tree by Rabin [18], the closure under complementation of
automata is the key property. It is well known that automata have the same
expressive power as the monadic second order theory on many structures such as
finite, infinite, and transfinite words and trees. A nice result would be to extend
this equivalence to linear orderings. Proving closure under complementation is
one step towards this result.

In [7], the question of closure under complementation was left open. In
this paper, we address and solve this problem for a subclass of scattered linear
orderings. Namely, we prove that rational sets of words on scattered orderings
of finite ranks are closed under complementation. Recall that Hausdorff’s result
[12] states that scattered orderings can be obtained from finite orderings by
repetitive applications of ω-sums and −ω-sums (see Theorem 1). The rank of a
scattered linear ordering is the number of nested ω-sums and −ω-sums needed
to obtain it. The ranks of all countable scattered linear orderings range over all
countable ordinals. Therefore the rank of a scattered linear ordering can be seen
as a measure of its complexity. For instance, ω and ζ are scattered orderings of
rank 1. Our result for scattered linear orderings of finite rank generalizes both
the complementation of infinite and bi-infinite words. The class of scattered
orderings of finite rank includes all the ordinals smaller than ωω. Therefore, our
result holds for the sets of transfinite words studied by Choueka [11].

The classical method for constructing an automaton for the complement of
a set of finite words accepted by an automaton A is through determinization
[1]. Another method uses algebraic objects such as semigroups [17]. The de-
terminization method can still be used for infinite words but it becomes more
involved [21, 3]. This method has been pushed further by Büchi for countable
transfinite words but it is then very complex [10]. The algebraic method can
also be extended to ordinals [4, 5]. In our case, this method can not be applied
since automata can not be made deterministic. In Section 4, we give an example
of a rational set of words that cannot be accepted by a deterministic automaton.
Therefore, to prove the closure under complementation, we use another method
which was introduced by Büchi for infinite words. This method is based on an
equivalence relation on words whose classes are shown to be rational.

The paper is organized as follows. In Section 2, we introduce words in-
dexed by linear orderings and recall the Hausdorff characterization of countable
scattered linear orderings. Then rational sets of words are defined in terms of
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rational operators and automata in Section 3. We finally prove in Section 4 that
rational sets of words indexed by countable scattered linear orderings of finite
ranks are closed under complementation.

2 Words on linear orderings

In this section, we recall some definitions and operations on linear orderings
but we refer the reader to [20] for a complete introduction to linear orderings.
We give Hausdorff’s characterization of countable scattered linear orderings and
introduce words indexed by linear orderings.

Let J be a set equipped with an order <. The ordering J is linear if for any j
and k in J such that j 6= k, either j < k or k < j. A linear ordering J containing
at least two elements is dense if for every j and k in J such that j < k, there
exists an element i of J such that j < i < k. It is scattered if it contains no
dense sub-ordering. The ordering ω of natural integers and the ordering ζ of
relative integers are scattered. More generally, ordinals are scattered orderings.

Let A be a finite alphabet. A word x = (aj)j∈J indexed by a linear ordering
J is a function from J to A. J is called the length of x. For instance ω is the
length of right-infinite words a0a1... and ζ is the length of bi-infinite words
...a−1a0a1... .

In order to define the rank of scattered linear orderings, we recall the fol-
lowing operations.

2.1 Operations on linear orderings

For any linear ordering J , we denote by −J the backward linear ordering that
is the set J equipped with the reverse ordering. For instance, −ω is the linear
ordering of negative integers.

The sum J + K of two linear orderings is the set J ∪ K equipped with the
original ordering < on the sets J and K, extended to a total ordering by setting
j < k for every j ∈ J and k ∈ K. For instance, ζ = −ω + ω. Formally, the sum
∑

j∈J

Kj is the set of all pairs (k, j) such that k ∈ Kj , equipped with the ordering

defined by (k1, j1) < (k2, j2) if and only if j1 < j2 or (j1 = j2 and k1 < k2 in
Kj1).

We now give a definition of products of words. The sum operator for linear
orderings defined above will help us define the length of a product of words. Let
J be a linear ordering and let (xj)j∈J be words of respective length Kj for any
j ∈ J . The word x =

∏

j∈J

xj obtained by concatenation of the words xj with

respect to the ordering on J is of length L =
∑

j∈J

Kj . We say that a product

indexed by the ordering J is a J-product. For instance, the ω-product of the
word aω is the word (aω)ω of length

∑

ω

ω. The sequence (xj)j∈J of words is a

J-factorization of the word x =
∏

j∈J

xj . Let (xi)i∈ω be an ω-factorization of a

3



word x =
∏

i∈ω

xi. A superfactorization x = (yi)i∈ω is a factorization obtained

from an original factorization x = (xi)i∈ω by grouping the factors; i.e., if there
exists a strictly increasing sequence (ki)i∈ω such that y0 = x0 . . . xk0

and yi =
xki−1+1 . . . xki

for all i ≥ 1, then x = (yi)i∈ω is a superfactorization.

x = (x0x1 . . . xk0
)

︸ ︷︷ ︸

y0

(xk0+1xk0+2 . . . xk1
)

︸ ︷︷ ︸

y1

. . .

2.2 Construction of countable scattered linear orderings

Countable scattered linear orderings are defined in terms of a forbidden property,
namely that they may not contain a dense sub-ordering. Hausdorff’s theorem
states that countable scattered linear orderings can be constructed from finite
orderings.

We denote by N the subclass of finite linear orderings, O the class of count-
able ordinals, and S the class of countable scattered linear orderings.

Theorem 1. [12] A countable linear ordering J is scattered if and only if J
belongs to

⋃

α∈O
Vα, where the classes Vα are inductively defined by:

1. V0 = {0,1}

2. Vα =

{

∑

j∈J

Kj | J ∈ N ∪ {ω,−ω, ζ} and Kj ∈
⋃

β<α

Vβ

}

.

where 0 and 1 are respectively the orderings of zero and one element.

Intuitively, the rank of a linear ordering is the maximum number of nested
ω and −ω. It is linked to its Hausdorff class. For instance the orderings ω of
rank 1 and ω2 of rank 2 belong respectively to V1 and V2. Nevertheless, the
class Vα is not exactly the set of orderings of rank α. For instance, the ordering
ω + ω is of rank 1, and belongs to V2. Therefore, we work on slightly different
inductive classes. For any α ∈ O, we define the class Wα by :

Wα =







∑

j∈J

Kj | J ∈ N and Kj ∈ Vα






.

Those classes are strictly intermediate to the Hausdorff’s ones: the inclusions
Vα ⊂ Wα ⊂ Vα+1 hold for any ordinal α. For instance, the ordering ωα + ωα

belongs to Wα but does not belong to Vα, and the ordering ωα+1 belongs to
Vα+1, but does not belong to Wα. Formally, the rank of a linear ordering J is
the smallest ordinal α such that J ∈ Wα. For instance, the orderings of rank
0 are the finite ones. In this paper, we restrict to the set

⋃

n<ω

Wn =
⋃

n<ω

Vn of

linear orderings of finite ranks.
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By extension, the rank of a word is the rank of its length and the rank of a
set of words is the upper bound of the ranks of its elements.

We denote by A� the set of all words indexed by countable scattered linear
orderings and we also denote by AWr (respectively AVr ) the set of words whose
length is an ordering in Wr (respectively Vr) for some integer r. Thus the words
of AWr have a rank lower than or equal to r.

2.3 Ramseyan factorization

Let ϕ : A∗ → E be a map from A∗ into a finite set E. An ω-factorization
(xj)j∈ω of a right-infinite word x ∈ Aω is said to be Ramseyan for ϕ if there
exists an element e of E such that for any strictly positive integer j, we have
ϕ(xj) = e. The elements of E are usually called colors. The following theorem,
due to Ramsey, states that every infinite word admits an ω-factorization whose
factors are all of of the same color, expect perhaps the first.

Theorem 2. [Ramsey] Let ϕ : A∗ → E be a map from A∗ into a finite set E.
Every infinite word of Aω admits a ramseyan factorization for ϕ.

Theorem 2 is a particular case of the Ramsey theorem [19]. Different versions
of this theorem can be found in [16] with well detailed proofs.

In the case of words indexed by linear orderings, the previous theorem can be
applied with a map from A� into a finite set when words admit ω-factorizations.

Corollary 3. Let ϕ : A� → E be a map from A� into a finite set E. Let x ∈ A�

be a word indexed by a scattered linear ordering. If x admits an ω-factorization,
then x admits a ramseyan superfactorization for ϕ.

Note that Corollary 3 can be used symmetrically for words admitting an
−ω-factorization.

3 Rational sets of words on linear orderings

Bruyère and Carton [6] introduced rational expressions and automata for words
indexed by countable scattered linear orderings. They proved that a set of words
is rational if and only if it is recognizable, extending Kleene’s theorem. More
precisely, they defined an entire hierarchy of rational sets [7]. For each subset of
rational operations, they consider the class of corresponding rational languages,
and define transition functions for automata capturing the same languages. In
this paper, we only consider rational sets of words of finite rank.

3.1 Rational expressions

The rational sets of finite rank can be obtained from finite sets of finite words
using the union +, the concatenation ·, the star ∗, the omega iteration ω, and
the backwards omega iteration −ω. Let X and Y be two sets of words. We
define:
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X + Y = {z| z ∈ X ∪ Y }
X · Y = {x · y| x ∈ X, y ∈ Y }

X∗ = {
n

Π
j=1

xj | n ∈ N , xj ∈ X}

Xω = { Π
j∈ω

xj | xj ∈ X}

X−ω = { Π
j∈−ω

xj | xj ∈ X}

To define rational sets of words indexed by all linear orderings, three more
operations are needed : the ordinal iteration #, the backwards ordinal iteration
−# and the iteration for all linear countable scattered orderings �.

X# = { Π
j∈J

xj | J ∈ O, xj ∈ X}

X−# = { Π
j∈−J

xj | J ∈ O, xj ∈ X}

X � Y = { Π
j∈J∪Ĵ∗

zj | J ∈ S \ ∅, zj ∈ X if j ∈ J and zj ∈ Y if j ∈ Ĵ∗}

In this paper, we are only interested in languages which are defined using +, ·,
ω and −ω. We refer the reader to [6] for a precise definition of other rational
operations. A set of words on linear orderings of finite ranks is rational if it is
obtained from finite sets of finite words using +, ∗, ·, ω and −ω.

3.2 Automata on linear orderings

Let (Q, A, E, I, F ) be a classical automaton on finite words with the usual no-
tation. As the set E of transitions is a subset of Q×A×Q, the paths of such an
automaton are finite. In Büchi automata, a word is accepted if it is the label of
a path going infinitely many times through a given set of states. The problem is
that this accepting condition does not allow the concatenation of infinite words
to be recognized. To cope with this difficulty, a set of limit transitions included
in P(Q) × Q is introduced. In this way, if an infinite path goes infinitely many
times through the states of a set P , and the transition (P, q) exists, then the
next state of the path may be q.

Example 4. Consider the automaton A = (Q, A, E, I, F ) of Figure 1 where
Q = {1, 2, 3}, A = {a, b}, I = {1} , F = {3}.

1 2 33

a

b

b

{2} → 3

Figure 1: Automaton recognizing a∗bω

A limit transition {2} → 3 is added to E. Intuitively, an infinite path going
through state 2 infinitely many times leads to state 3, and a path in A leading
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from state 2 to state 3 is labelled bω. Finally, this automaton recognizes the
language a∗bω.

The previous limit transitions, called left limit transitions, allow an automa-
ton to recognize sets of words indexed by countable ordinals. In order to get
words indexed by linear scattered orderings, we also need right limit transitions.

Definition 5. An automaton A on linear orderings is defined by a tuple A =
(Q, A, E, I, F ) where Q is a finite set of states, A is a finite alphabet, E ⊆
(Q × A × Q) ∪ (P(Q) × Q) ∪ (Q × P(Q)) is the set of transitions, and I ⊆ Q
and F ⊆ Q are respectively the sets of initial and final states.

Right limit transitions are used symmetrically when a path has a limit length
on the left. In order to use nested limit transitions, it is necessary to define the
left (respectively right) limit sets of states in a given point of the path.

Consider a finite path q0
a1
−→q1

a2
−→ . . .

an

−→qn labelled x = a1 . . . an. Note that

a state is inserted between any two consecutive letters of x. In other words, a
state qk is associated with every two-factorization x = (a1 . . . ak)(ak+1 . . . an)
of x. This definition of paths is generalized to automata on linear orderings in
the following way: Let x be a word indexed by a linear scattered ordering J .
To any two-factorization x = yz of x, one can associate a partition of J into
two intervals (K, L) such that |y| = K, and |z| = L. Then a path labelled x
is a function from the set Ĵ = {(K, L)|K ∪ L = J ∧ ∀k ∈ K, ∀l ∈ L, k < l}
into the set of states. As the set Ĵ is naturally equipped with the ordering
(K1, L1) < (K2, L2) if and only if K1 ⊂ K2, a path labelled by a word of length
J is a word over Q of length Ĵ . An element of Ĵ is called a cut.

Let γ = (qc)c∈Ĵ be a word of length Ĵ over Q. We are now able to define

the limit sets of states of γ in a given cut c of Ĵ :

lim
c−

γ = {q ∈ Q| ∀c
′

< c, ∃c
′

< c
′′

< c such that q = qc
′′ }

lim
c+

γ = {q ∈ Q| ∀c
′

> c, ∃c < c
′′

< c
′

such that q = qc
′′ }

For instance, in Example 4, the word γ = (qc)c∈ω̂ defined by q(∅,ω) = 1,
q({0,1,...,n},{n+1,...}) = 2 for any positive integer n, and q(ω,∅) = 3 has the follow-
ing nonempty limit lim

(ω,∅)−
γ = {2}.

Finally, a path has to be compatible with the automata transitions:

Definition 6. Let A = (Q, A, E, I, F ) be an automaton on linear orderings,
and let x = (aj)j∈J be a word of length J on A.

A path γ of label x in A is a word γ = (qc)c∈Ĵ of length Ĵ over Q such that

for every (K, L) ∈ Ĵ :

• If there exists l ∈ L such that (K ∪ {l}, L \ {l}) ∈ Ĵ ,

then q(K,L)
al

−→q(K∪{l},L\{l}) ∈ E else q(K,L) → lim
(K,L)−

γ ∈ E.
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• If there exists k ∈ K such that (K \ {k}, L ∪ {k}) ∈ Ĵ ,

then q(K\{k},L∪{k})
ak
−→q(K,L) ∈ E else lim

(K,L)+
γ → q(K,L) ∈ E.

Thus, if a cut has a predecessor or a successor, usual transitions are used.
Otherwise, the path is built on limit transitions. As Ĵ has the least element
(∅, J) and the greatest element (J, ∅) for any linear ordering J , a path has always
a first and a last state. It is said to be successful if it leads from an initial state
to a final state. A word is recognized by an automata if it is the label of a
successful path.

We denote by p
x

=⇒q the existence of a path leading from state p to q of label

x. The content of a path is the set of states occurring in the path (including
the first and last states). A path leading from p to q of label x and of content
P is denoted by p

x
=⇒

P

q.

3.3 Generalizations of Kleene’s theorem

Bruyère and Carton have generalized Kleene’s theorem on words indexed by
countable scattered linear orderings of finite ranks.

Theorem 7. [7] A set of words of finite rank is rational if and only if it is
recognized by an automata on linear orderings where limit transitions P → q or
q → P verify q /∈ P .

This Theorem is illustrated by the Example of Figure 2.

0 1 2

a

b

0 → {1}

{0, 1} → 2

Figure 2: Automaton on linear orderings recognizing (a−ωb)ω

4 Complement of a rational set of finite rank

A rational set of finite rank is thus both defined by a rational expression using
operators +, ∗, ·, ω and −ω and by automata on linear orderings where limit
transitions P → q or q → P verify q /∈ P . In this section, we prove that this
class of rational sets is closed under complementation. In the case of finite
words, it is known that rational sets are closed under complementation. Given
an automaton on finite words recognizing a language L, the construction of an
automaton recognizing the complement A∗ \ L is based on the property that
any finite automaton on finite words can be determinized. Büchi has generalized
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this result for sets of words indexed by countable ordinals of finite ranks [10].
However, this property does not hold for automata on linear orderings. An
automaton on linear orderings A = (Q, A, E, I, F ) is deterministic if for any
state q ∈ Q and any word u ∈ A�, there exists at most one path labelled u
starting from q.

Proposition 8. The language (a−ω)−ω can not be accepted by a deterministic
automaton.

Proof. By contradiction, let us suppose the existence of a deterministic automa-
ton A recognizing (a−ω)−ω . Denote the path labelled (a−ω)−ω in the following
way:

q . . . . . . . . . q−1,−2
a

−→q−1,−1
a

−→q−1,0 . . . q0,−2
a

−→q0,−1
a

−→q0,0

Remove the last a and the state q0,0. The word (a−ω)−ω remains unchanged.
As the automaton is deterministic, there exists a unique path starting from q
and labelled (a−ω)−ω . Thus we have q0,−1 = q0,0. By induction, we obtain
q0,m = q0,0 for all m < 0. Using the same reasoning, one can remove the last
a−ω and show that, except maybe the first state q, every state of the path is
equal to q0,0. Thus the automaton A has the transition q0,0−→{q0,0}, which

means that it accepts the set a−#.

To cope with this difficulty of determinism, we use a different method based
on equivalence classes to prove the closure of rational sets under complementa-
tion. Up to now, we are only able to prove this result in the case of rational
sets of words of finite ranks.

Theorem 9. Let L be a rational set of words on linear orderings, and let r be
a finite integer. The complement AWr \L is rational.

In the case o f finite words, Büchi has given a proof of the closure under
complement of rational sets which does not work by constructing automata. It
does not need the property of determinizability and it is based on the following
equivalence relation defined for any finite automaton A = (Q, A, E, I, F ) on
finite words:

u ∼ v if and only if ∀p ∈ Q, ∀q ∈ Q, p
u

=⇒ q ⇐⇒ p
v

=⇒ q

Note that if a word u is the label of a successful path in A, it holds for any
equivalent word. So any equivalence class is either contained in the language L
recognized by A, or disjoint from L. Moreover, equivalence classes are rational
thus the complement of L is rational as a finite union of equivalence classes.
We extend this proof to automata on linear orderings of finite ranks. Let A
= (Q, A, E, I, F ) be an automaton on linear orderings recognizing L. Recall

that a path from p to q with label u and content P is denoted by p
u

=⇒
P

q. As
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the contents of paths are needed in limit transitions, we define the equivalence
relation ∼ by:

u ∼ v if and only if ∀p ∈ Q, ∀q ∈ Q, ∀P ⊆ Q, p
u

=⇒
P

q ⇐⇒ p
v

=⇒
P

q

Note first that the equivalence relation has finitely many classes. Indeed the
class of a word u depends on whether there is a path from p to q with content P
for each triple (p, q, P ). If n denotes the size of Q, there are n22n such triples,

and the relation ∼ has at most 2n22n

equivalence classes. We denote by C the
set of all equivalence classes of ∼. For any integer r and for any equivalence
class C ∈ C, the set C ∩ AWr is called an equivalence class of rank r, even if
it contains all words of C of rank at most r. For each integer r, we denote by
Cr = {C ∩AWr |C ∈ C} the set of equivalence classes of rank r. The cardinality
of Cr is at most the cardinality of C. As in the case of finite words, each class C
is either contained in L or disjoint from L. Therefore we have both equalities

L =
⋃

C∈C,C∩L6=∅

C and L̄ = A� \ L =
⋃

C∈C,C∩L=∅

C

The same holds for words of rank at most r.

L ∩ AWr =
⋃

C∈Cr,C∩L6=∅

C and AWr \ L =
⋃

C∈Cr,C∩L=∅

C.

For each integer r, the family Cr contains finitely many classes. To prove that
AWr \ L is rational, it suffices to prove that each C ∈ Cr is rational. We prove
that claim by induction on r. The result holds obviously for r = 0, and the
induction step is based on the following idea. Suppose that Cr contains the
classes {C1, ..., Cm}. We define rational expressions using the Ci as letters. An
elementary expression is an expression of the form Ci, Cω

i or C−ω
i where Ci is a

class of Cr. We denote by B the set of elementary expressions. We consider the
set B∗ of all expressions obtained by concatenation of elementary expressions.
Suppose for instance that Cr = {C1, C2}. The set of elementary expressions
is B = {C1, C

ω
1 , C−ω

1 , C2, C
ω
2 , C−ω

2 }. A typical example of an element of B∗ is
Cω

2 C1C
−ω
2 C1C

−ω
2 . We consider each element of B∗ as a rational expression over

the letters Ci. Each expression of B∗ denotes a set of words of rank at most r+1.
By a slight abuse of language, we say that a word belongs to an expression R
in B∗ if it actually belongs to the set denoted by R. The two following lemmas
are needed in the proof of Proposition 12. In Lemma 10, we first prove that
each word of rank at most r + 1 belongs to at least one expression in B∗.

Lemma 10. AWr+1 =
⋃

R∈B∗

R.

Proof. Since equivalence classes of rank r contain words of rank at most r, each
elementary expression of B contains words of rank at most r +1. Moreover, the
rank is not modified by finite product, thus each R ∈ B∗ is included in AWr+1 .

Conversely, let x ∈ AWr+1 . Since the length J of x belongs to the class
Wr+1, it is a finite sum of linear orderings of class Vr+1 defined by Hausdorff’s
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characterization: J =
n∑

i=1

Ki where ∀1 ≤ i ≤ n , Ki ∈ Vr+1. Consider the

associated factorization: x =
n∏

i=1

xi where ∀1 ≤ i ≤ n , |xi| = Ki.

We claim that each xi belongs to an expression Ri of B∗. Lemma 10 follows
from this claim since x belongs then to the expression R1 . . . Rn of B∗.

We show that any factor xi of x belongs to an expression Ri of B∗:

• Case 1: The rank of xi is at most r, |xi| ∈ Wr. Thus xi belongs to an
equivalence class C of rank r. Thus we set Ri = C.

• Case 2: xi is an ω-product of words of rank at most r :

The ordering Ki can be decomposed Ki =
∑

j≥0

Ki,j where Ki,j ∈ Wr for

all j ≥ 0. Thus xi =
∏

j≥0

xi,j with xi,j ∈ AWr . The number of equivalence

classes of Cr is finite. Therefore, by Corollary 3 there exists a Ramseyan
superfactorization xi =

∏

j≥0

x′
i,j where all x′

i,j are words of rank at most r

as a finite product of xi,j and belong to the same equivalence class C of
Cr. Denote by C ′ the equivalence class of xi,0. We set Ri = C ′Cω.

• Case 3: xi is a −ω-product of words of rank at most r :

Similarly to case 2, we prove that xi belongs to an expression C−ωC ′

where C,C ′ ∈ Cr and we set Ri = C−ωC ′.

• Case 4: xi is a ζ-product of words of rank at most r : There exists two
words y1 and y2 such that x = y1 · y2 where y1 is a −ω-product, and
y2 is an ω-product of words of rank at most r. Thus xi belongs to an
expression of the form C−ω

1 C ′
1C

′
2C

ω
2 , where C1,C

′
1, C2, C ′

2 ∈ Cr and we
set Ri = C−ω

1 C ′
1C

′
2C

ω
2 .

In Lemma 11, we prove that two words belonging to the same expression of
B∗ are ∼-equivalent. This means that each set denoted by an expression of B∗

is included in a single ∼-class.

Lemma 11. If two words x,y of rank at most r+1 belong to the same expression
R of B∗, then they satisfy x ∼ y.

Proof. Let R ∈ B∗. Let x and y be two words verifying x ∈ R and y ∈ R. We
first show that x ∼ y when R is an elementary expression of B.

• Case 1: R = C for some class C of Cr.

As x and y belong to C, we get that x ∼ y.

11



• Case 2: R = Cω for some class C of Cr .

Let x =
∏

i≥0

xi and y =
∏

i≥0

yi be the factorizations satisfying xi, yi ∈ C,

∀i ≥ 0.

Let γ : p
x

=⇒
P

q be a path in A labelled x. The path γ can be decomposed

according to the factorization of x as a path

p = p0
x0=⇒
P0

p1
x1=⇒
P1

p2 ... q

ending with a limit transition P ′ −→ q.

For each i ≥ 0, we have xi ∼ yi thus pi
yi

=⇒
Pi

pi+1. Finally, p
y

=⇒
P

q is a path

of A which concludes our proof that x ∼ y.

• Case 3: R = C−ω for some class C of Cr . Similarly to case 2, we get that
x ∼ y.

Now we suppose that R is a finite product of elementary expressions of B :

R =
n∏

i≥0

Ri.

There exist two factorizations x =
n∏

i=1

xi and y =
n∏

i=1

yi such that for all

1 ≤ i ≤ n , xi ∈ Ri and yi ∈ Ri.
Let us suppose the existence of a path p

x
=⇒

P
q in A. Decompose it according

to the previous factorization of x:

p = q0
x1=⇒
P1

q1
x2=⇒
P2

q2 ...
xn=⇒
Pn

qn = q

Since the Ri are elementary expressions, we have xi ∼ yi for all 1 ≤ i ≤ n. Thus

qi−1
yi

=⇒
Pi

qi for all 1 ≤ i ≤ n and it follows that p
y

=⇒
P

q.

We conclude that x ∼ y.

It follows from Lemmas 10 and 11 that each class C in Cr+1 satisfies

C =
⋃

R∈B∗,C∩R6=∅

R

However, this is not a rational expression for C because there are infinitely many
such expressions R included in C. In the following proposition, we show that
the set of rational expressions included in some class C can be described by a
rational expression over elementary expressions.

Proposition 12. Each equivalence class in Cr is rational.

Proof. The proof is by induction on the rank r.

12



• r = 0:

We consider classes of finite words. Given p ∈ Q, q ∈ Q and P ⊆ Q, we
denote by Lp,q,P the set of finite labels of paths in A leading from p to
q and of content P . One can easily prove that Lp,q,P is rational. Thus
any ∼-class of finite words is rational as a boolean combination of the sets
Lp,q,P .

• r ≥ 0:

Let Cr = {C1, C2, ..., Cm} be the set of equivalence classes of rank r. By
inductive hypothesis, each class of rank r is rational:

∀C ∈ Cr, C ∈ Rat(AWr )

Let B = {C1, C
ω
1 , C−ω

1 , ..., Cm, Cω
m, C−ω

m }. From A, we construct an au-
tomaton B which links any expression R of B∗ with the words of AWr+1

belonging to R. Then the classes of Cr+1 will be defined as rational sets
of elements of B∗.

Define the automaton B = (Q ×P(Q), B, E
′

, I
′

, F
′

) by:

E′ = {(p, S)
b

−→(p′, S ∪ T )| ∃x ∈ b such that p
x

=⇒
T

p′ in A}

I ′ = {(p, ∅)| p ∈ Q} and F ′ = Q ×P(Q)

Note that a label of a path in B is an element of B∗. Thus it is an
expression denoting a set of words of AWr+1 . Let L(p,∅),(q,P ) be the set

of labels of paths leading from (p, ∅) to (q, P ) in B, and let Lr+1
p,q,P be the

set of labels of paths in A leading from p to q of content P and of rank
at most r + 1. We claim that a word x in AWr+1 belongs to Lr+1

p,q,P if and

only if x belongs to an expression R of L(p,∅),(q,P ). Thus the set Lr+1
p,q,P is

defined as the set of words belonging to a label of L(p,∅),(q,P ). The result
follows as a class C of Cr+1 is defined as a boolean combination of the
rational sets L(p,∅),(q,P ) of finite words.

We now prove the claim. We show that for all p ∈ Q, q ∈ Q, P ⊆ Q and

R ∈ B∗, (p, ∅)
R

=⇒(q, P ) in B if and only if there exists a word x in R such

that p
x

=⇒
P

q in A.

Let x be a word of rank at most r +1. By Lemma 10, there exists R ∈ B∗

such that x ∈ R. Denote by R = b1b2 . . . bn with n ∈ N and bi ∈ B for
any 1 ≤ i ≤ n. We prove by induction on n ≥ 1 that for all p ∈ Q, q ∈ Q,

and P ⊆ Q, p
x

=⇒
P

q in A implies (p, ∅)
R

=⇒(q, P ) in B. If n = 1, R ∈ B,

and the result is obtained by definition of B. If n > 1, x can be written
x = x1x2 . . . xn with xi ∈ bi for any 1 ≤ i ≤ n. Suppose that p

x
=⇒

P
q in A.

There exists q′ ∈ Q, P1, P2 ⊆ Q such that p
x1...xn−1

=⇒
P1

q′ and q′
xn=⇒
P2

q with

13



P1 ∪ P2 = P . By the inductive hypothesis, (p, ∅)
b1...bn−1

=⇒ (q′, P1) in B and

by definition of B, (q′, P1)
bn−→(q, P1 ∪ P2), thus (p, ∅)

R
=⇒(q, P ).

Conversely, let R ∈ B∗ and let x ∈ R. Suppose that (p, ∅)
R

=⇒(q, P ). By

construction of B, there exists y ∈ R such that p
y

=⇒
P

q in A. Moreover,

from Lemma 11 we have x ∼ y, thus p
x

=⇒
P

q in A.

We come back to the proof of Theorem 9.

Proof. Let A be an finite automaton on linear orderings recognizing L and let
r be a finite rank. Let Cr be the set of equivalence classes of rank r according
to A. From Proposition 12, we have that each class of Cr is rational. Moreover,
considering the definition of ∼, we note that if a word u is the label of a successful
path in A, it holds for any equivalent word. So an equivalence class is either
contained in L or disjoint of L. We deduce a rational expression of AWr \ L as
a finite union of the classes of Cr:

AWr \ L =
⋃

C∈Cr,C∩L=∅

C

The following example illustrates the construction of rational expressions of
equivalence classes:

Example 13. Let A be the automata of Figure 3 recognizing the set L = (aζ)∗.
We look for a rational expression of the equivalence classes of rank 1.

00 1

a

0 → {1}

{1} → 0

Figure 3: Automaton on linear orderings recognizing (aζ)∗

Let C0 be the set of equivalence classes of finite words. The automata has
two equivalence classes: C0 = {a+, ε}. Define the set B = {a+, aω, a−ω, ε}.

The corresponding finite automaton B is given in Figure 4. Note that the
letter ε has not been written in the automaton, and that terminal states have
not been marked.

We deduce the following ∼-classes of rank 1: C1 = {C0, C1, C2, C3, C4, C5, C6, }.
C0 = ε, C1 = a+, C2 = (aζ)+a−ω,
C3 = aω(aζ)∗, C4 = (aζ)+, C5 = aω(aζ)∗a−ω

and C6 = (a + aω + a−ω)∗ · (aω · a + a · a−ω) · (a + aω + a−ω)∗

14



0, ∅

1, ∅ 1, {1} 0, {0, 1}

1, {0, 1}

a+

a+a−ω

aω

aω

a+

a−ωaω

Figure 4: Automaton B

where the last class contains words which are not labels of a path in A.
Consider the automaton B having all states final. Since it is an automaton on
finite words, C6 is obtained from its complement.

Except for the classes C0 and C4 which are included in L, any other class
of C1 is disjoint of L. We get the following rational expression of L and its
complement in the set of words of rank at most 1:

L ∩ AW1 = C0 + C4

AW1 \ L = C1 + C2 + C3 + C5 + C6

As a conclusion, we mention a question that is left open by this paper. A
generalization of our result is that the class of rational sets of countable scattered
linear orderings is closed under complementation.
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