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Abstract. We described here a construction on transducers that give a

new conceptual proof for two classical decidability results on transducers:

it is decidable whether a �nite transducer realizes a functional relation,

and whether a �nite transducer realizes a sequential relation. A better

complexity follows then for the two decision procedures.

In this paper we give a new presentation and a conceptual proof for two

classical decision results on �nite transducers.

Transducers are �nite automata with input and output; they realize thus

relations between words, the so-called rational relations. Eventhough they are a

very simple model of machines that compute relations | they can be seen as

2-tape 1-way Turing machines | most of the problems such as equivalence or

intersection are easily shown to be equivalent to the Post Correspondence Prob-

lem and thus undecidable. The situation is drastically di�erent for transducers

that are functional, that is, transducers that realize functions, and the above

problems become then easily decidable. And this is of interest because of the

following result.

Theorem 1. [12] Functionality is a decidable property for �nite transducers.

Among the functional transducers, those which are deterministic in the in-

put (they are called sequential) are probably the most interesting, both from a

pratical and from a theoretical point of view: they correspond to machines that

can really and easily be implemented. A rational function is sequential if it can

be realized by a sequential transducer. Of course, a non sequential transducer

may realize a sequential function and this occurrence is known to be decidable.

Theorem 2. [7] Sequentiality is a decidable property for rational functions.

The original proofs of these two theorems are based on what could be called a

\pumping" principle, implying that a word which contradicts the property may

be chosen of a bounded length, and providing thus directly decision procedures



of exponential complexity. Theorem 1 was published again in [4], with exactly

the same proof, hence the same complexity.

Later, it was proved that the functionality of a transducer can be decided

in polynomial time, as a particular case of a result obtained by reduction to

another decision problem on another class of automata ([10, Theorem 2]).

With this communication, we shall see how a very natural construction per-

formed on the square of the transducer yields a decision procedure for the two

properties, that is, it can be read on the result of the construction whether the

property holds or not.

The size of the object constructed for deciding functionality is quadratic in

the size of the considered transducer. In the case of sequentiality, one has to be

more subtle for the constructed object may be too large. But it is shown that it

can be decided in polynomial time whether this object has the desired property.

Due to the short space available on the proceedings, the proofs of the results

are omited here and will be published in a forthcoming paper.

1 Preliminaries

We basically follow the de�nitions and notation of [9, 2] for automata.

The set of words over a �nite alphabet A, i.e. the free monoid over A, is

denoted by A

�

. Its identity, or empty word is denoted by 1

A

�

.

An automaton A over a �nite alphabet A, noted A = hQ;A;E; I; T i, is a

directed graph labelled by elements of A; Q is the set of vertices, called states,

I � Q is the set of initial states, T � Q is the set of terminal states and

E � Q�A�Q is the set of labelled edges called transitions. The automaton A

is �nite if Q is �nite.

The de�nition of automata as labelled graphs extends readily to automata

over any monoid: an automaton A over M , noted A = hQ;M;E; I; T i, is a

directed graph the edges of which are labelled by elements of the monoidM . A

computation is a path in the graph A; its label is the product of the label of

its transitions. A computation is successful if it begins with an initial state and

ends with a �nal state. The behaviour of A is the subset of M consisting of the

labels of the successful computations of A.

A state of A is said to be accessible if it belongs to a computation that begins

with an initial state; it is useful if it belongs to a successful computation. The

automaton A is trim if all of its states are useful. The accessible part and the

useful part of a �nite automaton A are easily computable from A.

An automaton T = hQ;A

�

�B

�

; E; I; T i over a direct product A

�

�B

�

of two

free monoids is called transducer fromA

�

toB

�

. The behaviour of a transducer T

is thus (the graph of) a relation � from A

�

into B

�

: � is said to be realized by T .

A relation is rational (i.e. its graph is a rational subset of A

�

�B

�

) if and only

if it is realized by a �nite transducer.

It is a slight generalization | that does not increase the generating power of

the model | to consider transducers T = hQ;A

�

�B

�

; E; I; T i where I and T

are not subsets of Q (i.e. functions from Q into f0; 1g) but functions from Q



into B

�

[ ; (the classical transducers are those for which the image of a state

by I or T is either ; or 1

B

�

).

A transducer is said to be real-time if the label of every transition is a

pair (a; v) where a is letter of A, the input of the transition, and v a word overB,

the output of the transition, and if for any states p and q and any letter a there

is at most one transition from p to q whose input is a. Using classical algorithms

from automata theory, any transducer T can be transformed into a transducer

that is real-time if T realizes a function ([9, Th. IX.5.1], [2, Prop. III.7.1]).

If T = hQ;A

�

�B

�

; E; I; T i is a real-time transducer, the underlying input

automaton of T is the automaton A over A obtained from T by forgetting the

second component of the label of every transition and by replacing the functions I

and T by their respective domains. The language recognized by A is the domain

of the relation realized by T .

We call sequential a transducer that is real-time, functional, and whose un-

derlying input automaton is deterministic. A function � from A

�

into B

�

is

sequential if it can be realized by a sequential transducer. It has to be acknowl-

egded that this is not the usual terminology : what we call \sequential" (trans-

ducers or functions) have been called \subsequential" since the seminal paper

by Sch�utzenberger [13] | cf. [2, 5, 7, 8, 11, etc. ]. There are good reasons for

this change of terminology that has already been advocated by V. Bruy�ere and

Ch. Reutenauer: \the word subsequential is unfortunate since these functions

should be called simply sequential" ([5]). Someone has to make the �rst move.

2 Squaring automata and ambiguity

Before de�ning the square of a transducer, we recall what is the square of an

automaton and how it can be used to decide whether an automaton is unam-

biguous or not. A trim automaton A = hQ;A;E; I; T i is unambiguous if any

word it accepts is the label of a unique successful computation in A.

Let A

0

= hQ

0

; A;E

0

; I

0

; T

0

i and A

00

= hQ

00

; A;E

00

; I

00

; T

00

i be two automata

on A. The Cartesian product of A

0

and A

00

is the automaton C de�ned by

C = A

0

�A

00

= hQ

0

�Q

00

; A;E; I

0

�I

00

; T

0

�T

00

i

where E is the set of transitions de�ned by

E = f((p

0

; p

00

); a; (q

0

; q

00

)) j (p

0

; a; q

0

) 2 E

0

and (p

00

; a; q

00

) 2 E

00

g .

Let A�A = hQ�Q;A; F; I�I; T�T i be the Cartesian product of the au-

tomaton A = hQ;A;E; I; T i with itself; the set F of transitions is de�ned by:

F = f((p; r); a; (q; s)) j (p; a; q); (r; a; s) 2 Eg .

Let us call diagonal of A�A the sub-automaton D of A�A determined by the

diagonal D of Q�Q, i.e. D = f(q; q) j q 2 Qg, as set of states. The states and

transitions of A and D are in bijection, hence A and D are equivalent.



Lemma 1. [3, Prop. IV.1.6] A trim automaton A is unambiguous if and only

if the trim part of A�A is equal to D.

Remark that as (un)ambiguity, determinism can also be described in terms

of Cartesian square, by a simple rewording of the de�nition: a trim automaton A

is deterministic if and only if the accessible part of A�A is equal to D.

3 Product of an automaton by an action

We recall now what is an action, how an action can be seen as an automaton,

and what can be then de�ned as the product of a (normal) automaton by an

action. We end this section with the de�nition of the speci�c action that will be

used in the sequel.

Actions. A (right) action of a monoid M on a set S is a mapping � : S�M ! S

which is consistent with the multiplication in M :

8s 2 S ; 8m;m

0

2M �(s; 1

M

) = s and �(�(s;m);m

0

) = �(s;mm

0

) .

We write s �m rather than �(s;m) when it causes no ambiguity.

Actions as automata. An action � of M on a set S with s

0

as distinguished

element may then be seen as an automaton on M (without terminal states):

G

�

= hS;M;E; s

0

i

is de�ned by the set of transitions E = f(s;m; s �m) j s 2 S ; m 2Mg.

Note that, as both S andM are usually in�nite, the automaton G

�

is \doubly"

in�nite: the set of states is in�nite, and, for every state s, the set of transitions

whose origin is s is in�nite as well.

Product of an automaton by an action. Let A = hQ;M;E; I; T i be a (�nite

trim) automaton on a monoidM and � an action of M on a (possibly in�nite)

set S. The product of A and G

�

is the automaton on M :

A�G

�

= hQ�S;M;F; I�fs

0

g; T�S i

the transitions of which are de�ned by

F = f((p; s);m; (q; s �m)) j s 2 S ; (p;m; q) 2 Eg .

We shall call product of A by �, and denote by A��, the accessible part of A�G

�

.

The projection on the �rst component induces a bijection between the tran-

sitions of A whose origin is p and the transitions of A�� whose origin is (p; s),

for any p in Q and any (p; s) in A��. The following holds (by induction on the

length of the computations):

(p; s)

m

��!

A��

(q; t) =) t = s �m .



We call value of a state (p; s) of A�� the element s of S. We shall say that the

product A�� itself is a valuation if the projection on the �rst component is a

1-to-1 mapping between the states of A�� and the states of A.

Remark 1. Let us stress again the fact that A�� is the accessible part of A�G

�

.

This makes possible that it may happen that A�� is �nite eventhough G

�

is

in�nite (cf. Theorem 5).

The \Advance or Delay" action. Let B

�

be a free monoid and let us denote

byH

B

the set H

B

= (B

�

�1

B

�

)[ (1

B

�

�B

�

)[f000g. A mapping  : B

�

�B

�

! H

B

is de�ned by:

8u; v 2 B

�

 (u; v) =

8

>

<

>

:

(v

�1

u; 1

B

�

) if v is a pre�x of u

(1

B

�

; u

�1

v) if u is a pre�x of v

000 otherwise

Intuitively,  (u; v) tells either how much the �rst component u is ahead of the

second component v, or how much it is late, or if u and v are not pre�xes of a

common word. In particular,  (u; v) = (1

B

�

�1

B

�

) if, and only if, u = v.

Lemma 2. The mapping !

B

from H

B

�(B

�

�B

�

) into H

B

de�ned by:

8(f; g) 2 H

B

n 000 !

B

((f; g); (u; v)) =  (f u; g v) and !

B

(000; (u; v)) = 000

is an action, which will be called the \Advance or Delay" (or \AD ") action

(relative to B

�

) and will thus be denoted henceforth by a dot.

Remark 2. The transition monoid of !

B

is isomorphic to B

�

�B

�

if B has

at least two letters, to Zif it has only one letter. (We have denoted by 000 the

absorbing element of H

B

under !

B

in order to avoid confusion with 0, the

identity element of the monoidZ).

4 Deciding functionality

Let T = hQ;A

�

�B

�

; E; I; T i be a real-time trim transducer such that the

output of every transition is a single word of B

�

| recall that this is a necessary

condition for the relation realized by T to be a function. The transducer T is

not functional if and only if there exist two distinct computations:

q

0

0

a

1

=u

0

1

�����!

T

q

0

1

� � �

a

n

=u

0

n

�����!

T

q

0

n

and q

00

0

a

1

=u

00

1

�����!

T

q

00

1

� � �

a

n

=u

00

n

�����!

T

q

00

n

with u

0

1

u

0

2

: : :u

0

n

6= u

00

1

u

00

2

: : : u

00

n

. There exists then at least one i such that u

0

i

6=

u

00

i

, and thus such that q

0

i

6= q

00

i

.

This implies, by projection on the �rst component, that the underlying input

automaton A of T is ambiguous. But it may be the case that A is ambiguous

and T still functional, as it is shown for instance with the transducer Q

1

rep-

resented on the top of Figure 1 (cf. [2]). We shall now carry on the method of

Cartesian square of section 2 from automata to transducers.



Cartesian square of a real-time transducer. By de�nition, the Cartesian prod-

uct of T by itself is the transducer T �T from A

�

into B

�

�B

�

:

T �T = hQ�Q;A

�

�(B

�

�B

�

); F; I�I; T�T i

whose transitions set F is de�ned by:

F = f((p; r); (a; (u

0

; u

00

)); (q; s)) j (p; (a; u

0

); q) and (r; (a; u

00

); s) 2 Eg .

The underlying input automaton of T �T is the square of the underlying

input automaton A of T . If A is unambiguous, then T is functional, and the

trim part of A�A is reduced to its diagonal.

An e�ective characterization of functionality. The transducer T �T is an

automaton on the monoid M = A

�

�(B

�

�B

�

). We can consider that the AD

action is an action of M on H

B

, by forgetting the �rst component. We can thus

make the product of T �T , or of any of its subautomata, by the AD action !

B

.

a=x a=x

4

a=x

a=x

3

a=x

3

a=x

2

a=x

a=x

4

a=x

a=x

3

a=x

3

a=x

2

0

1

-1

0

-1

0

-2

-1

1

2

0

1

0

1

-1

0

Fig. 1. Cartesian square of Q

1

, valued by the product with the action !

fxg

.

As the output alphabet has only one letter, H

fxg

is identi�ed with Zand the states

are labelled by an integer. Labels of transitions are not shown: the input is always a

and is kept implicit; an output of the form (x

n

; x

m

) is coded by the integer n � m

which is itself symbolised by the drawing of the arrow: a dotted arrow for 0, a simple

solid arrow for +1, a double one for +2 and a bold one for +3; and the corresponding

dashed arrows for the negative values.



Theorem 3. A transducer T from A

�

into B

�

is functional if and only if the

product of the trim part U of the Cartesian square T �T by the AD action !

B

is a valuation of U such that the value of any �nal state is (1

B

�

; 1

B

�

).

Figure 1 shows the product of the Cartesian square of a transducer Q

1

by

the AD action

1

.

Let us note that if � is the relation realized by T , the transducer obtained

from T �T by forgeting the �rst component is a transducer from B

�

into itself

that realizes the composition product �

�

�

�1

. The conditon expressed may then

seen as a condition for �

�

�

�1

being the identity, which is clearly a condition

for the functionality of �.

5 Deciding sequentiality

The original proof of Theorem 2 goes indeed in three steps: �rst, sequential func-

tions are characterized by a property expressed by means of a distance function,

then this property (on the function) is proved to be equivalent to a property on

the transducer, and �nally a pumping-lemma like procedure is given for deciding

the latter property (cf. [7, 2]). We shall see how the last two steps can be replaced

by the computation of the product of the Cartesian square of the transducer by

the AD action. We �rst recall the �rst step.

5.1 A quasi-topological characterization of sequential functions

If f and g are two words, we denote by f ^̂̂ g the longuest pre�x common to f

and g. The free monoid is then equipped with the pre�x distance

8f; g 2 A

�

d

p

(f; g) = jf j+ jgj � 2jf ^̂̂ gj .

In other words, if f = h f

0

and g = h g

0

with h = f ^̂̂ g, then d

p

(f; g) = jf

0

j+ jg

0

j.

De�nition 1. A function � : A

�

! B

�

, is said to be uniformly diverging

2

if for every integer n there exists an integer N which is greater than the pre�x

distance of the images by � of any two words (in the domain of �) whose pre�x

distance is smaller than n, i.e.

8n 2 N ; 9N 2 N ; 8f; g 2 Dom� d

p

(f; g) 6 n =) d

p

(f�; g�) 6 N .

Theorem 4. [7, 13] A rational function is sequential if, and only if it is uni-

formly diverging.

Remark 3. The characterization of sequential functions by uniformdivergence

holds in the larger class of functions whose inverse preserves rationality. This is

a generalization of a theorem of Ginsburg and Rose due to Cho�rut, a much

stronger result, the full strength of which will not be of use here (cf. [5, 8]).

1

It turns out that, in this case, the trim part is equal to the whole square.

2

After [7] and [2], the usual terminology is \function with bounded variation". We

rather avoid an expression that is already used, with an other meaning, in other

parts of mathematics.



5.2 An e�ective characterization of sequential functions

Theorem 5. A transducer T realizes a sequential function if, and only if the

product of the accessible part V of T �T by the AD action !

B

i) is �nite;

ii) has the property that if a state with value 000 belongs to a cycle in V, then

the label of that cycle is (1

B

�

; 1

B

�

).

The parallel between automata and transducers is now to be emphasized.

Unambiguous (resp. deterministic) automata are characterized by a condition on

the trim (resp. accessible) part of the Cartesian square of the automaton whereas

functional transducers (resp. transducers that realize sequential functions) are

characterized by a condition on the product by !

B

of the trim (resp. accessible)

part of the Cartesian square of the transducer.

Figure 2 shows two cases where the function is sequential: in (a) since the

accessible part of the product is �nite and no state has value 000; in (b) since the

accessible part of the product is �nite as well and the states whose value is 000 all

belong to a cycle every transition of which is labelled by (1

B

�

; 1

B

�

).

a=x

a=x

a=x

a=x

2

a=x

a=x

a=x

a=x

2

0

0

0

1

1

-1

-1

(x; x)

(x

2

; x

2

)

(x

2

; x)

(x; x

2

)

(a)

a=x

a=1

B

�

a=1

B

�

a=y

a=x

a=1

a=1

a=y

(1; 1)

(1; 1)

(1; 1)

000

000

(x; x)

(y; y)

(y; x)

(x; y)

(1; 1)

(b)

Fig. 2. Two transducers that realize sequential functions.

Figure 3 shows two cases where the function is not sequential: in (a) since

the accessible part of the product is in�nite; in (b) since although the accessible

part of the product is �nite some states whose value is 000 belong to a cycle whose

label is di�erent from (1

B

�

; 1

B

�

).

The following lemma is the key to the proof of Theorem 5 as well as to its

e�ectivity.

Lemma 3. Let w = (1

B

�

; z) be in H

B

n 000 and (u; v) in B

�

�B

�

n (1

B

�

; 1

B

�

).

Then the set fw � (u; v)

n

j n 2 Ng is �nite and does not contain 000 if, and only

if, u and v are congugate words and z is a pre�x of a power of u.



Remark 4. The original proof of Theorem 2 by Ch. Cho�rut goes by the

de�nition of the so-called twinning property (cf. [2, p. 128]). It is not di�cult

to check that two states p and q of a real-time transducer T are (non trivially)

twinned when: i) (p; q) is accessible in T�T ; ii) (p; q) belongs to a cycle

in V every transition of which is not labelled by (1

B

�

; 1

B

�

); iii) (p; q) has

not the value 000 in the product of V by !

B

.

It is then shown that a transducer realizes a sequential function if, and only

if, every pair of its states has the twinning property.

a=xa=x

2

a=x

a=x

a=x

2

a=x

2

a=x

a=x

2

a=x

a=x

a=x

2

a=x

2

0

0

0

0

0

1

2

3

4

5

6

-1

-2

-3

-4

-5

-6

(x; x)

(x

2

; x)

(x; x

2

)

(a)

a=x

a=x

a=x

a=yx

a=x

a=x

a=x

a=yx

(1; 1)

(1; 1)

(1; 1)

000

000

(x; x)

(yx; yx)

(x; x)

(yx; x)

(x; yx)

(b)

Fig. 3. Two transducers that realize non sequential functions.

6 The complexity issue

The \size" of an automaton A (on a free monoid A

�

) is measured by the num-

ber m of transitions. (The size jAj = k of the (input) alphabet is seen as a

constant.) The size of a transducer T will be measured by the sum of the sizes

of its transitions where the size of a transition (p; (u; v); q) is the length ju vj. It

is denoted by jT j.

The size of the transducer T �T is jT j

2

and the complexity to build it is

proportional to that size. The complexity of determining the trim part as well

as the accessible part is linear in the size of the transducer.

Deciding whether the product of the trim part U of T�T by the AD action !

B

is a valuation of U (and if the value of any �nal state is (1

B

�

; 1

B

�

)) is again linear

in the size of U . Hence deciding whether a transducer T is functional is quadratic

in the size of the transducer. Note that the same complexity is also established

in [6].



The complexity of a decision procedure for the sequentiality of a function,

based on Theorem 5, is polynomial. However, this is less straightforward to

establish than functionality, for the size of the product V�!

B

maybe exponential.

One �rst checks whether the label of every cycle in V is of the form (u; v)

with juj = jvj. It su�ces to check it on a base of simple cycles and this can

be done by a deep-�rst search in V. Let us call true cycle a cycle which is not

labelled by (1

B

�

; 1

B

�

) and let W be the subautomaton of V consisting of states

from which a true cycle is accessible. By Theorem 5, if su�ces to consider the

productW�!

B

. This product may still be of exponential size. However one does

not construct it entirely. For every state of W, the number of values which are

to be considered in W�!

B

may be bounded by the size of T . This yields an

algorithm of polynomial complexity in order to decide the sequentiality of the

function realized by T .

In [1], it is shown directly that the twinning property is decidable in polyno-

mial time.
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