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Abstract

We consider words indexed by linear orderings. These extend finite,
(bi-)infinite words and words on ordinals. We introduce finite automata
and rational expressions for these words. We prove that for countable
scattered linear orderings, these two notions are equivalent. This result
extends Kleene’s theorem.

1 Introduction

The theory of automata finds its origin in a paper of S. C. Kleene of 1956 where
the basic theorem, known as Kleene’s theorem, is proved for finite words [16].
Since then, the study of automata has become a branch of theoretical computer
science in its own right and has developed in many directions, including study
of automata working on infinite words, trees, and traces ([18, 24]).

In this paper we focus on automata working on linearly ordered objects.
Examples of such objects are finite, infinite, bi-infinite and ordinal words, where
the underlying linear ordering is respectively a finite ordering, the ordering
of the positive integers, the ordering of the integers and the ordering of an
ordinal. Each such class of words has its corresponding family of automata and
in all cases, a Kleene-like theorem exists. Historically, Büchi introduced the
so-called Büchi automata working on infinite words, to show the decidability of
the monadic second order theory of 〈N, <〉 [8]. He later extended the method
to countable ordinals by using appropriate automata [9]. Büchi introduced ω-
rational operations for infinite words in [9]. For words indexed by an ordinal
less than ωω, Choueka defined rational operations and proved an analogue of
Kleene’s theorem in [11]. This result is extended to any countable ordinal by
Wojciechowski in [25]. The case of bi-infinite words is treated in [17, 13].

∗partially supported by the CGRI-CNRS cooperation project Combinatoire et automates
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The goal of this paper is to provide a unified approach of the study of
words indexed by any countable linear ordering. We introduce a new notion of
automaton which is simple, natural, and includes previously defined automata.
We also define rational expressions and we prove the corresponding extension
of Kleene’s theorem (Theorem 20).

Words indexed by arbitrary countable linear orderings were first considered
in [12] as solutions of systems of equations. They can be viewed as the frontiers
of labeled binary trees in which the labels of the leaves are read from left to
right. For these words, some kind of rational expressions have been studied in
[12, 15, 23]. They have the nice property that the rational operations are total
operators. For instance, an ω-power can be concatenated with a finite word and
the resulting word can be iterated by a reversed ω-power. These operations lead
to a characterization of the words which are the frontier of regular trees.

In our model, there are three groups of rational operations. First, there
are the usual union, concatenation, finite iteration and omega iteration, as well
as the ordinal iteration introduced in [25] for ordinal words. Next, there are
reverse omega iteration and reverse ordinal iteration. They capture the left-
infinite ordinal words and the bi-infinite words. Finally, a last operation is
necessary. It is the iteration for all linear orderings. This binary operation
(denoted by ⋄ below) is subtle since it takes into account the cuts of a linear
ordering as defined in [21].

We also define automata that work on words indexed by linear orderings.
In our formulation, the notion of a path in an automaton depends heavily on
cuts. In the case of a finite word w of length n, the underlying ordering is
1 < 2 < · · · < n. The n + 1 states of a path for w are inserted between the
letters of w, i.e. at the cuts of the ordering. In general, for a word w indexed by
a linear ordering, the states of a path labeled by w are indexed by the cuts of
the ordering. Our automata have three types of transitions: the usual successor
transitions, left limit transitions, and right limit transitions. For two consecutive
states in a path, there is always a successor transition labeled by the letter in
between. For a state q which has no predecessor in a path, there is always a left
limit transition between the left limit set P and q. Right limit transitions are
used when a state has no successor in a path. The notion of left limit set P is
already used in the acceptance condition of the classical Muller automata ([24])
which work on words of length ω.

We think that our approach may have applications to the area of timed au-
tomata which are used for the specification and verification of real-time systems.
Recently, ordinal words (called Zeno words) were considered as models of infinite
sequences of actions which occur in a finite interval of time [14, 3]. While the
intervals of time are finite, infinite sequences of actions can be concatenated. A
Kleene-like theorem already exists for standard timed automata (where infinite
sequences of actions are supposed to generate divergent sequences of times) [1].
In [3], automata of Choueka and Wojciechowski are adapted to Zeno words. A
kind of Kleene’s theorem is proved, that is, the class of Zeno languages is the
closure under an operation called refinement of the class of languages accepted
by standard timed automata.
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The paper is organized as follows. Basic notions on linear orderings are given
in Section 2. Words indexed by linear orderings are introduced in Section 3.
Rational expressions denoting sets of such words are defined in Section 4. Au-
tomata accepting words on linear orderings are introduced in Section 5. Finally,
Section 6 is devoted to the proof of the equivalence between rational expressions
and automata.

Part of the results of the present paper has been presented at the conference
MFCS’2001 [5].

2 Linear orderings

In this paper, we consider words on linear orderings, that is, totally ordered
sequences of letters. We are only interested in countable linear orderings. Fur-
thermore, we focus on scattered linear orderings. In this section, we provide the
needed material on orderings. We recall the definitions and we fix the terminol-
ogy. We refer the reader to [21] for a complete introduction to linear orderings.

A linear ordering J is a set equipped with an ordering < which is total, that
is, for all j 6= k in J , either j < k or k < j holds. The order type of an ordering J
is the class of all orderings isomorphic to J . The order types of N, Z and Q

under the usual ordering are respectively denoted by ω, ζ and η. For every non-
negative integer n, the order type of an ordering with n elements is denoted
by n. When we do not need to distinguish between isomorphic orderings, we
will sometimes also use ω (ζ, η, n) to stand for an arbitrary ordering of type ω
(respectively, ζ, η, n).

Recall that an ordinal is a linear ordering which is well-ordered. This means
that any non-empty subset has a least element. In this paper, we only consider
countable ordinals, that is, ordinals less than the ordinal ω1.

Given a linear ordering J , we denote by −J the backwards linear ordering
obtained by reversing the ordering relation. Suppose that the ordering relation
of J is denoted by the symbol <. The ordering −J has the same underlying
set but its ordering relation <∗ is defined by j <∗ k if and only if k < j. For
instance, the ordering −N is the ordering . . . , 3, 2, 1, 0. Its order type is denoted
by −ω.

Example 1 Let Z2 be the set of all pairs (k, j) of integers. Define the relation
(k1, j1) < (k2, j2) by j1 < j2 or j1 = j2 and k1 < k2. The relation < linearly
orders Z2.

Example 2 Let Zω be the set of all sequences (jn)n≥0 of integers in which there
are finitely many n such that jn 6= 0. Define the relation (jn)n≥0 < (kn)n≥0 if
and only if jm < km where m is the greatest integer such that jm 6= km. The
relation < endows Zω with a linear ordering. It can be proved that if m is taken
as the least integer such that jm 6= km, one obtains an ordering isomorphic to Q.

Two elements j and k of a linear ordering J are called consecutive if j < k
and if there is no element i ∈ J such that j < i < k. The element j is then called
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the predecessor of k and k is called the successor of j. Note that an element k
has a predecessor if and only if the set {j | j < k} has a greatest element.

Let K be a subset of a linear ordering J . If the least or the greatest element
of K exists, it is denoted by min(K) or max(K), and K is then said to be left

closed or right closed. Otherwise, it is said to be left open or right open. If the
the greatest lower bound or the least upper bound of K exists, it is denoted
by inf(K) or sup(K). Note that if K is left closed, its least element is also
the greatest lower bound of K, that is, inf(K) = min(K). An ordering J is
complete if any subset K which is lower bounded has a greatest lower bound (or
equivalently if any subset K which is upper bounded has a least upper bound).

An ordering K is a subordering of an ordering J if K is a subset of J and if
the order of K is the restriction to K of the order of J . An interval of a linear
ordering J is a subset K of J such that for all j, k ∈ K and i ∈ J , the relation
j < i < k implies that i belongs to K.

Let J and K be two linear orderings. The linear ordering J + K is the
ordering obtained by juxtaposition of J and K. More formally, it is the linear
ordering on the disjoint union J ∪ K extended with j < k for all j ∈ J and
k ∈ K. For instance, if J and K are the orderings −N and N, the ordering
J + K is isomorphic to Z.

More generally, let J be a linear ordering and let Kj be a linear ordering for
all j ∈ J . The linear ordering

∑

j∈J Kj is the set of all pairs (k, j) such that
k ∈ Kj . The relation (k1, j1) < (k2, j2) holds if and only if j1 < j2 or j1 = j2
and k1 < k2 in Kj1 . For instance, if J = Z and Kj = Z for j ∈ Z, the sum
∑

j∈J Kj is isomorphic to the ordering Z2 already considered in Example 1.

2.1 Cuts

A Dedekind cut or simply a cut of a linear ordering J is a pair (K, L) of intervals
such that J = K ∪ L and such that for all k ∈ K and l ∈ L, k < l. Note that
K and L are disjoint — in fact they form a partition of J . The set of all cuts
of the ordering J is denoted by Ĵ .

Example 3 Let J be the ordering {1, 2, 3}. The set Ĵ contains the four cuts
(∅, {1, 2, 3}), ({1}, {2, 3}), ({1, 2}, {3}) and ({1, 2, 3}, ∅). More generally, if J
contains n elements, Ĵ contains n + 1 cuts.

The two trivial cuts (∅, J) and (J, ∅) are usually not considered as cuts in
the literature [21] but they are essential for our purpose and they are included
in the set Ĵ . However, it is sometimes convenient to ignore these two cuts and
we denote by Ĵ∗ the set Ĵ − {(∅, J), (J, ∅)} of non-trivial cuts.

The set Ĵ can be linearly ordered as follows. For all cuts c1 = (K1, L1) and
c2 = (K2, L2), define the relation c1 < c2 if and only if K1 ( K2. This inclusion
implies L1 ) L2 and the definition is therefore symmetric. The cuts (∅, J) and
(J, ∅) are the least and the greatest element of Ĵ . They are respectively called
the first and the last cut of J . We denote them by cmin and cmax.
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Example 4 Let J be the ordering N. The set Ĵ contains the cut ({0, . . . , n−
1}, {n, n+1, . . .}) for each integer n ∈ N and the last cut (N, ∅). The ordering Ĵ
is thus isomorphic to the ordering N + 1 of order type ω + 1.

More generally, if J is an ordinal α, the ordering Ĵ is the ordinal α + 1. Indeed,
for any cut c = (K, L) different from the last one, the interval L has a least
element jc and the function which maps the cut c to jc is one-to-one.

From the previous examples, it may seem that the ordering Ĵ is close to the
ordering J . The following example shows that this is not always true.

Example 5 Let J be the ordering Q. The set Ĵ is not countable since each
irrational number defines a unique cut of Q.

More generally, if J contains a subordering of order type η, then Ĵ is not count-
able. Therefore, we will only consider countable scattered linear orderings as
defined in the next section.

For any J , the ordering Ĵ is complete and we often use this fact in the sequel.
Indeed, the least upper bound of a subset M of Ĵ is the cut (K0, L0) where the
intervals K0 and L0 are defined by

K0 =
⋃

(K,L)∈M

K and L0 =
⋂

(K,L)∈M

L.

The greatest lower bound of M is given analogously.

2.2 Scattered linear orderings

A linear ordering J is said to be dense if it contains at least two elements and if
for all i < k in J , there is j ∈ J such that i < j < k. A linear ordering is scattered

if it contains no dense subordering. Thus scattered orderings are those that do
not contain a subordering of order type η. The following characterization of
countable scattered linear orderings is due to Hausdorff.

Theorem 6 (Hausdorff) A countable linear ordering J is scattered if and

only if J belongs to
⋃

α<ω1
Vα where the classes Vα are inductively defined by

1. V0 = {J | J of order type 0 or 1};

2. Vα = {
∑

j∈J Kj | J of order type n, ω, −ω, or ζ and Kj ∈
⋃

β<α Vβ}.

The orderings Z2 and Zω considered in Examples 1 and 2 are scattered. They
respectively belong to the classes V2 and Vω defined above. In the sequel, we
denote by S the class of all countable scattered linear orderings. It follows from
the previous theorem that if J is a countable scattered linear ordering, then Ĵ
is also a countable scattered linear ordering. Conversely, if Ĵ is countable, then
J is countable and scattered.
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2.3 The ordering J ∪ Ĵ

The orderings of J and Ĵ can be extended to an ordering on the disjoint union
J ∪ Ĵ as follows. This means that J ∪ Ĵ can be endowed with a linear ordering
such that J and Ĵ are then two of its suborderings. For j ∈ J and a cut
c = (K, L), define the relations j < c and c < j by, respectively, j ∈ K and
j ∈ L. Note that exactly one of these two relations holds since (K, L) is a
partition of J . These relations together with the orderings of J and Ĵ endow
J ∪ Ĵ with a linear ordering. This ordering will be used in Section 4. Notice
that for any two consecutive elements j1 < j2 of J , there is exactly one cut c
such that j1 < c < j2. Analogously, for any two consecutive cuts c1 < c2 of Ĵ ,
there is exactly one element j ∈ J such that c1 < j < c2. The elements of J
and the cuts of J interleave.

. . . . . . • • • . . . . . . •
c−

j

•
j

c+
j

• . . . . . . • • • . . . . . .

Figure 1: Ordering J ∪ Ĵ for J = Z2

Example 7 The ordering J = Z2 is equal to the sum
∑

j∈Z Z introduced in
Example 1. There is a cut between each pair of consecutive elements in each
copy of Z, but there is also a cut between consecutive copies of Z. There are
also the first and the last cuts. The ordering J ∪ Ĵ is pictured in Figure 1 where
each element of J is represented by a bullet and each cut by a vertical bar.

For each element j ∈ J , there are two consecutive cuts c−j and c+
j such that

c−j < j < c+
j . They are defined as c−j = (K, {j} ∪ L) and c+

j = (K ∪ {j}, L)
with K = {k | k < j} and L = {k | j < k}. Thus there is a one-to-one
correspondence between elements of J and pairs of consecutive cuts in Ĵ . Notice
that a cut c = (K, L) has a predecessor if and only if K has a greatest element j.
In this case the cut c is equal to c+

j and its predecessor (in Ĵ) is c−j . The cut
c = (K, L) has a successor if and only if L has a least element j. It is then equal
to c−j and its successor (in Ĵ) is c+

j .
The first and last cut of J are respectively the least and the greatest element

of the ordering J ∪ Ĵ . Thus the ordering J ∪ Ĵ∗ is the one obtained by removing
the first and the last cut from J ∪ Ĵ . A straightforward induction on the rank of
the classes Vα in Theorem 6 shows that if J is a countable scattered ordering,
then J ∪ Ĵ and J ∪ Ĵ∗ are countable and scattered as well.

Both orderings J ∪ Ĵ and J ∪ Ĵ∗ are complete. The following lemma gives
a characterization of the ordering J ∪ Ĵ . It is needed in Section 6.2.

Lemma 8 Let K be a complete scattered linear ordering with a least and a

greatest element. Let J and J ′ be two suborderings such that J ∩ J ′ = ∅ and

K = J ∪ J ′. Suppose that for consecutive elements k and k′ of K, either k ∈ J
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and k′ ∈ J ′ or k ∈ J ′ and k′ ∈ J . Suppose also that any element of J has

a predecessor and a successor in J ′. Then J ′ is isomorphic to Ĵ and K is

isomorphic to J ∪ Ĵ .

Proof We define a function f from K into J ∪ Ĵ as follows. For any k ∈ K,
define

f(k) =

{

k if k ∈ J
(

{j ∈ J | j < k}, {j ∈ J | k < j}
)

if k ∈ J ′.

Since J ∩J ′ = ∅ and K = J ∪J ′, the function f is well defined. The restriction
of f to J is the identity. The image of an element of J ′ is a cut of J . Therefore
f is a function from K into J ∪ Ĵ .

We claim that the function f is one-to-one. Thus we must show that k 6= k′

implies f(k) 6= f(k′). If k ∈ J or k′ ∈ J , the result is trivial. Suppose then
that k, k′ ∈ J ′ and that k < k′. Since K is scattered, there are two consecutive
elements j < j′ of K such that k ≤ j < j′ ≤ k′. Since j and j′ are consecutive,
either j belongs to J or j′ belongs to J . Therefore the two cuts f(k) and f(k′)
are different.

We now prove that the function f is onto. It is clear that J ⊆ f(K). Let
(L, M) be a cut of J . We claim that there is k ∈ J ′ such that (L, M) = f(k).
Since K is complete and has a least and a greatest element, any subset of K
has a greatest lower bound and a least upper bound. Define the two elements
l and m of K by l = sup(L) and m = inf(M). If l belongs to L, it has a
successor k in J ′ and one has (L, M) = f(k). If m belongs to M , it has a
predecessor k in J ′ and one has (L, M) = f(k). If l and m do not belong to L
and M , they belong to J ′ and their image by f is the cut (L, M). �

2.4 Condensation

The following notion is needed in Section 6.2. Let J be a linear ordering. A
condensation of J is an equivalence relation ∼ on J such that each of its classes
is an interval. The ordering of J induces a linear ordering of the quotient J/∼.

The quotient J/∼ inherits some properties of J . If J has a least or a greatest
element, then J/∼ also has a least or a greatest element which is the class of
the least or greatest element of J . If J is complete, then J/∼ is also complete
and if J is scattered, then J/∼ is also scattered.

We mention here some useful properties of consecutive classes k and k′ of J/∼
when the ordering J is complete. Define j and j′ by j = sup(k) and j′ = inf(k′).
By definition, one has j ≤ j′. If j < j′, then j and j′ respectively belong to k
and k′ since the classes k and k′ are consecutive. In that case, the interval k is
right closed and k′ is left closed. If j = j′, then j belongs to either k or k′. In
the former case, k is right closed and k′ is left open and in the latter case, k is
right open and k′ is left closed. Note that it is impossible that k is right open
and k′ is left open.

In the sequel, we consider only linear orderings which are countable and scat-

tered. This restriction is needed in the proof of the main result (Theorem 20)
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which states that rational expressions and automata are equivalent. The defini-
tion of the rational operations given in Section 4 also depends on this restriction.
The ordinal iterations in particular are restricted to countable ordinals. How-
ever, the definition of automata that we introduce in Section 5 makes sense for
all linear orderings.

3 Words on linear orderings

Let A be a finite alphabet whose elements are called letters. For a linear or-
dering J , a word of length J over A is a function which maps each element of
J to a letter of A. A word on a linear ordering J can be viewed as a labeled
ordering where each point of J has been decorated by a letter. A word is de-
noted in a sequence-like notation by (aj)j∈J where aj ∈ A is the image of the
element j. The word whose length is the empty set is called the empty word

and it is denoted by ε.
The notion of word just introduced generalizes notions common in the lit-

erature. If the ordering J is finite with n elements, a word of length J is a
finite sequence a1 . . . an [18]. A word of length N is a sequence a0a1a2 . . . which
is usually called an ω-word or an infinite word [24]. A word of length Z is
a sequence . . . a−2a−1a0a1a2 . . . which is usually called a bi-infinite word. An
ordinal word is a word indexed by a countable ordinal.

Example 9 Recall that the ordering N + (−N) is the ordering of {(n, 0) | n ≥
0} ∪ {(−n, 1) | n ≥ 0} with (k1, j1) < (k2, j2) if and only if j1 < j2 or j1 = j2
and k1 < k2. The word x = bω(ab)−ω is the word of length N+(−N) defined by

xk,j =

{

a if j = 1 and k odd

b otherwise.

Let x = (aj)j∈J and y = (bk)k∈K be two words of length J and K. The
product (or the concatenation) of x and y is the word z = (cl)l∈J+K of length
J + K such that

cl =

{

al if l ∈ J

bl if l ∈ K

The product of x and y is denoted xy. More generally, let J be a linear ordering
and for each j ∈ J , let xj be a word of length Kj. The product

∏

j∈J xj is
the word z of length K =

∑

j∈J Kj defined as follows. Suppose that each word
xj is equal to (ak,j)k∈Kj

and recall that K is the set of all pairs (k, j) such
that k ∈ Kj . The product z is then equal to (ak,j)(k,j)∈K . This definition
can be extended to sets. Given sets (Xj)j∈J , the product Πj∈JXj is the set
{Πj∈Jxj | xj ∈ Xj}. When J is finite or isomorphic to ω, the product is called
a finite product or an ω-product.

Two words x = (aj)j∈J and y = (bk)k∈K of length J and K are isomorphic

if there is an order-preserving isomorphism f from J to K such that aj = bf(j)
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for all j in J . This obviously defines an equivalence relation on words. A
class of words up to isomorphism is called a type. In this paper, we identify
isomorphic words. This makes sense since the automata and rational expressions
we introduce do not distinguish isomorphic words: an automaton A accepting
a word x, for example, also accepts any word isomorphic to x. Since isomorphic
words are identified, the length of word is more an order type than an ordering.
For instance, a word of length N (or Z), is rather called a word of length ω (or
ζ).

Note that some orderings, such as Z, have non trivial internal isomorphisms.
This induces some unexpected isomorphisms between words. For instance, let
x and y be the words (aj)j∈Z and (bj)j∈Z defined by

aj =

{

a if j = 0

b otherwise
and bj =

{

a if j = 1

b otherwise.

The words x and y are isomorphic since the function f given by f(x) = x + 1
is an automorphism of Z. Using notation of Example 9, both words can be
denoted b−ωabω.

Example 10 For j ∈ Z, define the word xj by xj = b−ω if j is even and by
xj = abω if j is odd. The product

∏

j∈J xj is the word (b−ωabω)ζ of length ζ2.

4 Rational expressions

In this section, the rational operations used to define rational sets of words
on scattered linear orderings are introduced. These rational operations include
the usual Kleene operations for finite words—union, concatenation, and finite
iteration (though these must be appropriately extended to our notion of word).
They also include omega iteration (usually used to construct ω-words) and the
ordinal iteration introduced by Wojciechowski [25] for ordinal words. Three
new operations are also needed: backwards omega iteration, backwards ordinal
iteration, and an additional binary operation, a kind of general iteration for
scattered linear orderings.

Union, concatenation and finite iteration are denoted as usual by the symbols
+, · and ∗. Omega iteration and ordinal iteration are denoted by the symbols ω
and ♯ whereas backwards omega iteration and backwards ordinal iteration are
denoted by the symbols −ω and −♯. Iteration for all scattered linear orderings
is denoted by the symbol ⋄.

We first define the various sorts of iteration in a unified framework. Given a
set X of words and a class J of linear orderings, define iteration XJ of X with
respect to J by

XJ = {
∏

j∈J

xj | J ∈ J and xj ∈ X}.

The sets X∗, Xω, X−ω, X♯ and X−♯ are then respectively equal to XJ for J
equal to the class of all finite linear orderings, the class {ω} which only contains
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the ordering ω, the class {−ω} which only contains the ordering −ω, the class
of all countable ordinals and the class {−α | α < ω1} of all countable backwards
ordinals.

We now define the binary operations. Let X and Y be two sets of words.
The sets X + Y , X · Y and X ⋄ Y are defined by

X + Y = X ∪ Y, X · Y = {xy | x ∈ X and y ∈ Y } and

X ⋄ Y = {
∏

j∈J∪Ĵ∗

zj | J ∈ S \ {0} and zj ∈ X if j ∈ J and zj ∈ Y if j ∈ Ĵ∗}.

A word x belongs to X⋄Y if and only if there is a non-empty countable scattered
linear ordering J such that x is the product of a sequence of length J ∪ Ĵ∗ of
words where each word indexed by an element of J belongs to X and each word
indexed by a cut in Ĵ∗ belongs to Y . Note that if the empty word ε does not
belong to X , it does not belong to X ⋄ Y .

A rational expression over A is a well-formed term of the free algebra over
{∅}∪A with the symbols denoting the rational operations as function symbols.
We inductively define a mapping L from this algebra into the family of sets of
words over A in the following way.

L(∅) = ∅, L(a) = {a},

L(E∗) = L(E)∗,

L(Eω) = L(E)ω, L(E−ω) = L(E)−ω,

L(E♯) = L(E)♯, L(E−♯) = L(E)−♯,

L(E + F ) = L(E) + L(F ), L(E · F ) = L(E) · L(F ),

L(E ⋄ F ) = L(E) ⋄ L(F ).

We say that the rational expression E denotes the set L(E). A set of words is
rational if it can be denoted by a rational expression.

As usual, the dot denoting concatenation is omitted in rational expressions.
Thus, the rational expression a · (a + a · bω)♯ is written a(a + abω)♯. We also use
the following abbreviations. If E is a rational expression, the expressions ε, Eζ

and E⋄ respectively abbreviate ∅∗, E−ωEω and E ⋄ ε. If the alphabet A is the
set {a1, . . . , an}, the symbol A is also used as an abbreviation for the expression
a1 + · · ·+ an.

Example 11 The expressions A⋄ +ε and (A⋄ +ε)a(A⋄+ε) denote respectively
the set of all words and the set of words having an occurrence of the letter a.

Example 12 The expression A∗ denotes the set of finite words and the ex-
pression (A⋄)ω(A⋄ + ε) + (A⋄ + ε)(A⋄)−ω denotes its complement. Indeed, a
linear ordering J is not finite if and only if it has some cut (K, L) such that
either K does not have a greatest element or L does not have a least element.
The rational expression (A⋄)ω denotes the set of words whose length does not
have a last element. Therefore, the expression (A⋄)ω(A⋄ + ε) denotes the set
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whose length has a cut (K, L) such that K does not have a greatest element.
Symmetrically, the expression (A⋄ + ε)(A⋄)−ω denotes the set of words whose
length has a cut (K, L) such that L does not have a least element.

In the sequel, we will often use the following lemma.

Lemma 13 The class of rational sets over an alphabet A is closed under the

rational operations.

Proof It is clear that if the sets X and Y are respectively denoted by the
expressions E and F , then the sets X + Y , X · Y , X∗, Xω, X−ω, X♯, X−♯ and
X ⋄ Y are respectively denoted by the expressions E + F , E · F , E∗, Eω, E−ω,
E♯, E−♯ and E ⋄ F . �

We say that a set X has a rational expression over the sets Xi if we can find
an expression for X in terms of the sets Xi using only the rational operations.
The previous lemma states that if X has a rational expression over the sets Xi

and each set Xi is rational, then X is itself rational.
In the sequel, we also need the following lemma. Let X1, . . . , Xn be sets of

words over an alphabet A, and let B be the alphabet {b1, . . . , bn}. We define a
function λ which maps each letter bi to the set Xi. The function is first extended
to each word w = (bij

)j∈J over B by setting

λ(w) =
∏

j∈J

Xij
.

Second, it is extended to sets of words over B by setting

λ(W ) =
⋃

w∈W

λ(w).

Lemma 14 If each set Xi is rational and if the set W is rational, then the set

λ(W ) is also rational.

Proof The proof is divided into two parts. In the first part, we show that
λ commutes with all rational operations. In the second part, we prove the
statement of the lemma.

We begin by establishing the following equalities for any index set I and any
linear ordering J

λ(
⋃

i∈I

Wi) =
⋃

i∈I

λ(Wi) (1)

λ(
∏

j∈J

Wj) =
∏

j∈J

λ(Wj). (2)

Equality (1) follows immediately from the definition of λ. To prove Equality (2)
we use the equality λ(

∏

j∈J wj) =
∏

j∈J λ(wj) for any words wj which follows

11



easily from the definition of λ.

λ(
∏

j∈J

Wj) = λ({
∏

j∈J

wj | wj ∈Wj})

=
⋃

wj∈Wj

λ(
∏

j∈J

wj)

=
⋃

wj∈Wj

∏

j∈J

λ(wj)

=
⋃

wj∈Wj

{
∏

j∈J

zj | zj ∈ λ(wj)}

=
∏

j∈J

λ(Wj).

Two particular cases of Equalities (1) and (2) are λ(W1 +W2) = λ(W1)+λ(W2)
and λ(W1 ·W2) = λ(W1) · λ(W2).

The following computation shows that λ commutes with the finite iteration.

λ(W ∗) = λ(
⋃

n≥0

Wn) =
⋃

n≥0

λ(Wn) =
⋃

n≥0

λ(W )n = λ(W )∗.

Similar computations show that λ commutes with the rational operations ω,
−ω, ♯, and −♯. It remains to prove that λ(W1 ⋄ W2) = λ(W1) ⋄ λ(W2), an
equality which is established as for Equality (2).

The statement of the lemma is proved by induction on the structure of the
rational expression denoting the set W . The base cases (W = ∅ and W = {bi})
follow from the definition of λ and the hypothesis that Xi is rational. The
induction step easily follows from the first part of the proof and Lemma 13. �

In the rest of the paper, we often make no distinction between a rational
expression E and the set L(E) denoted by it. For instance, we write a(a+abω)♯

for the set L(a(a + abω)♯).

5 Automata

In this section, automata on words on linear orderings are defined. As in the
rest of the paper, linear orderings considered in this section are countable and
scattered. However, it is worth pointing out that our definition of automata is
suitable for all linear orderings. Automata that we define are a natural general-
ization of Büchi automata [9] on ordinal words. Automata introduced by Büchi
are usual (Kleene) automata with left limit transitions of the form P → p used
for limit ordinals. The automata that we introduce have limit transitions of the
form p→ P as well.

12



Definition 15 Let A be a finite alphabet. An automaton A over A is a 4-tuple

(Q, E, I, F ) where Q is a finite set of states, E ⊆ (Q×A×Q) ∪ (P(Q)×Q) ∪
(Q×P(Q)) is the set of transitions, I ⊆ Q is the set of initial states and F ⊆ Q
is the set of final states.

Since the alphabet and the set of states are finite, the set of transitions is
also finite. Transitions are either of the form (p, a, q) or of the form (P, q) or
of the form (q, P ) where P is a subset of Q. A transition of the former case is
called a successor transition and it is denoted by p a−→ q. A transition of the
two latter cases are respectively called a left limit or a right limit transition and
they are denoted by P → q and q → P . Before explaining what a path is and
how an automaton accepts words, we illustrate this definition with the following
example.

0 1 2

b

a

b

0→ {1}

{2} → 0

Figure 2: Automaton of Example 16

Example 16 The automaton pictured in Figure 2 has 3 successor transitions
which are pictured as labeled edges of a graph. It also has a left limit transition
{2} → 0 and a right limit transition 0 → {1}. The state 0 is the only initial
state and the only final state.

We say that a transition leaves a state q if it is either a successor transition
q a−→ p for some state p or a right limit transition q → P for some subset P of
states. We say that it enters a state q if it is either a successor transition p a−→ q
or a left limit transition P → q. The sets of transitions leaving and entering a
state q are respectively denoted by Out(q) and In(q). More generally, for a set
P of states, we define Out(P ) =

⋃

q∈P Out(q) and In(P ) =
⋃

q∈P In(q).
In order to define the notion of path in such an automaton, the following

notion of limits is needed. We define it for an arbitrary linear ordering J but we
use it when the considered ordering is actually the ordering Ĵ of cuts of a given
ordering J . Let Q be a finite set, let J be a linear ordering and let γ = (qj)j∈J

be a word over Q. Let j be a fixed element of J . The left limit set and right limit

set of γ at j are the two subsets limj− γ and limj+ γ of Q defined as follows.

lim
j−

γ = {q ∈ Q | ∀k < j ∃i k < i < j and q = qi},

lim
j+

γ = {q ∈ Q | ∀k > j ∃i j < i < k and q = qi}.

Thus the left limit at j is the set of states to the left that occur infinitely often
infinitely close to j. Note that if j has a predecessor, the limit set limj− γ is
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empty. Conversely, if j has no predecessor and is not the least element of J ,
limj− γ is non-empty since the set Q is finite. Similar results hold for right limit
sets. For c = min(J), we define limc− γ = ∅ and for c = max(J), we define
limc+ γ = ∅ (although these two limits are literally defined as equal to Q by the
above formulas).

We now come to the definition of a path in an automaton on linear orderings.
Roughly speaking, a path is a labeling of each cut of the ordering by a state of
the automaton such that local properties are satisfied.

Definition 17 Let A be an automaton and let x = (aj)j∈J be a word of

length J . A path γ labeled by x is a sequence of states γ = (qc)c∈Ĵ of length Ĵ
such that

• For consecutive cuts c−j and c+
j , qc−

j

aj−→ qc+
j

is a successor transition.

• For any cut c which is not the first cut and which has no predecessor,

limc− γ → qc is a left limit transition.

• For each cut c which is not the last cut and which has no successor, qc →
limc+ γ is a right limit transition.

It is worth pointing out that the length of a path labeled by a word x of
length J is the ordering Ĵ of the cuts of J . Since a sequence of states indexed
by Ĵ is actually a function from Ĵ into Q, we sometimes use a functional notation
and the state qc of a path γ is also denoted by γ(c).

By the previous definition, there is a transition entering the state γ(c) for
each cut c which is not the first cut. This transition is a successor transition
if the cut c has a predecessor in Ĵ and it is a left limit transition otherwise.
Similarly, there is a transition leaving γ(c) for any cut c which is not the last
cut.

Since the ordering Ĵ has a least and a greatest element, a path always has
a first and a last state, which are the images of the first and the last cut. A
path is successful if its first state is initial and its last state is final. A word is
accepted or recognized by the automaton if it is the label of a successful path. A
set of words is recognizable if it is the set of words accepted by some automaton.

The notion of path we have introduced for words on orderings coincides with
the usual notion of paths considered in the literature for finite words, ω-words
and ordinal words. Let x be a finite word a1 . . . an. The set of cuts of the finite
ordering {1, . . . , n} can be identified with {1, . . . , n+1} (see Example 3). In our
setting, a path labeled by x is then a finite sequence q1, . . . , qn+1 of states such
that qj

aj−→ qj+1 is a successor transition for each j in {1, . . . , n}. This matches
the usual definition of a finite path in an automaton [18, p. 5].

Let x = a0a1a2 . . . be an ω-word. The set of cuts of the ordering J = ω is
the ordinal ω + 1 = {0, 1, 2, . . . , ω} (see Example 4). The pairs of consecutive
cuts are the pairs (j, j + 1) for j < ω whereas the cut c = ω has no predecessor.
In our setting, a path γ labeled by x is a sequence q0, q1, q2, . . . , qω of states
such that qj

aj−→ qj+1 is a successor transition for all j < ω and such that
limω− γ → qω is a left limit transition. Note that limω− γ is the set of states
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which occur infinitely many times in γ. This path is successful if and only if q0

is initial and qω is final. Define the family T of sets of states by

T = {P | ∃q ∈ F such that P → q ∈ E}.

The path γ is then successful if and only if q0 is initial and the set limω− γ of
states belongs to the family T . This matches the definition of a successful path
in a Muller automaton [24, p. 148].

The set of cuts of an ordinal α is the ordinal α + 1. Therefore, the notion
of path we have introduced coincides for ordinal words with the notion of path
considered in [2].

0
. . .

1

b

1

b

1

a

2

b

2

b

2
. . .

0
. . .

1

b

1

b

1

a

2

b

2

b

2
. . .

0

Figure 3: A path labeled by (b−ωabω)2

Example 18 Consider the automaton A of Figure 2 and let x be the word
(b−ωabω)2 of length Z + Z. A successful path γ labeled by x is pictured in
Figure 3. This path is made of two copies of the path 01−ω2ω0. A path for the
word (b−ωabω)ζ cannot be made by Z copies of 01−ω2ω0 because the right limit
set of the first state would be {0, 1, 2} and the automaton has no transition of
the form q → {0, 1, 2}. The automaton A recognizes the set (b−ωabω)∗.

0

a, b

{0} → 0

Figure 4: Automaton of Example 19

Example 19 Consider the automaton A pictured in Figure 4. This automaton
has no right limit transition. It recognizes the words whose length is an ordinal
since a linear ordering J is an ordinal if and only if each of its cuts except the
last has a successor in Ĵ . The automaton obtained by suppressing the left limit
transition of A recognizes the set of finite words since a linear ordering J is
finite if and only if each of its cuts except the first has a predecessor in Ĵ and
each of its cuts except the last a successor in Ĵ .

6 Rational expressions vs automata

In this section, we prove that rational expressions and automata are equivalent.
This means that a set of words on linear orderings is rational if and only if it can
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be recognized by an automaton. This result extends Kleene’s well-known theo-
rem for finite words. Kleene’s theorem was first extended to words of length ω
by Büchi [7] and was later extended to words of ordinal length by Wojciechowski
[25]. We have then the following theorem, which is the main result.

Theorem 20 A set of words on countable scattered linear orderings is rational

if and only if it is recognizable.

The following two examples illustrate the theorem.

0 1 2

a, b

a, b

0→ {1, 2}

{1} → 2

Figure 5: Automaton recognizing (Aω)−ω

Example 21 Let A be the alphabet {a, b}. The automaton pictured in Figure 5
recognizes the set denoted by the rational expression (Aω)−ω. The part of the
automaton given by state 1 and the left limit transition {1} → 2 recognizes the
set Aω. The successor transition from state 2 to state 1 allows the concatenation
of two words of Aω. The right limit transition 0→ {1, 2} leads to a sequence of
length −ω of words of Aω.

0 1

2

b

a
0→ {2}

0→ {0, 1, 2}

{2} → 1

{0, 1, 2} → 1

Figure 6: Automaton recognizing aζ ⋄ b

Example 22 The automaton pictured in Figure 6 recognizes the set denoted
by the rational expression aζ ⋄ b. The part of the automaton given by state 2
and the two limit transitions 0→ {2} and {2} → 1 accepts the word aζ whereas
the part given by the successor transition from state 1 to state 0 accepts the
word b. Each occurrence of aζ (except the first) is preceded by an occurrence of
b in the automaton, and each occurrence of aζ (except the last) is followed by an
occurrence of b. More generally, thanks to the limit transitions 0→ {0, 1, 2} and
{0, 1, 2} → 1, the occurrences of aζ are indexed by a linear ordering J ∈ S\{∅},
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the occurrences of b are indexed by the ordering Ĵ∗ and they are interleaved
according to the ordering J ∪ Ĵ∗.

The next two sections are devoted to the proof of the theorem. The first
section contains the proof that a rational set is recognizable and the second
section contains the proof of the converse.

6.1 From rational expressions to automata

In this section, we prove that any rational set of words is recognized by an
automaton. The proof is by induction on the structure of the rational expression
denoting the set. For each rational operation, we describe a corresponding
construction for the automata. The constructions for union, concatenation, and
finite iteration are very similar to the classical ones for automata on finite words
[18, p. 15].

In order to combine two automata, it is convenient if no transition enters
an initial state or leaves a final state. Furthermore, some problems may come
from the empty word. To overcome them, any set X may be decomposed as
X = X ′ + δ(X), where X ′ is X − {ε} and δ(X) is {ε} if ε ∈ X or ∅ otherwise.

An automaton is said to be normalized if it has a unique initial state i and a
unique final state f 6= i and it has no transition which enters i or leaves f . Note
that these conditions imply that the states i and f can only occur as the first
state and the last state of a path. Therefore transitions of the form P → q or
q → P where P contains i or f cannot occur in a path. In the sequel, we assume
that a normalized automaton does not have transitions of the form P → q or
q → P where P contains i or f .

The following lemma states that the empty word can be added or removed
without changing recognizability, and that a recognizable set which does not
contain the empty word can be recognized by a normalized automaton. Note
that this condition is necessary since a normalized automaton cannot accept the
empty word.

Lemma 23 Let X be a set of words. The set X is recognizable if and only if

X + ε is recognizable. Furthermore if ε /∈ X, then X can be recognized by a

normalized automaton.

Proof Suppose that X is recognized by the automaton A = (Q, E, I, F ). The
set X + ε is recognized by the automaton A′ obtained by adding a new initial
and final state i. Let Q′ be the set Q ∪ {i} where i does not belong to Q.
The automaton A′ is equal to (Q′, E′, I ′, F ′) where E′ = E, I ′ = I ∪ {i} and
F ′ = F ∪ {i}.

Conversely, suppose that the set X + ε is recognized by the automaton
A = (Q, E, I, F ). Without loss of generality, we may assume ε /∈ X . The set X
is then recognized by the normalized automaton A′ obtained by modifying A
as follows. Let Q′ be the set Q ∪ {i, f} where i and f are new states that do

17



not belong to Q. Define the set E′ of transitions by

E′ = E ∪ {i
a
−→ f | ∃ p

a
−→ q with p ∈ I and q ∈ F}

∪ {i
a
−→ q | ∃ p

a
−→ q with p ∈ I} ∪ {i→ P | ∃ p→ P with p ∈ I}

∪ {p
a
−→ f | ∃ p

a
−→ q with q ∈ F} ∪ {P → f | ∃ P → q with q ∈ F}.

It is then straightforward to check that the automaton A′ = (Q′, E′, {i}, {f})
recognizes X . Indeed, a non-empty word x labels a successful path γ in A if
and only if it labels the successful path γ′ in A′ obtained by replacing the first
and last states of γ by i and f . �

We claim that if both sets X1 and X2 are recognizable, then the sets X1 +
X2, X1X2, X∗

1 , Xω
1 , X−ω

1 , X♯
1, X−♯

1 and X1 ⋄ X2 are also recognizable. For
each of these rational operations, we describe a corresponding construction on
automata.

Suppose that the sets X1 and X2 are recognized by the automata A1 =
(Q1, E1, I1, F1) and A2 = (Q2, E2, I2, F2). Without loss of generality, we may
assume that Q1 and Q2 are disjoint. The set X1 + X2 is then recognized by the
automaton A obtained by mere juxtaposition of the two automata A1 and A2.
This automatonA is equal to A = (Q, E, I, F ) where Q = Q1∪Q2, E = E1∪E2,
I = I1 ∪ I2 and F = F1 ∪ F2. Note that this construction does not require that
the automata recognizing X1 and X2 be normalized.

In order to define formally the constructions for the other rational operations,
we introduce the following notation. Let A be an automaton (Q, E, I, F ) and
let q be one of its states. We denote by E[p← q] the set of transitions obtained
by replacing by p each occurrence of q in each transition of E.

i1 A1 f1 i2 A2 f2

Figure 7: Automata A1 and A2

The constructions on automata corresponding to the other rational opera-
tions require that the automata be normalized. Define X ′

1 and X ′
2 by X ′

1 =
X1 − ε and X ′

2 = X2 − ε. The sets X1 and X2 are equal to X ′
1 + δ(X1) and

X ′
2 + δ(X2). By Lemma 23, the sets X ′

1 and X ′
2 are recognized by two normal-

ized automata A1 = (Q1, E1, {i1}, {f1}) and A2 = (Q2, E2, {i2}, {f2}) pictured
in Figure 7. In the figure, all states which are neither initial nor final are rep-
resented by a squared box. Without loss of generality, we may assume that Q1

and Q2 are disjoint.
The set X1X2 is equal to X ′

1X
′
2 + δ(X1)X

′
2 + X ′

1δ(X2) + δ(X1)δ(X2). Since
the class of recognizable sets is closed under union, it suffices to construct an
automaton for X ′

1X
′
2. This set is recognized by the automaton A obtained by

first juxtaposing the automata A1 and A2 and then merging the final state f1

of A1 and the initial state i2 of A2 into a state called f1 which is neither initial
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i1 A1 f1=i2 A2 f2

Figure 8: Automaton for X ′
1X

′
2

nor final. This construction is pictured in Figure 8. The automatonA is equal to
(Q, E, {i1}, {f2}) where Q = Q1∪Q2−{i2} and E = E1∪E2[f1 ← i2]. Suppose
that the words x1 and x2 label the successful paths γ1 and γ2 in A1 and A2.
Since i2 is identified with f1, the two paths γ1 and γ2 can be concatenated to
form a successful path in A labeled by x1x2. Conversely, the state f1 = i2
occurs at least once in any successful path in A and it occurs exactly once since
no transition leaves f1 in A1 and no transition enters i2 in A2. Therefore, any
successful path in A is the concatenation of successful paths in A1 and A2. This
proves that A recognizes the set X ′

1X
′
2.

i1=f1 A1

Figure 9: Automaton for X∗
1

The set X∗
1 = X ′

1
∗

is recognized by the automaton A obtained by merging
the initial state i1 and final state f1 of A1 into a state which is both initial and
final. This construction is pictured in Figure 9. More formally, the automatonA
is equal to (Q, E, {i1}, {i1}) where Q = Q1−{f1} and E = E1[i1 ← f1]. Suppose
that x1, . . . , xn are accepted byA1. The successful paths γ1, . . . , γn inA1 labeled
by x1, . . . , xn can be concatenated to form a successful path in A. Conversely,
there are finitely many occurrences of the state i1 = f1 in a successful path
in A since there is no limit transition P → q or q → P with P containing i1.
Therefore, a successful path in A is the concatenation of a finite number of
successful paths in A1. This proves that A recognizes the set X∗

1 = X ′
1
∗
.

i1=f1 A1 f {i1, . . .} → f

Figure 10: Automaton for X ′
1
ω

The set Xω
1 is equal to δ(X1)X

′
1
∗
+ X ′

1
ω
. Since we have already proved that

the class of recognizable sets is closed union and finite iteration, it suffices to
construct an automaton for set X ′

1
ω. This set is recognized by the automaton A

obtained by first merging the initial state i1 and final state f1 of A1 into a state
called i1 which is initial but not final, and then by adding a new final state f

19



together with all left limit transitions P → f where P contains i1. The con-
struction is pictured in Figure 10. The automatonA is equal to (Q, E, {i1}, {f})
where Q = Q1 ∪ {f} − {f1} and E = E1[i1 ← f1] ∪ {P → f | i1 ∈ P}. Sup-
pose that the words x0, x1, x2, . . . are accepted by A1. The successful paths
γ0, γ1, γ2, . . . in A1 labeled by x0, x1, x2, . . . can be concatenated with an addi-
tional state f at the end to form a successful path in A. Conversely, there are
exactly ω occurrences of the state i1 = f1 in a successful path in A since the
only transitions entering the final state are the left limit transitions P → f with
i1 ∈ P . Furthermore, the least upper bound of these occurrences is the last cut
since there is no left limit transition P → q with i1 ∈ P and q 6= f . Therefore,
a successful path in A is the concatenation of ω successful paths in A1. This
proves that A recognizes the set X ′

1
ω
.

An automaton recognizing X−ω
1 is similar to the automaton for Xω.

i1=f1 A1 {i1, . . .} → i1

Figure 11: Automaton for X♯
1

The set X♯
1 = X ′

1
♯

is recognized by the automaton A obtained by first
merging the initial state i1 and the final state f1 into a state called i1 which is
both initial and final, and then by adding all left limit transitions P → i1 where
P contains i1. The construction is pictured in Figure 11. The automaton A is
equal to (Q, E, {i1}, {i1}) where Q = Q1 − {f1} and E = E1[i1 ← f1] ∪ {P →
i1 | i1 ∈ P}. Let α be a countable ordinal and suppose that each word xβ is
accepted by A1 for β < α. Let γβ be a successful path labeled by xβ . Suppose
first that α is not a limit ordinal. Thus the sequence γ of states obtained by
concatenating the paths γβ is a successful path in A since this automaton has
the transitions P → i1 where i1 ∈ P . In case α is a limit ordinal, the paths γβ

are concatenated with the additional state i1 at the end to form a successful path
in A. Conversely, since the automaton A does not have any transition q → P
where i1 ∈ P , the ordering of the occurrences of the state i1 in a successful
path is well-ordered. Therefore, a successful path in A is the concatenation of
a sequence of successful paths in A1 indexed by some countable ordinal. This
proves that A recognizes the set X1

♯.
An automaton recognizing X−♯

1 is similar to the automaton for X♯
1.

i1=f2

A1

A2

f1=i2
{i1, f1, . . .} → f1

i1 → {i1, f1 . . .}

Figure 12: Automaton for X1 ⋄X2
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For the set X1 ⋄ X2, we first suppose that X1 and X2 do not contain the
empty word. They are then recognized by the normalized automata A1 and A2.
The set X1 ⋄ X2 is recognized by the automaton A obtained by juxtaposing
the automata A1 and A2, by merging the initial state i1 of A1 and the final
state f2 of A2 into an initial state called i1, by merging the initial state i2 of A2

and the final state f1 of A1 into a final state called f1, and by adding all the
left limit transitions P → f1 and all the right limit transitions i1 → P where
P contains both i1 and f1. The construction is pictured in Figure 12. The
automaton A is then equal to (Q, E, {i1}, {f1}) where Q = Q1 ∪Q2 − {i2, f2},
E = E1 ∪ E2[i1 ← f2][f1 ← i2] ∪ {P → f1 | i1, f1 ∈ P} ∪ {i1 → P | i1, f1 ∈ P}.
Let J be a non-empty countable scattered linear ordering. If the words (xj)j∈J

are accepted by A1 and if the words (yc)c∈Ĵ∗ are accepted by A2, the successful
paths labeled by these words can be interleaved and concatenated to form a path
in A since this automaton has all the appropriate limit transitions. Conversely,
a successful path in A is made of intervals which either contain states of A1

or states of A2. Applying Lemma 8 to the ordering K of these intervals, a
path in A can be decomposed as the concatenation of successful paths (γj)j∈J

in A1 and successful paths (γc)c∈Ĵ∗ in A2. This proves that A recognizes the
set X1 ⋄X2.

i1=f2

A1

A2

f1=i2i′1=f ′
1

{i1, f1 . . .} → f1, i
′
1

{i′1, . . .} → f1, i
′
1

i1, i
′
1 → {i1, f1 . . .}

i1, i
′
1 → {i

′
1, . . .}

Figure 13: Automaton for X1 ⋄ (X2 + ε)

If either X1 or X2 contains the empty word, the previous construction must
be slightly adapted but it remains essentially the same. We describe it for the
case where X2 contains the empty word but X1 does not. The other cases
are very similar. The construction is as follows. The initial state i1 of A1 is
duplicated. This means that a new initial state i′1 is added, and new transitions
i′1

a−→ q and i′1 → P are added whenever i1
a−→ q and i1 → P are transitions ofA1.

Analogously, the final state f1 is duplicated by adding a new final state f ′
1. The

automaton A recognizing X1 ⋄X2 is obtained by juxtaposing the automata A1

and A2, merging the two states i′1 and f ′
1, merging the initial state i1 of A1

and the final state f2 of A2 into an initial state called i1, merging the initial
state i2 of A2 and the final state f1 of A1 into a final state called f1, and adding
all the left limit transitions P → f1 and P → i′1 and all right limit transitions
i1 → P and i′1 → P where P either contains i′1 or contains both i1 and f1. The
construction is pictured in Figure 13.

We have now shown that for each rational operation, there is a corresponding
construction on automata. For the base cases of the induction, we note that ∅
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is recognized by the automaton ({i, f}, ∅, {i}, {f}), and for each letter a, the
set {a} is recognized by the automaton ({i, f}, {i a−→ f}, {i}, {f}). Thus, for
each rational expression, there is an automaton recognizing the set denoted by
that expression.

6.2 From automata to rational expressions

In this section, we prove that for any automatonA, there is a rational expression
denoting the set of words recognized by A. We first introduce some notation.
Let A = (Q, E, I, F ) be a fixed automaton. The content C(γ) of a path γ is the
set of states which occur inside γ. It does not take into account the first and
the last state of the path. Recall that a path γ labeled by a word of length J
is a function from Ĵ into Q. The content of a path γ is thus formally defined
by C(γ) = γ(Ĵ∗). Recall that Out(P ) and In(P ) respectively denote the set of
transitions that leave and enter a state in P .

A path γ from state p to state p′ having content P and labeled by x is
denoted by

p
x
 
P

p′.

If x 6= ε, the path γ uses a first transition σ which leaves p and a last transition σ′

which enters p′. To emphasize the use of σ and σ′, the path γ is then denoted

σ
x
 
P

σ′.

In both notations, we may omit the label or the content of the path if they are
not relevant.

In the proof, we often decompose a path into several paths. Given a path γ
of length Ĵ and two cuts c < c′ of J , the path denoted by γ[c, c′] is the part of γ
from c to c′.

Let P be a subset of Q and let σ and σ′ be two transitions of A. We define
the sets of words ΠP

σ,σ′ , ∇P
σ,σ′ , ∆P

σ,σ′ , and ΓP
σ,σ′ as follows.

ΠP
σ,σ′ = {x | ∃γ of the form σ

x
 
P

σ′}

∇P
σ,σ′ = {x | ∃γ of the form σ

x
 
P

σ′ without any transition P → r}

∆P
σ,σ′ = {x | ∃γ of the form σ

x
 
P

σ′ without any transition r→ P}

ΓP
σ,σ′ = {x | ∃γ of the form σ

x
 
P

σ′ without any transition r→ P or P → r}.

Note that without any transition P → r means that the path γ does not use
any left limit transition of the form P → r for any r ∈ Q except perhaps for
the last transition if σ′ is a left limit transition of this form. Thus, the left limit
limc− γ at any cut c different from the last cut must be a proper subset of P .
This fact will be used in the arguments that follow.

22



Both ∇P
σ,σ′ and ∆P

σ,σ′ are subsets of ΠP
σ,σ′ and the set ΓP

σ,σ′ is equal to the
intersection ∇P

σ,σ′ ∩∆P
σ,σ′ .

The paths considered in the definition of the sets ΠP
σ,σ′ , ∇P

σ,σ′ , ∆P
σ,σ′ , and

ΓP
σ,σ′ use at least one transition. Therefore, the empty word is not contained in

them. Since a path is successful if its first and last states are respectively initial
and final, the set of words recognized by the automaton A is equal to the union

δ(A) +
⋃

P⊆Q,σ∈Out(I),σ′∈In(F )

ΠP
σ,σ′

where δ(A) is equal to ε if I ∩ F 6= ∅ and to ∅ otherwise. We claim that every
set of the form ΠP

σ,σ′ , ∇P
σ,σ′ , ∆P

σ,σ′ , or ΓP
σ,σ′ is rational. The proof is by induction

on the cardinality of P .
We first suppose that P is the empty set ∅. If both transitions σ and σ′ are

equal to the same successor transition p a−→ q, all four sets ΠP
σ,σ′ , ∇P

σ,σ′ , ∆P
σ,σ′

and ΓP
σ,σ′ are equal to the singleton {a}. Otherwise, they are all empty. In both

cases, they are rational. This completes the base case of the induction.
The rest of the proof is devoted to the induction step. We suppose that P

is non-empty and that for any R ( P and any transitions τ and τ ′, all four sets
ΠR

τ,τ ′, ∇R
τ,τ ′, ∆R

τ,τ ′ and ΓR
τ,τ ′ are rational. We first prove in Section 6.2.1 that

the set ΓP
σ,σ′ has a rational expression over the sets ΠR

τ,τ ′ for R ( P . By the
induction hypothesis and by Lemma 14, the set ΓP

σ,σ′ is rational. Then we prove
in Section 6.2.2 that both sets ∇P

σ,σ′ and ∆P
σ,σ′ have rational expressions over

the sets ΓP
τ,τ ′ studied in Section 6.2.1 and the sets ΠR

τ,τ ′ , ∇R
τ,τ ′ , ∆R

τ,τ ′ and ΓR
τ,τ ′

for R ( P . By the induction hypothesis and by Lemma 13, ∇P
σ,σ′ and ∆P

σ,σ′

are rational. Finally, we prove in Section 6.2.3 that the set ΠP
σ,σ′ has a rational

expression over the sets ΓP
τ,τ ′, ∇P

τ,τ ′ , ∆P
τ,τ ′ and the sets ΠR

τ,τ ′, ∇R
τ,τ ′ , ∆R

τ,τ ′ and
ΓR

τ,τ ′ for R ( P . Again by the induction hypothesis and by Lemma 13, ΠP
σ,σ′ is

rational.
In the following section, the proof uses the Kleene theorem for usual au-

tomata accepting finite words and a Kleene-like theorem for Büchi automata
accepting ω-words. We refer the reader to [18] for finite words and to [19] for
ω-words.

6.2.1 ΓP
σ,σ′ is rational

Let γ be a path labeled by a word x = (aj)j∈J in ΓP
σ,σ′ . Let p and p′ be the

first and last states of this path. By definition of ΓP
σ,σ′ , the path γ does not use

any limit transition r → P or P → r for any r ∈ Q, except possibly for the
beginning or ending transition. We show how to decompose the path γ in such
a way as to find a rational expression for ΓP

σ,σ′ over the sets ΠR
τ,τ ′ with R ( P .

We consider three cases depending on the form of the transitions σ and σ′.

• σ is different from p → P . The idea is to decompose the path γ into
a sequence of consecutive paths, each of whose content is strictly included in
P . The way these consecutive paths are combined to give γ will be described
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by an automaton. Kleene’s theorem for finite words together with its analog
for ω-words will allow us to infer from the induction hypotheses that ΓP

σ,σ′ is
rational.

Consider the cut (K, L) of the ordering Ĵ defined as follows.

K = {c ∈ Ĵ | C(γ[cmin, c]) ( P}

L = {c ∈ Ĵ | C(γ[cmin, c]) = P}

Note that K is non-empty since the first cut cmin belongs to K and that L is also
non-empty since the last cut cmax belongs to L. Since Ĵ is a complete ordering,
K has a least upper bound c1. By definition of (K, L) and of the content,
this cut c1 must belong to K and it is thus equal to max(K). Note that c1

is different from cmin since σ is different from p → P and that it is different
from cmax since L 6= ∅. Therefore there are transitions τ ′

1 and τ1 entering and
leaving the state q1 = γ(c1). Let R0 and R′ be the contents C(γ[cmin, c1]) and
C(γ[c1, cmax]). By definition of c1, one has R0 ( P and R′ ⊆ P . If R′ ( P ,
then x belongs to ΠR0

σ,τ ′

1
ΠR′

τ1,σ′ . If R′ = P , then x belongs to ΠR0
σ,τ ′

1
ΓR′

τ1,σ′ and the
argument given above for γ can be repeated for the path γ[c1, cmax] since τ1 is
not equal to q1 → P . We then get a second cut c2 in the interval (c1, cmax) such
that R1 = C(γ[c1, c2]) ( P and C(γ[c2, cmax]) ⊆ P .

So, we get either a finite sequence or an ω-sequence of distinct cuts c1, c2, . . .
corresponding to states q1, q2, . . . with related sets ΠR0

σ,τ ′

1
, ΠR1

τ1,τ ′

2
, . . ., where Rk (

P and τ ′
k and τk are the transitions entering and leaving qk. Note that by

construction

Rk−1 ∪ {qk} ∪Rk = P (3)

for every positive integer k.
If the sequence of cuts obtained is a finite sequence c1, . . . , cn, then the word

x ∈ ΓP
σ,σ′ belongs to the finite product

ΠR0
σ,τ ′

1
ΠR1

τ1,τ ′

2
. . .ΠRn−1

τn−1,τ ′

n
ΠRn

τn,σ′ . (4)

In that case, the transition σ′ must be different from the transition P → p′

because Rn ( P . We claim that if the sequence of cuts is an ω-sequence
c1, c2, . . ., then x belongs to the ω-product

ΠR0
σ,τ ′

1
ΠR1

τ1,τ ′

2
ΠR2

τ2,τ ′

3
. . . (5)

The least upper bound c = sup{ck | k ≥ 1} is equal to the last cut of J . Indeed,
Equation (3) implies that the left limit limc− γ is equal to P . Since the path γ
is without any left limit transition P → q for any q ∈ Q, except for the last one,
c is the last cut of J and σ′ must be the left limit transition P → p′.

Thus, we have proved that if x belongs to ΓP
σ,σ′ , then it belongs to a product

like (4) if σ′ is different from P → p′, or like (5) if σ′ is equal to P → p′. We
consider two cases.

We first suppose that σ′ is different from P → p′. Let us now give an
automaton B which describes in a precise way the possible concatenations of
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the sets ΠRk
τk,τ ′

k+1
that can arise in (4). The automaton is over the alphabet

C = {ΠR
τ,τ ′ | R ( P, τ, τ ′ ∈ E}. This means that each set ΠR

τ,τ ′ is considered as
a letter.

The states of B are triplets (R, q, R′) where q is a state of A, and R and R′

are sets of states of A such that R ∪ {q} ∪R′ = P . The automaton B also has
initial states of the form (p, R′) for R′ ( P and final states of the form (R, p′)
for R ( P . Transitions of B are defined as follows. There is a transition

(R1, q1, R
′
1)

ΠR
τ,τ′

−−−→ (R2, q2, R
′
2)

if and only if R′
1 = R2 = R, τ leaves q1 and τ ′ enters q2. There is a transition

from an initial state

(p, R′
1)

ΠR
τ,τ′

−−−→ (R2, q2, R
′
2)

if and only if R′
1 = R2 = R, τ = σ and τ ′ enters q2. Analogously, there is a

transition to a final state

(R1, q1, R
′
1)

ΠR
τ,τ′

−−−→ (R2, p
′)

if and only if R′
1 = R2 = R, τ leaves q1 and τ ′ = σ′. Note that the initial states

can only occur as the first state of a path and that final states can only occur
as the last state of a path. Indeed, there is no transition entering initial states
and no transition leaving final states.

This automaton B is a usual automaton that accepts finite words over C.
We claim that it has the following two properties.

i) If a finite sequence ΠR0
σ,τ ′

1
ΠR1

τ1,τ ′

2
. . . ΠRn

τn,σ′ as in (4) occurs as the decompo-
sition of a word x in ΓP

σ,σ′ , it is then accepted by B.

ii) Conversely, if a sequence ΠR0
σ,τ ′

1
ΠR1

τ1,τ ′

2
. . . ΠRn

τn,σ′ is accepted by B, the finite
product of the corresponding sets is contained in ΓP

σ,σ′ .

Statement (i) follows directly from Equation (3). Conversely, let w be a word
ΠR0

σ,τ ′

1
ΠR1

τ1,τ ′

2
. . . ΠRn

τn,σ′ accepted by B and let x be a word over A belonging to
the product ΠR0

σ,τ ′

1
ΠR1

τ1,τ ′

2
. . .ΠRn

τn,σ′ of the corresponding sets. The word x can
be factored x = x0x1 . . . xn where each xi belongs to ΠRi

τi,τ
′

i+1
. By definition

of ΠRi
τi,τ

′

i+1
, there is in A, a path τi  τi+1 of content Ri, labeled by xi. By

definition of the transitions of B, these paths can be concatenated in A to yield
a path σ  σ′ labeled by x. By definition of the states of B, the content of this
path is P but is without any transitions r → P or P → r. This completes the
proof of Statement (ii).

Let W be the set of words accepted by B. By Kleene’s theorem, W is
rational. By Statements (i) and (ii), ΓP

σ,σ′ = λ(W ) where the function λ is
naturally defined on C. By Lemma 14 and by the induction hypothesis, ΓP

σ,σ′

is rational. This completes the proof of the case σ′ different from P → p′. Note
that the rational expression expressing ΓP

σ,σ′ over the ΠR
τ,τ ′ only involves unions,

concatenations, and finite iterations since W only contains finite words.
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We now suppose that σ′ is equal to the transition P → p′. The proof
of this case is very similar, but since the products of (5) are ω-products, the
automaton B is replaced by a Büchi automaton B′ that accepts ω-words over
the alphabet C. We first recall that a Büchi automaton is a usual automaton
with initial and final states. An infinite path in such an automaton is successful
if it starts in an initial state and if it goes through a final state infinitely many
times. The automaton B′ is almost the same as the automaton B. The only
difference is that there are no final states of the form (R, p′) and that all states
of the form (R, q, R′) and (p, R′) are final. All infinite paths starting in an initial
state of this Büchi automaton are thus successful.

We claim that the automaton B′ has the following two properties

i’) If an ω-sequence ΠR0
σ,τ ′

1
ΠR1

τ1,τ ′

2
ΠR2

τ2,τ ′

3
. . . as in (5) occurs as the decomposition

of a word x in ΓP
σ,σ′ , it is then accepted by B′.

ii’) Conversely, if an ω-sequence ΠR0
σ,τ ′

1
ΠR1

τ1,τ ′

2
ΠR2

τ2,τ ′

3
. . . is accepted by B′, the

ω-product of the corresponding sets is contained in ΓP
σ,σ′

The proofs of these two statements are exactly the same as those for B. Let
W be the set of ω-words accepted by B′. By the Kleene-like theorem for Büchi
automata, W is rational. By Statements (i’) and (ii’), ΓP

σ,σ′ = λ(W ). By
Lemma 14 and by the induction hypothesis, ΓP

σ,σ′ is rational. This completes the
proof of the case σ′ equal to P → p′. Note that the rational expression expressing
ΓP

σ,σ′ over the ΠR
τ,τ ′ only involves unions, concatenations, finite iterations, and

ω iterations since W only contains ω-words.

• σ′ is different from P → p′. This case is symmetrical to the previous one.
The ω iteration is replaced by the −ω iteration.

• σ equals p → P and σ′ equals P → p′. Let c be a cut of J such that
cmin < c < cmax. The path γ is then decomposed into two paths γ1 = γ[cmin, c]
and γ2 = γ[c, cmax] and the word x is factored x = x1x2 where x1 and x2 are
the labels of γ1 and γ2. The content of γ1 and the content of γ2 are both equal
to P because σ equals p→ P and σ′ equals P → p′.

Let q be the state γ(c) and let τ , τ ′ be the transitions entering and leaving q
at c. By definition of ΓP

σ,σ′ , both transitions τ and τ ′ are different from p→ P
and P → p′. The word x belongs then to a product of the form ΓP

σ,τ ′ΓP
τ,σ′ for

some (τ ′, τ) ∈ T where

T = {(τ ′, τ) | ∃q τ ′ ∈ In(q), τ ∈ Out(q) and τ ′ 6= P → q, τ 6= q → P}.

It follows that

ΓP
σ,σ′ ⊆

⋃

(τ ′,τ)∈T

ΓP
σ,τ ′ΓP

τ,σ′

and since ΓP
σ,τ ′ΓP

τ,σ′ ⊂ ΓP
σ,σ′ for each (τ ′, τ) ∈ T , the relationship is actually one

of equality. The set on the right is a finite union of products of terms shown
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to be rational in the previous two cases and so is itself rational; thus ΓP
σ,σ′ is

rational.

6.2.2 ∆P
σ,σ′ and ∇P

σ,σ′ are rational

We now prove that ∆P
σ,σ′ is rational. The proof for ∇P

σ,σ′ is symmetrical. Let γ
be a path labeled by a word x = (aj)j∈J in ∆P

σ,σ′ . Let p and p′ be the first and
the last state of this path. By definition, this path does not use any right limit
transition r→ P , except perhaps for σ.

The idea is again to decompose the path γ into a sequence of consecutive
paths. The decomposition is performed according to the occurrences of the left
limit transitions P → r in γ. The label of each path of this decomposition
belongs to some set ΓP

τ,τ ′ whose rationality has been proved in Section 6.2.1.
Consider the subordering K of Ĵ defined by the occurrences of left limit

transitions P → r in γ, that is

K = {c ∈ Ĵ | lim
c−

γ = P}. (6)

Note that cmin cannot belong to K because limc−min
γ is empty by definition.

The last cut cmax belongs to K if and only if σ′ is the transition P → p′.
If K is empty or contains only cmax, then the word x belongs to ΓP

σ,σ′ . In
the rest of this section, we assume that K contains some cut other than cmax.
We will consider two cases depending on whether σ is the transition p → P or
not. Before considering these two cases, we state two properties of K that will
be useful in both cases.

We first claim that K has a greatest element max(K). Let c = sup(K) be
the least upper bound of K. The left limit limc− γ is then equal to P and thus
c belongs to K. If σ′ is equal to P → p′, then max(K) = cmax. Otherwise one
has max(K) < cmax.

The ordering K is not necessarily an ordinal but it is almost well-ordered.
We claim that if it contains an infinite decreasing sequence c0 > c1 > c2 > · · · ,
then this sequence converges to cmin and the transition σ must be p→ P . This
implies in particular that for any cut (L, R) of K different from (∅, K), the
ordering R is an ordinal.

Suppose that K indeed contains an infinite sequence c0 > c1 > c2 > · · · and
let c be the greatest lower bound of {ci | i ≥ 0}. The right limit limc+ γ is then
equal to P . Since the path does not use any right limit transition r→ P , except
perhaps for σ, it follows that c is the first cut cmin and that σ is the transition
p→ P .

We consider two cases depending on the form of transition σ.

• σ is different from p → P . By the second property of K, there exists no
infinite decreasing sequence in K, that is, K is well-ordered. It follows that K
has a least element min(K) and that each element c of K different from max(K)
has a successor in K that we denote by c+1 by a slight abuse of language. Let τ ′

c

and τc be the transitions entering and leaving the state qc = γ(c). By definition
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of K, the transition τ ′
c is equal to P → qc for each c ∈ K. Let xc be the label of

the path γ[c, c + 1]. Each word xc belongs to ΓP
τc,τ ′

c+1
. Let y be the label of the

path γ′ = γ[cmin, min(K)]. The word y belongs to ΓP
σ,τ ′

min(K)
. If the transition σ′

is different from P → p′, one has max(K) < cmax. In that case, we also consider
the label z of the path γ′′ = γ[max(K), cmax]. The word z belongs to ΓP

τmax(K),σ
′

if C(γ′′) = P and it belongs to ΠR
τmax(K),σ

′ if C(γ′′) = R ( P . If σ′ is equal
to P → p′, the word x is equal to y

∏

c<max(K) xc and if σ′ is different from

P → p′, the word x is equal to y
(
∏

c<max(K) xc

)

z.
Therefore, as K is well-ordered,

∆P
σ,σ′ ⊆ ΓP

σ,σ′ ∪

(

⋃

τ ′∈T ′

ΓP
σ,τ ′

)(

⋃

τ∈T τ ′∈T ′

ΓP
τ,τ ′

)♯

(7)

if σ′ equals P → p′, and

∆P
σ,σ′ ⊆ ΓP

σ,σ′ ∪

(

⋃

τ ′∈T ′

ΓP
σ,τ ′

)(

⋃

τ∈T τ ′∈T ′

ΓP
τ,τ ′

)♯




⋃

τ∈T

ΓP
τ,σ′ ∪

⋃

τ∈T R(P

ΠR
τ,σ′



 (8)

if σ′ is different from P → p′, where the subsets T and T ′ of transitions are
defined as follows:

T = {τ | ∃q ∈ P τ ∈ Out(q), τ 6= q → P and P → q ∈ E}, (9)

T ′ = {P → q | q ∈ P and P → q ∈ E}. (10)

Let us show that inclusions (7) and (8) are in fact equalities. We first study
the set

X =

(

⋃

τ∈T τ ′∈T ′

ΓP
τ,τ ′

)♯

.

We start with a small remark concerning transitions of T ′. Let τ ′
1, τ

′
2 ∈ T ′

be two transitions of the form τ ′
1 = P → q1 and τ ′

2 = P → q2. Let δ be a path
ending with τ ′

1, that is δ is a sequence of states of the form δ′q1. Then δ′q2 is
also a path with the same label and the same content as δ′q1. By this remark,
we can conclude that ΓP

τ,τ ′

1
= ΓP

τ,τ ′

2
.

We claim that each non-empty word x ∈ X labels a path δ : τ  τ ′ of
content P for some τ ∈ T and τ ′ ∈ T ′, and that δ is without any right limit
transition r → P , for all r ∈ Q. Let x be a non-empty word of X . It can be
factored x = Πβ<αxβ where 0 < α < ω1 and each word xβ belongs to ΓP

τβ,τ ′

β

for some τβ ∈ T and τ ′
β ∈ T ′. Let δβ be a path τβ  τ ′

β labeled by xβ . Define
δ′β by δβ = δ′βqβ . We claim that for any q such that P → q belongs to E,
δ = (Πβ<αδ′β)q is a path labeled by x. Indeed, if β is a successor ordinal β′ + 1,
the first state of δβ can replace the last state of δβ′ due to the previous remark.
If β is a limit ordinal, the left limit of δ at the first state q of δβ is P and P → q
is a transition by definition of T . Note that the path δ is without any right limit
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transition r → P , for all r ∈ Q. If x is the empty word, we take for δ the empty
path.

Finally a path δ′ of label y ∈ ΓP
σ,τ ′ with τ ′ ∈ T ′, can be concatenated with

the path δ constructed above, due again to the previous remark. For the same
reason, the path δ′δ can be concatenated with a path δ′′ labeled by z in ΓP

τ,σ′

or in ΠR
τ,σ′ for R ( P . Moreover the resulting path is without any right limit

transition r→ P , for all r ∈ Q.
Therefore, if σ′ equals P → p′, then equality holds in (7), otherwise equality

holds in (8). This shows that ∆P
σ,σ′ has a rational expression over the sets ΓP

τ,τ ′

and the sets ΠR
τ,τ ′ for R ( P . By the induction hypothesis and by Lemma 13,

∆P
σ,σ′ is rational.

• σ equals p→ P . We work again with the path γ with label x as defined at
the beginning of Section 6.2.2. Two cases occur depending on the existence of
an infinite decreasing sequence in the set K defined by Equation (6).

We first suppose that there is no infinite decreasing sequence in K. The
set K is then well-ordered. Since K 6= ∅, it has a least element c = min(K)
which is different from cmin. The path γ can be decomposed into the two paths
γ1 = γ[cmin, c] and γ2 = γ[c, cmax]. Let x1, x2 be the labels of the paths γ1,
γ2, and let τ ′, τ be the transitions entering and leaving the state q = γ(c). By
definition of c, the word x1 belongs to ΓP

σ,τ ′ . The word x2 belongs to ∆P
τ,σ′ or

in ΠR
τ,σ′ with R ( P according to the content of γ2. Note that ∆P

τ,σ′ is such
that τ is different from q → P and thus has been proved to be rational in the
previous case.

This shows that

x ∈
⋃

τ∈T τ ′∈T ′

ΓP
σ,τ ′(∆P

τ,σ′ ∪
⋃

R(P

ΠR
τ,σ′) (11)

where the sets T and T ′ are defined by Equations (9) and (10).
We now suppose that there is an infinite decreasing sequence c1 > c2 >

c3 > · · · in K. We can assume that c1 is different from cmax. Otherwise c1

is removed from the sequence to get another infinite decreasing sequence with
that property. Let qi be the state γ(ci), and let τ ′

i and τi be the transitions
entering and leaving the state qi at ci. Let γi be the path γ[ci+1, ci]. Recall
that we have proved that the sequence (ci)i≥1 converges to cmin. This shows
that the path γ[cmin, c1] can be decomposed as a sequence of length −ω of the
paths γi. By definition of ∆P

σ,σ′ , each transition τi is different from the transition
qi → P . This shows that the label xi of γi belongs to ∆P

τi+1,τ ′

i
that has already

been shown to be rational in the previous case. Let x0 be label of the path
γ0 = γ[c1, cmax]. It belongs to ∆P

τ0,σ′ if C(γ0) = P and it belongs to ΠR
τ0,σ′ if

C(γ0) = R ( P . Thus

x ∈

(

⋃

τ∈T τ ′∈T ′

∆P
τ,τ ′

)−ω




⋃

τ∈T

∆P
τ,σ′ ∪

⋃

τ∈T R(P

ΠR
τ,σ′



 (12)
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where the sets T and T ′ are defined by Equations (9) and (10).
Combining the two cases (11), (12) with the case K = ∅ or K = {cmax},

one has

∆P
σ,σ′ ⊆ ΓP

σ,σ′ ∪
⋃

τ∈T,τ ′∈T ′

ΓP
σ,τ ′



∆P
τ,σ′ ∪

⋃

R(P

ΠR
τ,σ′





∪

(

⋃

τ∈T τ ′∈T ′

∆P
τ,τ ′

)−ω




⋃

τ∈T

∆P
τ,σ′ ∪

⋃

τ∈T R(P

ΠR
τ,σ′





One can verify that this inclusion is an equality. The sets ∆P
τ,σ′ , ∆P

τ,τ ′ of
this equality have been shown to be rational in the previous case. By Lemma 13
and by the induction hypothesis, ∆P

σ,σ′ is rational.

6.2.3 ΠP
σ,σ′ is rational

In this last part of the proof, we show ΠP
σ,σ′ has a rational expression over the

sets ΓP
τ,τ ′, ∇P

τ,τ ′ , ∆P
τ,τ ′ and the sets ΠR

τ,τ ′, ∇R
τ,τ ′ , ∆R

τ,τ ′ and ΓR
τ,τ ′ for R ( P .

The proof is organized as follows. A path of a word in ΠP
σ,σ′ is decomposed

into small intervals using a first condensation ∼ (see Section 2.4 for definition).
Four types of intervals are obtained by this decomposition. Then some intervals
are grouped with a second condensation ≈ to reduce the number of types of
intervals to two. Finally, Lemma 8 is used and we get a rational expression
involving the binary operation ⋄.

Let γ be a path labeled by a word x = (aj)j∈J in ΠP
σ,σ′ . Let p and p′ be the

first and the last state of this path.
Consider the condensation ∼ of Ĵ defined as follows. For all cuts c1, c2 ∈ Ĵ

where c1 < c2, the relations c1 ∼ c2 and c2 ∼ c1 hold if and only if for every
c ∈ [c1, c2), limc+ γ 6= P and for every c ∈ (c1, c2], limc− γ 6= P .

Any equivalence class of ∼ is an interval. Note that two consecutive cuts are
always∼-equivalent. As Ĵ is complete with a least and a greatest element, every
interval can be expressed as one of the four forms (c1, c2), (c1, c2], [c1, c2) and
[c1, c2]. The form of an interval is unique because consecutive cuts are always
equivalent. In the sequel we speak about the four types ( ), ( ], [ ) and [ ]. Recall
that an interval is right open (respectively right closed) if it has type ( ) or [ )
(respectively ( ] or [ ]).

Let us study the structure of the equivalence classes of ∼ and the consecutive
elements of the quotient ordering K = Ĵ/∼. Note that K is a complete scattered
ordering with a least and a greatest element.

Let k ∈ K be an equivalence class of ∼, with c1 = inf(k) and c2 = sup(k).
For any c ∈ (c1, c2), one has limc+ γ 6= P and limc− γ 6= P . If c1 = c2, that is,
k is the singleton {c1}, then limc−1

γ = limc+
1

γ = P . If c1 < c2, one verifies that

k is left open if and only if limc+
1

γ = P . Symmetrically, k is right open if and

only if limc−2
γ = P .
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Consider two consecutive elements k < k′ of K. As Ĵ is complete, it is
impossible that k is right open and k′ is left open. As consecutive cuts are
equivalent modulo ∼, it is also impossible that k is right closed and k′ is left
closed. Moreover, any element k of K which is right open always has a suc-
cessor k′ which is then left closed. Symmetrically, if k is left open, it has a
predecessor k′ which is right closed.

We now define a condensation ≈ of the ordering K = Ĵ/∼. For all k1 <
k2 ∈ K, the relation

k1 ≈ k2

holds if and only if all elements of the interval [k1, k2] have the same type.
As done for K, we study the quotient ordering L = K/≈ which is a complete

scattered linear ordering with a least and a greatest element.
If l is an equivalence class of ≈ with elements of type ( ), then l is a singleton.

Otherwise, let k1 < k2 be in l. As K is scattered, there are two consecutive
elements k′

1 < k′
2 in [k1, k2] both of type ( ). This is impossible in K. In the

same way, any equivalence class of ≈ with elements of type [ ] is a singleton.
Classes whose elements are of type ( ] or [ ), however, need not to be singletons.

Note that any equivalence class l with elements of type [ ) always has a
successor and if l is left open, it also has a predecessor. Moreover, recall that an
element k of K of the type [c1, c2) satisfies limc−2

γ = P . Thus, the least upper

bound c′ = sup{c2 | [c1 c2) ∈ l} also satisfies limc′− γ = P . If l is left open, the
greatest lower bound c = inf{c1 | [c1 c2) ∈ l} satisfies limc+ γ = P . In the same
way, any class l with elements of type ( ] always has a predecessor and if l is
right open, it also has a successor. By similar reasoning, any class l reduced to
a singleton of type ( ) has a predecessor and a successor.

Consider now two consecutive elements l < l′ of L. Since K/≈ is complete,
it is impossible that l is right open and l′ is left open. Let k = sup(l) and
k′ = inf(l′). Assume first that l and l′ are respectively right and left closed.
Then k and k′ are consecutive elements of K, for which we already know the
possible configurations. Moreover, k and k′ have different types since they are
in different classes. Assume now that l is right open and that l′ is left closed. It
follows that k = k′ and the type of k is different from the type of the elements
of l. As l is right open, two types are possible for its elements: ( ] or [ ). If the
type is [ ), one checks that k has type [ ] due to the properties seen for K. If
the type of the elements of l is ( ], then k has either type [ ] or [ ). The last case
when l is right closed and l′ is left open is symmetrical.

Let us go further. We consider L as a collection of intervals of Ĵ which par-
tition Ĵ , by composing the two condensations ∼ and ≈. To avoid any confusion,
when L is seen as the quotient ordering over K, that is L = K/≈, an equivalence
class is described as an interval composed of elements k of K. When L is seen
as the quotient ordering over Ĵ , a class is described as an interval of elements c
of Ĵ . A class l is then seen as the interval

⋃

k∈l k of Ĵ .
Let us detail the different cases. We begin by considering the case where l is

a singleton whose sole member k has type ( ) or [ ]. Seen over Ĵ , we respectively
get l = (c, c′) or l = [c, c′]. Let τ be the transition leaving γ(c) and let τ ′ be the
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transition entering γ(c′). Therefore, if l = (c, c′), the label y of the path γ[c, c′]
belongs to

ΓP
τ,τ ′ with τ = γ(c)→ P and τ ′ = P → γ(c′) (13)

and if l = [c, c′], then either y = ε (when c = c′) or y belongs to

Zτ,τ ′ = ΓP
τ,τ ′ ∪

⋃

R(P

ΠR
τ,τ ′ with τ 6= γ(c)→ P and τ ′ 6= P → γ(c′). (14)

We next consider those classes l whose elements have type [ ). Suppose
that l is left open. We have seen that over Ĵ , l is an interval l = (c, c′) such
that limc+ γ = P and limc′− γ = P . The path γ[c, c′] is without any right
limit transition r → P . Let τ be the transition leaving γ(c) and let τ ′ be the
transition entering γ(c′). Then the label y of the path γ[c, c′] belongs to

∆P
τ,τ ′ with τ = γ(c)→ P and τ ′ = P → γ(c′). (15)

A similar description holds for right open classes whose elements have type ( ].
With the same notation, we have l = (c, c′) and the label y of the path γ[c, c′]
belongs to

∇P
τ,τ ′ with τ = γ(c)→ P and τ ′ = P → γ(c′). (16)

Two cases have yet to be considered: the case of left closed classes l with
elements of type [ ) and the symmetrical case of right closed classes l with
elements of type ( ]. In the former case, l is an interval l = [c, c′) over Ĵ such
that limc+ γ 6= P and limc′− γ = P . The path γ[c, c′] is again without any right
limit transition r → P and with the same notation as before, y belongs to

∆P
τ,τ ′ with τ 6= γ(c)→ P and τ ′ = P → γ(c′). (17)

In the latter case, a symmetric description holds with l = (c, c′] and y belongs
to

∇P
τ,τ ′ with τ = γ(c)→ P and τ ′ 6= P → γ(c′). (18)

We now define two sets M and M ′ such that M ∩M ′ = ∅ and such that
M ∪ M ′ is a collection of intervals which partition Ĵ . We define M as the
subordering of L composed of all the elements l of L which are left and right
open intervals (c, c′) over Ĵ . These intervals are exactly those paths whose labels
are described in (13), (15) and (16).

The set M ′ is composed of some elements of L and of pairs or triples of
consecutive elements of L being merged into one interval. It is defined as follows.
Consider an element l = [c1, c2) of L whose label is described in (17). Recall that
l has a successor l′ which is necessarily a singleton k of type [ ]. Such a class l′

has its label described in (14). The class l′ is equal to an interval l′ = [c2, c3].
Analogously, if l′′ = (c3, c4] is an element of L whose label is described in (18),
it has a predecessor l′ = [c2, c3] whose label is described in (14).
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Let l′ = [c2, c3] be an interval whose label is given in (14). If it has a
predecessor [c1, c2) with a label in (17) and a successor (c3, c4] with a label
in (18), then the interval [c1, c4] obtained by fusion of the three intervals [c1, c2),
[c2, c3] and (c3, c4] belongs to M ′. Otherwise, if l′ has only a predecessor [c1, c2)
(respectively a successor (c3, c4]), then the interval [c1, c3] obtained by fusion of
[c1, c2) and [c2, c3] (respectively [c2, c4] obtained by fusion of [c2, c3] and (c3, c4])
belongs to M ′. Otherwise, l′ itself belongs to M ′. Note that M ′ contains only
intervals of Ĵ that are both left and right closed. Note also that every element l
that, seen over Ĵ , is either left or right closed (or both) becomes part of some
fusion which is contained in M ′.

Let us prove that the set M ∪M ′ satisfies the hypotheses of Lemma 8. It is a
complete and scattered ordering with a least and a greatest element since it is a
condensation of L. If m = (c, c′) belongs to M , it has a successor since the cut c′

belongs to an interval m′ which is left closed and belongs to M ′. Similarly, m
has a predecessor. Take m < m′ two consecutive elements of M∪M ′. If m ∈M ,
we just proved that m′ ∈ M ′. If m ∈ M ′, it is impossible that m′ ∈M ′ due to
the possible configurations of consecutive elements in L. Hence, Lemma 8 holds
and M ′ is isomorphic to M̂ .

For every m = (c, c′) in M , the label of the path γ[c, c′] belongs to (see (13),
(15) and (16))

Xτ,τ ′ = ΓP
τ,τ ′ ∪∆P

τ,τ ′ ∪∇P
τ,τ ′ with τ = γ(c)→ P and τ ′ = P → γ(c′).

Consider m = [c, c′] in M̂ . Let y be the label of path γ[c, c′] (see (14), (17)
and (18) and the definition of M ′). Suppose first that c 6= c′, that is, y 6= ε. Let
τ be the transition leaving γ(c) and let τ ′ be the transition entering γ(c′). The
label y belongs to

Yτ,τ ′ =
⋃

(τ ′

1,τ1)∈T1

(τ ′

2,τ2)∈T2

∆P
τ,τ ′

1
Zτ1,τ ′

2
∇P

τ2,τ ′ ∪
⋃

(τ ′

3,τ3)∈T3

∆P
τ,τ ′

3
∇P

τ3,τ ′

∪
⋃

(τ ′

1,τ1)∈T1

∆P
τ,τ ′

1
Zτ1,τ ′ ∪ ∆P

τ,τ ′

∪
⋃

(τ ′

2,τ2)∈T2

Zτ,τ ′

2
∇P

τ2,τ ′ ∪ ∇P
τ,τ ′

∪ Zτ,τ ′

where the sets T1, T2 and T3 are defined by

T1 = {(τ ′, τ) | ∃q ∈ P τ ′ = P → q, τ ∈ Out(q) and τ 6= q → P}

T2 = {(τ ′, τ) | ∃q ∈ P τ ′ ∈ In(q), τ ′ 6= P → q and τ = q → P}

T3 = {(τ ′, τ) | ∃q ∈ P τ ′ = P → q and τ = q → P}.

Note that if m is not the first element of M ∪M̂ , then τ belongs to T1 = {τ |
∃τ ′ (τ ′, τ) ∈ T1} and if m is not the last element of M ∪ M̂ , then τ ′ belongs
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to T ′
2 = {τ ′ | ∃τ (τ ′, τ) ∈ T2}. Otherwise, the set Yτ,τ ′ is such that τ = σ or

τ ′ = σ′. Moreover, when τ = σ and τ ′ = σ′, the definition of Zτ,τ ′ given by
Equation (14) must be slightly changed into Zσ,σ′ = ΓP

σ,σ′ due to the content
being equal to P .

Let us study the elements m = [c, c′] of M̂ such that c = c′. If M̂∗ contains
an element [c, c], then M 6= ∅ and there are in A two transitions P → q and
q → P for some state q ∈ P . Analogously, if the first element of M̂ is equal to
[c, c], then M 6= ∅ and the first transition σ is equal to p→ P (similarly for the
last element of M̂).

We now come back to the label x ∈ ΠP
σ,σ′ of the path γ. If M = ∅, then M̂

is a singleton whose sole element is an interval [c, c′] with c 6= c′. It follows that
x ∈ Yσ,σ′ . If M 6= ∅, we decompose x thanks to the rational operation ⋄ used

on M ∪ M̂∗. Different cases have to be considered depending on the transitions
σ and σ′. Define the two sets X and Y by

X =
⋃

q,q′∈P
τ=q→P

τ ′=P→q′

Xτ,τ ′ and Y =
⋃

τ∈T1

τ ′∈T ′

2

Yτ,τ ′.

Add to Y the empty word if there are in A two transitions P → q and q → P
for some state q ∈ P . Define the set Yσ =

⋃

τ ′∈T ′

2
Yσ,τ ′ if σ 6= p→ P and Yσ = ε

if σ = p→ P . Define also the set Yσ′ =
⋃

τ∈T1
Yτ,σ′ if σ′ 6= P → p′ and Yσ′ = ε

if σ′ = P → p′. Then the label x belongs to Yσ(X ⋄Y )Yσ′ showing the inclusion

ΠP
σ,σ′ ⊆ Yσ,σ′ ∪ Yσ(X ⋄ Y )Yσ′ .

It can be verified that the reverse inclusion holds as well. Clearly, the set
Yσ,σ′ is included in ΠP

σ,σ′ . One checks that the right limit transitions q → P and
the left limit transitions P → q′ involved in the operation ⋄ are well managed
thanks to the conditions imposed by T1 and T ′

2.
Therefore, ΠP

σ,σ′ is expressed as a rational expression on the sets∇P
τ,τ ′ , ∆P

τ,τ ′ ,
ΓP

τ,τ ′ and ΠR
τ,τ ′ with R ( P . This completes the proof.

7 Conclusion

In this paper, we have introduced automata and rational expressions for words
on linear orderings. We have proved that for words on countable scattered
linear orderings, these two notions are equivalent. This result extends the usual
Kleene’s theorem for finite words.

We mention some open problems. A natural generalization of the result
would be to remove the restrictions on the orderings, first considering words on
countable linear orderings and then words on all linear orderings. Automata
that we have introduced are suitable for all linear orderings. It seems however
that new rational operations are then needed. An operation like the η-shuffle
introduced in [15] is necessary.
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Automata on infinite words were introduced by Büchi to prove the decidabil-
ity of the monadic second-order theory of the positive integers [7]. Since then,
automata and logics have been shown to have strong connections [24]. The next
step is to investigate the connections between logics and the automata that we
have introduced. Such a study has to begin with the closure of the class of
recognizable sets under the boolean operations. On the other hand, it is known
that the monadic second-order theory of all linear orderings is undecidable [22]
if the continuum hypothesis is assumed (see [21, p. 397] for a survey).

Since the submission of this article, new related results have been obtained.
Carton and Rispal have proved that the class of recognizable sets introduced in
this article is closed under complementation [20]. The emptiness problem for
automata on scattered countable linear orderings has been shown to be decidable
with a polynomial time complexity in [10]; the equivalence problem has been
proved to be decidable in [6]. Very recently, Bès and Carton have shown that
the equivalence between automata and rational expressions can be extended to
all linear orderings if the η-shuffle is used [4].
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