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Abstract

We described here a construction on transducers that give a new conceptual proof

for two classical decidability results on transducers: it is decidable whether a �nite

transducer realizes a functional relation, and whether a �nite transducer realizes a

sequential relation. A better complexity follows then for the two decision procedures.

R�esum�e

Ce papier pr�esente une construction sur les transducteurs qui donne une nouvelle

preuve conceptuelle pour deux r�esultats classiques de d�ecidabilit�e sur les transduc-

teurs: on peut d�ecider si un transducteur �ni r�ealise une relation fonctionnelle et s'il

r�ealise une relation s�equentielle. Il en r�esulte un algorithme polynomial pour les deux

proc�edures de d�ecision.

�

Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee

y

LIAFA, Universit�e Paris 7 / CNRS

z

Laboratoire Traitement et Communication de l'Information (C. N. R. S. URA 820), E. N. S. T., Paris.

1



In this paper

1

, we give a new presentation and a conceptual proof for two classical

decision results on �nite transducers.

Transducers are �nite automata with input and output; they realize thus relations

between words, the so-called rational relations. Eventhough they are a very simple model

of machines that compute relations | they can be seen as 2-tape 1-way Turing machines |

most of the problems such as equivalence or intersection are easily shown to be equivalent

to the Post Correspondence Problem and thus undecidable.

The situation is drastically di�erent for transducers that are functional, that is, trans-

ducers that realize functions, and the above problems become then easily decidable. And

this is of interest because of the following result.

Theorem 1 Sch�utzenberger [13] Functionality is a decidable property for �nite trans-

ducers.

Among the functional transducers, those which are deterministic in the input (they

are called sequential) are probably the most interesting, both from a pratical and from

a theoretical point of view: they correspond to machines that can really and easily be

implemented. A rational function is sequential if it can be realized by a sequential trans-

ducer. Of course, a non sequential transducer may realize a sequential function and this

occurrence is known to be decidable.

Theorem 2 Cho�rut [8] Sequentiality is a decidable property for rational functions.

The original proofs of these two theorems are based on what could be called a \pump-

ing" principle, implying that a word which contradicts the property may be chosen of a

bounded length, and providing thus directly decision procedures of exponential complex-

ity. Theorem 1 was published again in [5], with exactly the same proof, hence the same

complexity.

Later, it was proved that the functionality of a transducer can be decided in polynomial

time, as a particular case of a result obtained by reduction to another decision problem

on another class of automata ([11, Theorem 2]).

In this paper, we shall see how a very natural construction performed on the square of

the transducer yields a decision procedure for the two properties, that is, it can be read

on the result of the construction whether the property holds or not.

The size of the object constructed for deciding functionality is quadratic in the size of

the considered transducer. In the case of sequentiality, one has to be more subtle for the

constructed object may be too large. But it is shown that it can be decided in polynomial

time whether this object has the desired property.

Let us mention that the decidability of Theorem 2 in polynomial time has already been

established by Weber and Klemm ([15]) by means of di�erent methods. The complexity

obtained in [15] is not explicitely given but seems to be similar to ours.

1

Journal version of the paper presented at the LATIN 2000 conference under the same title [2]
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1 Preliminaries

We basically follow the de�nitions and notation of [10, 3] for automata.

The set of words over a �nite alphabet A, i.e. the free monoid over A, is denoted

by A

�

. Its identity, or empty word is denoted by 1

A

�

.

1.1 Automata, as usual.

An automaton A over a �nite alphabet A, noted A = hQ;A;E; I; T i, is a directed graph

labelled by elements of A; Q is the set of vertices, called states, I � Q is the set of initial

states, T � Q is the set of terminal states and E � Q�A�Q is the set of labelled edges

called transitions. The automaton A is �nite if Q is �nite.

A computation c in A is a �nite sequence of transitions that form a path in the graph

and is noted as:

c := p

0

a

1

��!

A

p

1

a

2

��!

A

p

2

� � �

a

n

��!

A

p

n

or as c := p

0

a

1

a

2

:::a

n

�������!

A

p

n

.

The label of the computation c is the element a

1

a

2

� � �a

n

of A

�

. The computation c is

successful if p

0

2 I and p

n

2 T . The behaviour of A is the subset jjjAjjj of A

�

consisting of

labels of successful computations of A. Kleene's theorem asserts that a language of A

�

is

rational if and only if it is the behaviour of a �nite automaton over A.

The de�nition of automata as labelled graphs extends readily to automata over any

monoid: an automaton A overM , noted A = hQ;M;E; I; T i, is a directed graph the edges

of which are labelled by elements of the monoid M . The behaviour of A is the subset jjjAjjj

of M consisting of the labels of the successful computations of A. In this context, an

automaton over an alphabet A is indeed an automaton over the free monoid A

�

. The

automaton A is �nite if the set of edges E � Q �M � Q is �nite (and thus Q is �nite).

A subset of M is rational if and only if it is the behaviour of a �nite automaton over M .

A state of A is said to be accessible if it belongs to a computation that begins with

an initial state; it is useful if it belongs to a successful computation. The automaton A

is trim if all of its states are useful. The accessible part and the useful part of a �nite

automaton A are easily computable from A.

It is a slight generalization | that does not increase the generating power| to consider

automata A = hQ;M;E; I; T i where I and T are not subsets of Q (i.e. functions from Q

into f0; 1g) but functions from Q intoM [; (the classical transducers are those for which

the image of a state by I or T is either ; or 1

M

). The label of a computation is then

de�ned accordingly, being pre�xed by the image of the starting state and su�xed by the

image of the ending state of the computation.
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1.2 Transducers, as usual?

An automaton T = hQ;A

�

�B

�

; E; I; T i over a direct product A

�

�B

�

of two free monoids

is called a transducer from A

�

to B

�

. A transition of T is of the form (p; (f; u); q);

the word f is called its input and the word u its output. The terminology extends to

computations of T , denoted as

c := p

g=v

���!

T

q

The behaviour of a transducer T is thus (the graph of) a relation � from A

�

into B

�

:

� is said to be realized by T . A relation is rational (i.e. its graph is a rational subset

of A

�

�B

�

) if and only if it is realized by a �nite transducer.

The generalization quoted above leads us to consider transducers where I and T are

not subsets of Q (i.e. functions from Q into f0; 1g) but functions from Q into B

�

[ ; (the

classical transducers are those for which the image of a state by I or T is either ; or 1

B

�

).

A transducer T is said to be real-time if the label of every transition is a pair (a;K)

where a is a letter in A and K a rational subset of B

�

and where I and T are functions

from Q into RatB

�

. Using classical algorithms from automata theory, any transducer T

can be transformed into an equivalent transducer that is real-time ([10, Th. IX.5.1], [3,

Prop. III.7.1]). In this case, the freeness of B

�

does not play any role and B

�

may be

replaced by any monoid M .

If T = hQ;A

�

�B

�

; E; I; T i is a real-time transducer, the underlying input automaton

of T is the automaton A over A obtained from T by forgetting the second component of

the label of every transition and by replacing the functions I and T by their respective

domains. The language recognized by A is the domain of the relation realized by T .

a=x

a=x

a=x

a=x

2

(a)

a

a

a

a

(b)

Figure 1: A real-time transducer : : : and its underlying input automaton

If the relation � realized by T is functional and if T is real-time and trim, then

necessarily the output of any transition is a single word, i.e. the label of any transition is

a pair (a; u) where a is in A and u in B

�

, and the image of any state by I or T is either ;

or a word in B

�

.

We call subsequential a transducer that is real-time, functional, and whose underlying

input automaton is deterministic. A function � from A

�

into B

�

is subsequential if it can

be realized by a subsequential transducer.
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2 Squaring automata and ambiguity

Before de�ning the square of a transducer, we recall what is the square of an automaton

and how it can be used to decide whether an automaton is unambiguous or not.

A trim automaton A = hQ;A;E; I; T i is unambiguous if any word it accepts is the

label of a unique successful computation in A.

Let A

0

= hQ

0

; A; E

0

; I

0

; T

0

i and A

00

= hQ

00

; A; E

00

; I

00

; T

00

i be two automata on A. The

Cartesian product of A

0

and A

00

is the automaton C de�ned by

C = A

0

�A

00

= hQ

0

�Q

00

; A; E; I

0

�I

00

; T

0

�T

00

i

where E is the set of transitions de�ned by

E = f((p

0

; p

00

); a; (q

0

; q

00

)) j (p

0

; a; q

0

) 2 E

0

and (p

00

; a; q

00

) 2 E

00

g .

Let A�A = hQ�Q;A; F; I�I; T�T i be the Cartesian product of the automaton A =

hQ;A;E; I; T i with itself; the set F of transitions is de�ned by:

F = f((p; r); a; (q; s)) j (p; a; q); (r; a; s) 2 Eg .

Let us call diagonal of A�A the sub-automaton D of A�A determined by the diagonal D

of Q�Q, i.e. D = f(q; q) j q 2 Qg, as set of states. The states and transitions of A and D

are in bijection, hence A and D are equivalent.

Lemma 1 [4, Prop. IV.1.6] A trim automaton A is unambiguous if and only if the

trim part of A�A is equal to D.

Proof. By de�nition, A is ambiguous if and only if there exist two successful computa-

tions c

0

et c

00

that have the same label f = a

1

a

2

: : : a

n

:

c

0

:= q

0

0

a

1

��!

A

q

0

1

a

2

��!

A

� � �

a

n

��!

A

q

0

n

and c

00

:= q

00

0

a

1

��!

A

q

00

1

a

2

��!

A

� � �

a

n

��!

A

q

00

n

,

that is, if and only if there exists a successful computation c of A�A:

c := (q

0

0

; q

00

0

)

a

1

��!

A�A

(q

0

1

; q

00

1

)

a

2

��!

A�A

� � �

a

n

��!

A�A

(q

0

n

; q

00

n

)

in which, for at least one i, 0 6 i 6 n, q

0

i

6= q

00

i

and, thus, if and only if there exists a useful

state in A�A which is not in D.

Figure 2 shows the underlying construction to Lemma 1 in the case of an ambiguous

automaton and of an unambiguous automaton.

It is clear that Lemma 1 directly implies:

Proposition 2 It is decidable whether a �nite automaton is unambiguous or not.
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Remark that as (un)ambiguity, determinism can also be described in terms of Cartesian

square, by a simple rewording of the de�nition:

Lemma 3 A trim automaton A is deterministic if and only if the accessible part of

the Cartesian square A�A is equal to D.

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

(a) The unambiguous case

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

(b) The ambiguous case

Figure 2: The Lemma 1 construction. In dashed gray line, the non co-accessible states and

transitions of the square of the automaton.

3 Product of an automaton by an action

We recall now what is an action, how an action can be seen as an automaton, and what

can be then de�ned as the product of a (normal) automaton by an action. We end this

section with the de�nition of the speci�c action that will be used in the sequel.

Actions. A (right) action of a monoid M on a set S is a mapping

� : S�M �! S

which is consistent with the multiplication in M :

8s 2 S ; 8m;m

0

2M (s; 1

M

)� = s and ((s;m)�;m

0

)� = (s;mm

0

)� . (1)

In order to lighten the notation, we write s �m rather than (s;m)� when it causes no

ambiguity and (1) becomes

8s 2 S ; 8m;m

0

2M s � 1

M

= s and (s �m) �m

0

= s �mm

0

.

Actions as automata. Most often, an action of M on S is equipped with a distin-

guished element s

0

of S. It may then be seen as an automaton on M (often, without

terminal states). More precisely, let � be an action of M on S with s

0

as distinguished

element. The automaton

G

�

= hS;M;E; s

0

i
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de�ned by the set of transitions

E = f(s;m; s �m) j s 2 S ; m 2Mg

is such that, for any m in M ,

s

0

m

��! s = s

0

�m

Note that, as both S and M are usually in�nite, the automaton G

�

is \doubly" in�nite:

the set of states is in�nite, and, for every state s, the set of transitions whose origin is s

is in�nite as well.

Product of an automaton by an action. Let A = hQ;M;E; I; T i be a (�nite

trim) automaton on a monoid M and � an action ofM on a (possibly in�nite) set S. The

product of A and G

�

is the automaton on M :

A�G

�

= hQ�S;M; F; I�fs

0

g; T�S i

the transitions of which are de�ned by

F = f((p; s); m; (q; s �m)) j s 2 S ; (p;m; q) 2 Eg .

We shall call product of A by the action �, and denote by A��, the accessible part of A�G

�

.

The projection on the �rst component induces a bijection between the transitions of A

whose origin is p and the transitions of A�� whose origin is (p; s), for any p in Q and

any (p; s) in A��. The following holds (by induction on the length of the computations):

(p; s)

m

��!

A��

(q; t) =) t = s �m .

We call value of a state (p; s) of A�� the element s of S. We shall say that the product A��

itself is a valuation if the projection on the �rst component is a 1-to-1 mapping between

the states of A�� and the states of A.

Remark 1 Let us stress again the fact that A�� is the accessible part of A�G

�

. It

may then happen that A�� is �nite eventhough G

�

is in�nite (cf. Theorem 5).

The \Advance or Delay" action. Let B

�

be a free monoid and let us denote byH

B

the subset of B

�

�B

�

consisting of those elements (f; g) where at least one of f and g is

equal to 1

B

�

, to which a zero is adjoint:

H

B

= (B

�

�1

B

�

) [ (1

B

�

�B

�

) [ f000g .

A mapping  : B

�

�B

�

! H

B

is de�ned by:

8u; v 2 B

�

(u; v) =

8

>

>

<

>

>

:

(v

�1

u; 1

B

�

) if v is a pre�x of u

(1

B

�

; u

�1

v) if u is a pre�x of v

000 otherwise
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Intuitively, (u; v) tells either how much the �rst component u is ahead of the second

component v, or how much it is late, or if u and v are not pre�xes of a common word. In

particular, the following holds

(u; v) = (1

B

�

; 1

B

�

) () u = v . (2)

And checking the following is easy.

Lemma 4 The mapping !

B

from H

B

�(B

�

�B

�

) into H

B

de�ned by:

8(f; g) 2 H

B

n 000 ((f; g); (u; v))!

B

= (f u; g v) and (000; (u; v))!

B

= 000

is an action of (B

�

�B

�

) on H

B

.

This action !

B

will be called the \Advance or Delay" (or \AD ") action (relative to

the alphabet B) and will thus be denoted henceforth by a dot.

Remark 2 The transition monoid of !

B

is isomorphic to B

�

�B

�

if B has at least two

letters, to Zif it has only one letter. (We have denoted by 000 the absorbing element of H

B

under !

B

in order to avoid confusion with 0, the identity element of the monoid Z).

4 Deciding functionality

Let T = hQ;A

�

�B

�

; E; I; T i be a real-time trim transducer such that the output of every

transition is a single word of B

�

| recall that this is a necessary condition for the relation

realized by T to be a function.

The transducer T is not functional if and only if there exist two distinct computations

c

0

:= q

0

0

a

1

=u

0

1

����!

T

q

0

1

a

2

=u

0

2

����!

T

� � �

a

n

=u

0

n

�����!

T

q

0

n

c

00

:= q

00

0

a

1

=u

00

1

�����!

T

q

00

1

a

2

=u

00

2

�����!

T

� � �

a

n

=u

00

n

�����!

T

q

00

n

and

with the same input label a

1

a

2

: : :a

n

and two distinct output labels:

u

0

1

u

0

2

: : : u

0

n

6= u

00

1

u

00

2

: : :u

00

n

.

There exists then at least one index i such that u

0

i

6= u

00

i

, and thus such that q

0

i

6= q

00

i

.

This implies, by projection on the �rst component, that the underlying input automa-

ton A of T is ambiguous. But it may be the case thatA is ambiguous and T still functional,

as it is shown for instance with the transducer Q

1

represented shown at Figure 3 (cf. [3]).

We shall now carry on the method of Cartesian square of section 2 from automata to

transducers.
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Cartesian square of a real-time transducer. By de�nition, the Cartesian product

of T by itself is the transducer T �T from A

�

into B

�

�B

�

:

T �T = hQ�Q;A

�

�(B

�

�B

�

); F; I�I; T�T i

whose transition set F is de�ned by:

F = f

�

(p; r); (a; (u

0

; u

00

)); (q; s)

�

j (p; (a; u

0

); q) and (r; (a; u

00

); s) 2 Eg .

The underlying input automaton of T �T is the square of the underlying input au-

tomaton A of T . If A is unambiguous, then T is functional, and the trim part of A�A is

reduced to its diagonal.

In order to decide whether T is functional when A is ambiguous, it is necessary to

describe conditions under which two words such as u

0

1

u

0

2

: : :u

0

n

and u

00

1

u

00

2

: : :u

00

n

are equal

or not, or, more precisely, which \information" has to be kept at every step i of the

computation (c

0

; c

00

) in order to be able to conclude at the �nal step n. This is what the

AD action will be used for.

a=x a=x

4

a=x

a=x

3

a=x

3

a=x

2

Figure 3: A functional transducer Q

1

with ambiguous underlying input automaton.

4.1 A characterization of functionality.

The transducer T �T is an automaton on the monoidM = A

�

�(B

�

�B

�

). We can consider

that the AD action is an action of M on H

B

, by forgetting the �rst component. We can

thus build the product of T �T , or of any of its subautomata, by the AD action !

B

.

Theorem 3 A transducer T from A

�

into B

�

is functional if and only if the product

of the trim part U of the Cartesian square T �T by the AD action !

B

is a valuation of U

such that the value of any �nal state is (1

B

�

; 1

B

�

).

Figure 4 shows the product of the Cartesian square of a transducer Q

1

by the AD

action

2

and one can read there that it is indeed functional.

Remark 3 If T is a real-time transducer from A

�

into B

�

and if � denotes the relation

realized by T , the transducer obtained from T �T by forgeting the �rst component is a

transducer from B

�

into itself that realizes the composition product �

�

�

�1

. The condition

expressed in Theorem 3 may then seen as a condition for �

�

�

�1

to be the identity, which

is clearly a condition for the functionality of �.
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a=x a=x

4

a=x

a=x

3

a=x

3

a=x

2

a=x

a=x

4

a=x

a=x

3

a=x

3

a=x

2

0

1

-1

0

-1

0

-2

-1

1

2

0

1

0

1

-1

0

Figure 4: Cartesian square of Q

1

,

valued by the product with the action !

B

(with B = fxg).

This �gure is not as complicated as it may look; it illustrates every aspect of the algorithm. Since

the output alphabet B has only one letter, H

B

is identi�ed withZand the states are labelled by an

integer. Labels of transitions are not shown: the input is always a and is kept implicit; an output

of the form (x

n

; x

m

) is coded by the integer n � m which is itself symbolized by the drawing of

the arrow: a dotted arrow for 0, a simple solid arrow for +1, a bold one for +2 and a double one

for +3; and the corresponding dashed arrows for the opposite values.

Proof of Theorem 3. i) The condition is su�cient. Let us denote by � the

valuation de�ned by the product of U by !

B

and let, as above, c

0

and c

00

be two distinct

successful computations of T :

c

0

:= q

0

0

a

1

=u

0

1

����!

T

q

0

1

a

2

=u

0

2

����!

T

� � �

a

n

=u

0

n

�����!

T

q

0

n

c

00

:= q

00

0

a

1

=u

00

1

�����!

T

q

00

1

a

2

=u

00

2

�����!

T

� � �

a

n

=u

00

n

�����!

T

q

00

n

and

It comes that (q

0

0

; q

00

0

)� = (1

B

�

; 1

B

�

) and (q

0

0

; q

00

0

)� �(u

0

1

� � �u

0

i

; u

00

1

� � �u

00

i

) = (q

0

i

; q

00

i

)� for every i

and thus (q

0

0

; q

00

0

)� � (u

0

1

� � �u

0

n

; u

00

1

� � �u

00

n

) = (q

0

n

; q

00

n

)� = (1

B

�

; 1

B

�

) as (q

0

n

; q

00

n

) is a �nal state

of T �T . Hence, by (2), u

0

1

� � �u

0

n

= u

00

1

� � �u

00

n

and T is functional.

ii) The condition is necessary. Two cases possibly occur.

a) The product of U with !

B

yields a valuation but there exists a �nal sate (r

0

; r

0

)

of U whose value is di�erent from (1

B

�

; 1

B

�

). This means that there exists a successful

2

It turns out that, in this case, the trim part is equal to the whole square.

10



computation

(i

0

; i

00

)

f=(u

0

;u

00

)

�������!

T�T

(r

0

; r

00

)

and it holds: (1

B

�

; 1

B

�

) � (u

0

; u

00

) 6= (1

B

�

; 1

B

�

). Hence, by (2) again, u

0

6= u

00

and T is not

functional.

b) The product of U with !

B

does not yield a valuation. There exist then two successful

computations:

(i

0

; i

00

)

f

1

=(u

0

1

;u

00

1

)

��������!

T�T

(p

0

; p

00

)

f

2

=(u

0

2

;u

00

2

)

��������!

T�T

(r

0

; r

00

)

(j

0

; j

00

)

g

1

=(v

0

1

;v

00

1

)

�������!

T�T

(p

0

; p

00

)

f

2

=(u

0

2

;u

00

2

)

��������!

T�T

(r

0

; r

00

)

and

with (1

B

�

; 1

B

�

)�(u

0

1

; u

00

1

) 6= (1

B

�

; 1

B

�

)�(v

0

1

; v

00

1

). The two equalities u

0

1

u

0

2

= u

00

1

u

00

2

and v

0

1

u

0

2

=

u

00

1

v

00

2

cannot both hold and T is not functional.

4.2 Making the characterization e�ective.

We now show that Theorem 3 gives an e�ective characterization of functional transducers,

hence is a proof of Theorem 1.

The algorithm for deciding whether U �!

B

is a valuation of U is elementary. The

initial states are �rst given the value (1

B

�

; 1

B

�

). Every transition of U is then considered

once, in any order that meet the condition that a transition is considered only if its

origin has already been given a value. This is possible as U is trim. When considering a

transition ((p

0

; p

00

); (u; v); (q

0

; q

00

)), where (p

0

; p

00

) has value (f; g), three cases may occur:

i) if (q

0

; q

00

) has not been visited yet, then (q

0

; q

00

) is given the value (f; g) � (u; v);

ii) if (q

0

; q

00

) has already been visited and its value is not equal to (f; g) �(u; v), then the

algorithm stops and U�!

B

is not a valuation of U ;

iii) if (q

0

; q

00

) has already been visited and its value is equal to (f; g) � (u; v), then the

algorithm goes on and the next transition is considered. If all transitions have been

considered, then the algorithm stops and U�!

B

is a valuation of U .

The transducer T is functional if and only if the value of every �nal state of U

is (1

B

�

; 1

B

�

).

In order to evaluate the complexity of this algorithm, we have to de�ne �rst the size

of the data.

The \size" of an automaton A (on a free monoid A

�

) is measured by the number n of

states and the number m of transitions. (The size jAj = k of the (input) alphabet is seen

as a constant.) The size of a transducer T will be measured by the number n of states,

the number m of transitions and the maximal size K of a transition, where the size of a

11



transition (p; (u; v); q) is the length juvj. The sum of the sizes of the transitions is denoted

by dddT eee and is bounded by Km.

The number of transitions of T �T is m

2

and the complexity to build it is proportional

to m

2

. The complexity of determining the trim part U is also in O(m

2

). The size dddUeee is

bounded by 2Km

2

.

The computation of the value of one state in the product U�!

B

is at most of com-

plexity O(dddUeee). Since for every transition of U one performs one computation of a value,

the overall complexity O(m

2

dddUeee).

The same complexity is also established in [7] in the context of transducers for in�nite

words.

5 Deciding subsequentiality

The original proof of Theorem 2 goes indeed in three steps: �rst, subsequential functions

are characterized by a property expressed by means of a distance function, then this

property (on the function) is proved to be equivalent to a property on the transducer, and

�nally a pumping-lemma like procedure is given for deciding the latter property (cf. [8, 3]).

We shall see how the last two steps can be replaced by the computation of the product

of the Cartesian square of the transducer by the AD action. We �rst recall the �rst step.

5.1 A quasi-topological characterization of subsequential functions

If f and g are two words, we denote by f ^̂̂ g the longuest common pre�x of f and g:

if h = f ^̂̂ g, then f = h and g = f g

0

, or g = h and f = g f

0

, or f = h a f

00

and g = h b g

00

and a and b are two distinct letters. The free monoid is then equipped with the pre�x

distance

8f; g 2 A

�

d

p

(f; g) = jf j+ jgj � 2jf ^̂̂ gj .

In other words, if f = h f

0

and g = h g

0

with h = f ^̂̂ g, then d

p

(f; g) = jf

0

j + jg

0

j. This

function d

p

is indeed a \distance" but the topology it de�nes on A

�

is a discrete topology,

as the distance between two distinct words is greater than or equal to 1. Indeed, the pre�x

distance is not so much used to express how close two words are | which is usualy the

purpose of a topology | but rather to describe how far they are apart.

De�nition 1 A function � : A

�

! B

�

, is said to be uniformly divergent

3

if for every

integer n there exists an integer N which is greater than the pre�x distance of the images

by � of any two words (in the domain of �) whose pre�x distance is smaller than n, i.e.

8n 2 N ; 9N 2 N ; 8f; g 2 Dom� d

p

(f; g) 6 n =) d

p

(f�; g�) 6 N . (3)

3

After [8] and [3], the usual terminology is \function with bounded variation". We rather avoid an

expression that is already used, with an other meaning, in other parts of mathematics.

12



Equation (3) is to be put in parallel with the one that de�nes uniform continuity

of functions, i.e. the ratio between the distance between the points and their images is

bounded in the domain of the function. But the point is not that this ratio keeps bounded

when the distance tends toward 0 | which is not possible with the pre�x distance | but

when this distance becomes arbitrarily large, hence the chosen denomination: \uniform

divergence".

The following characterization is due

4

to Ch. Cho�rut ([8, Proposition 3.4]).

Theorem 4

A rational function is subsequential if and only if it is uniformly divergent.

Remark 4 The characterization of subsequential functions by uniform divergence

holds in the larger class of functions whose inverse preserves rationality. This is a gen-

eralization of a theorem of Ginsburg and Rose due to Cho�rut as well, a much stronger

result, the full strength of which will not be of use here (cf. [6, 9]).

5.2 A characterization of subsequential functions on their transducers

Theorem 5 A (real-time trim) transducer T = hQ;A

�

�B

�

; E; I; T i realizes a subse-

quential function if and only if the product of the accessible part V of T �T by the AD

action !

B

has the following two properties:

i) it is �nite;

ii) if a state with value 000 belongs to a cycle in V, then the label of that cycle is (1

B

�

; 1

B

�

).

Figure 5 shows two cases where the function is subsequential: in (a) since the accessible

part of the product is �nite and no state has value 000; in (b) since the accessible part of

the product is �nite as well and the states whose value is 000 all belong to a cycle every

transition of which is labelled by (1

B

�

; 1

B

�

).

Figure 6 shows two cases where the function is not subsequential: in (a) since the

accessible part of the product is in�nite; in (b) since although the accessible part of the

product is �nite some states whose value is 000 belong to a cycle whose label is di�erent

from (1

B

�

; 1

B

�

).

The parallel between automata and transducers is now to be emphasized. Unambigu-

ous (resp. deterministic) automata are characterized by a condition on the trim (resp.

accessible) part of the Cartesian square of the automaton whereas functional transducers

(resp. transducers that realize subsequential functions) are characterized by a condition

on the product by !

B

of the trim (resp. accessible) part of the Cartesian square of the

transducer.

4

It is indeed in [14, Propri�et�e 2] as well, but without the explicit de�nition of uniformly divergent

functions.
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One can also observe that Figure 4 is another example of the construction described

in Theorem 5: the function realized by Q

1

is sequential.

a=x

a=x

a=x

a=x

2

a=x

a=x

a=x

a=x

2

0

0

0

1

1

-1

-1

(x; x)

(x

2

; x

2

)

(x

2

; x)

(x; x

2

)

(a)

a=x

a=1

B

�

a=1

B

�

a=y

a=x

a=1

B

�

a=1

B

�

a=y

(1; 1)

(1; 1)

(1; 1)

000

000

(x; x)

(1

B

�

; 1

B

�

)

(y; y)

(y; x)

(x; y)

(b)

Figure 5: Two transducers that realize subsequential functions.

a=xa=x

2

a=x

a=x

a=x

2

a=x

2

a=x

a=x

2

a=x

a=x

a=x

2

a=x

2

0

0

0

0

0

1

2

3

4

5

6

-1

-2

-3

-4

-5

-6

(x; x)

(x

2

; x)

(x; x

2

)

(a)

a=x

a=x

a=x

a=y x

a=x

a=x

a=x

a=y x

(1; 1)

(1; 1)

(1; 1)

000

000

(x; x)

(x; x)

(y x; y x)

(y x; x)

(x; y x)

(b)

Figure 6: Two transducers that realize functions that are not subsequential.

The following lemma is the key to the proof of Theorem 5 as well as to its e�ectivity.

Lemma 5 Let (1

B

�

; z) be in H

B

n 000 and (u; v) in B

�

�B

�

n (1

B

�

; 1

B

�

). Then the

set X = f(1

B

�

; z) � (u; v)

n

j n 2 Ng is �nite and does not contain 000 if and only if u and v

are congugate by a word t, i.e. u t = t v, and z is equal to u

k

t for a certain k. If this

condition holds then the set X is indeed a singleton.
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Proof. If the condition holds, it then comes:

(1

B

�

; z) � (u; v) = (1

B

�

; u

�1

(z v)) = (1

B

�

; u

�1

(u

k

t v)) =

(1

B

�

; u

k�1

t v) = (1

B

�

; u

k�1

u t) = (1

B

�

; z)

Conversely, if X does not contains 000 then necessarily one of the following conditions holds

i) either u = 1

B

�

;

ii) either v = 1

B

�

and z is a pre�x of a power of u;

iii) or z is a pre�x of a power of u, i.e. z = u

k

t where t is a pre�x of u, and there exist

two integers h and l such that u

k

is conjugated to v

l

by t.

It is then clear that X is �nite if and only if iii) holds, with h = l.

Remark 5 The original proof of Theorem 2 by Ch. Cho�rut goes by the de�nition

of the so-called twinning property (cf. [3, p. 128]). It is not di�cult to check that two

states p and q of a real-time transducer T are (non trivially) twinned when:

i) (p; q) is accessible in T �T ;

ii) (p; q) belongs to a cycle in V every transition of which is not labelled by (1

B

�

; 1

B

�

);

iii) (p; q) has not the value 000 in the product of V by !

B

.

It happens thus that the conditions expressed in [8, Proposition 3.2] (or in [3, Propo-

sition IV.6.4]) and in Theorem 5 are the same. It is the formulation that di�ers: the

technicalities of the twinning property are hidden in Lemma 5.

Proof of Theorem 5. By Theorem 4, it is su�cient to show that the conditions stated

in the theorem hold if and only if the function realized by T is uniformly divergent.

i) The conditions are su�cient. Let K be a bound for the lengths of the output of T

and L a bound for the lengths of the values of states in the product V�!

B

.

Let f and g in Dom�; we write h = f ^̂̂ g, f = h f

0

and g = h g

0

. There exist in T two

successful computations

i

h=u

���! p

f

0

=u

0

����! t and j

h=v

���! q

g

0

=v

0

����! s , hence

(i; j)

h=(u;v)

�����! (p; q) (4)

is a computation in V .

Case 1: (1

B

�

; 1

B

�

) � (u; v) 6= 000, then

d

p

(f�; g�) = d

p

(u u

0

; v v

0

) 6 L+ ju

0

j+ jv

0

j

6 L +K (jf

0

j+ jg

0

j) = L+K d

p

(f; g) .
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Case 2: (1

B

�

; 1

B

�

) � (u; v) = 000, then h is factorized as h = h

1

a h

2

h

3

, with a in A, h

1

, h

2

and h

3

in A

�

(and possibly equal to 1

A

�

), in such a way that the computation (4) factorizes

into

(i; j)

h

1

=(u

1

;v

1

)

�������! (p

1

; q

1

)

a=(x;y)

�����! (p

2

; q

2

)

h

2

=(1

B

�
;1

B

�
)

���������! (p

3

; q

3

)

h

3

=(u

2

;v

2

)

�������! (p; q)

where the value of (p

1

; q

1

) is di�erent from 000, the one of (p

2

; q

2

) is equal to 000 and (u

2

; v

2

)

is di�erent from (1

B

�

; 1

B

�

) if h

3

is di�erent from 1

A

�

. As every state that follows (p

2

; q

2

)

in the computation has value 000, the computation

(p

3

; q

3

)

h

3

=(u

2

;v

2

)

�������! (p; q)

may not contain any cycle and its length is bounded by jQj

2

= n

2

. It then comes that

d

p

(f�; g�) = d

p

(u

1

x u

3

u

0

; v

1

y v

3

v

0

)

6 L+K (n

2

+ 1) +K (jf

0

j+ jg

0

j) = L+K (n

2

+ 1) +K d

p

(f; g) .

In both cases, � is a uniformly divergent (rational) function.

ii) The conditions are necessary. Case 1: in V�!

B

, there exists a cycle whose every

state has value 000 and whose label is not equal to (1

B

�

; 1

B

�

). In V , a computation

(i; j)

h

1

=(u

1

;v

1

)

�������! (p; q)

h

2

=(u

2

;v

2

)

�������! (p; q)

is found such that (1

B

�

; 1

B

�

) � (u

1

; v

1

) = 000. This implies that the distance

d

p

((h

1

h

r

2

f

0

)�; (h

1

h

r

2

g

0

)�) = d

p

(u

1

u

r

2

u

0

; v

1

v

r

2

v

0

)

> r (ju

2

j+ jv

2

j) + ju

0

j+ jv

0

j

can be made arbitrarily large with r.

Case 2: the product V�!

B

is in�nite. There exists then in V at least one computation

(i; j)

h

1

=(u

1

;v

1

)

�������! (p; q)

h

2

=(u

2

;v

2

)

�������! (p; q)

which is lifted in V�!

B

as an in�nite graph. Hence

(1

B

�

; 1

B

�

) � (u

1

; v

1

) = (x; y) 6= 000 and 8r 2 N (x; y) � (u

2

; v

2

)

r

6= 000 .

From Lemma 5, it follows �rst that ju

2

j 6= jv

2

j and then that there exists an n

0

such that

j(x; y) � (u

2

; v

2

)

r

j > (r� n

0

) j(ju

2

j � jv

2

j)j ,

and thus

d

p

((h

1

h

r

2

f

0

)�; (h

1

h

r

2

g

0

)�) = d

p

(u

1

u

r

2

u

0

; v

1

v

r

2

v

0

)

> [(r� n

0

) j(ju

2

j � jv

2

j)j]�

�

�

(ju

0

j � jv

0

j)

�

�

can be made arbitrarily large.

In both cases,

d

p

(h

1

h

r

2

f

0

; h

1

h

r

2

g

0

) 6 jf

0

j+ jg

0

j

is �xed, and � is not uniformly divergent.
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5.3 Making the characterization e�ective

We now show that the conditions of Theorem 5 may be e�ectively tested by means of an

algorithm of polynomial time complexity.

Let T = hQ;A

�

�B

�

; E; I; T i be a transducer with n states, m transitions, and max-

imal size of transitions K. As in section 4.2, the accessible part V of T �T is computed

in O(m

2

). And we have to build the product W of V by the AD action !

B

. As the \size"

of a value of a state in W is linear in K, a too rough estimation for the size ofW would be

exponential in the size of T . The overall idea of the algorithm is that on the states of V

that really \matter" for the decision procedure, the non-zero values (that are elements

of H

B

and thus almost words of B

�

) have to be pre�x of eachother. There are a linear

number of them and we show that they can be computed in polynomial time.

Let V

0

be the subautomaton of V consisting of those states that are co-accessible to a

cycle whose output label is distinct from (1

B

�

; 1

B

�

). The computation of V

0

is done in a

time bounded by the number of transitions of V , at most m

2

. And let W

0

be the product

of V

0

by !

B

. It is clear that the conditions of Theorem 5 are ful�lled on W if and only

if they are ful�lled on W

0

and from now on we will only consider the transducer V

0

and

its product W

0

. We shall say that two words w and w

0

of B

�

are comparable if one is the

pre�x of the other.

Lemma 6 If ((p; q); (1

B

�

; w)) and ((p; q); (1

B

�

; w

0

)) are both states of W

0

, then w

and w

0

are comparable or condition (ii) of Theorem 5 is not ful�lled.

Proof. Since (p; q) is in V

0

, it is co-accessible to a state (r; s) that belongs a cycle labelled

by (u; v) 6= (1

B

�

; 1

B

�

), i.e. there exists a path (p; q)

f

3

=(x;y)

�����! (r; s) in V

0

. If w and w

0

are

not comparable then at least one of the sets X = f(1

B

�

; w) � (x; y) � (u; v)

n

j n 2 Ng or

X

0

= f(1

B

�

; w

0

) � (x; y) � (u; v)

n

j n 2 Ng contains 000 and the state ((r; s);000) is in W

0

.

Lemma 7 If ((p; q); (1

B

�

; w)) is a state of W

0

then jwj 6 K n

2

or the conditions of

Theorem 5 are not ful�lled.

Proof. Let us show that the shortest path c inW

0

from an initial state ((i; j); (1

B

�

; 1

B

�

))

to ((p; q); (1

B

�

; w)) has a length smaller than n

2

. If not, c has a decomposition:

((i; j); (1

B

�

; 1

B

�

))

f

1

=(u

1

;v

1

)

������! ((r; s); h

1

)

f

2

=(u

2

;v

2

)

������! ((r; s); h

2

)

f

3

=(u

3

;v

3

)

������! ((p; q); (1

B

�

; w))

By Lemma 5, the set X = fh

1

� (u

2

; v

2

)

n

j n 2 Ng has to be a singleton and thus h

1

= h

2

,

which yields a shorter path.

Hence the length of w is bounded by K n

2

.

In order to build W

0

, we maintain two arrays of words T

1

and T

2

indexed by Q�Q

that are initialized to 1

B

�

. The states of W

0

are computed one after the other. For every
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state ((p; q); h) of W

0

and every transition (p; q)

(a=(u;v))

�����! (p

0

; q

0

) of V

0

, we compute h

0

=

h � (u; v).

a) If h

0

is 000, condition (ii) of Theorem 5 is not satis�ed and the algorithm stops.

b) If h

0

is an element (w; 1

B

�

) (resp. (1

B

�

; w)), then one checks whether w and T

1

[p

0

; q

0

]

(resp. T

2

[p

0

; q

0

]) are comparable. There are two possibilities:

b.1 If they are not comparable, then, by Lemma 6, condition (ii) of Theorem 5 is

not satis�ed.

b.2 If they are comparable, one updates T

1

[p

0

; q

0

] (resp. T

2

[p

0

; q

0

]) with the longer

of the two words.

Now, by Lemma 7, the words computed in the arrays T

1

and T

2

have a length bounded

by K n

2

. Therefore the algorithm always stops: either because the condition (ii) of Theo-

rem 5 is not sati�ed or, if this condition is satis�ed, because no new states of W

0

are

computed. In the latter case, W

0

is �nite and the condition (i) is satis�ed.

The number of states ofW

0

that we have constructed is at most 2K n

4

. The number of

transitions ofW

0

is at most m

2

�(2Kn

2

) = 2K n

2

m

2

. Indeed, for each transition leaving a

state (p; q) in V

0

, one constructs at most one transition leaving each state ((p; q); h) in W

0

.

The time complexity of the construction is at most 2K n

2

m

2

�K n

2

= 2K

2

n

4

m

2

since the

time taken to check whether two words are comparable is at most K n

2

.

In [1], two of the authors show directly that the twinning property is decidable in

polynomial time. Let us mention also that in [15], it has also been shown, by a di�erent

algorithm, that the twinning property is decidable in polynomial time.
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