
Minimizing subsequential transducers:a surveyChristian Choffrut,LIAFA, Universit�e Paris 7, 2, Pl. Jussieu75 251 Paris Cedex 05, Francecc@liafa.jussieu.frFebruary 8, 20011 IntroductionThis paper deals with the notion of subsequential transducer, i. e., of �nitedeterministic automaton whose transitions are provided with an \output".Its purpose is twofold. First it is meant to give better access to the resultsaying, in loose terms, that it is possible to de�ne a notion of morphism onsubsequential transducers in such a way that the ordinary theory of deter-ministic automata carries over to subsequential transducers. In particular,given a function realized by some subsequential transducer, there exists a\minimal" subsequential transducer realizing it such that all trimmed subse-quential transducers map onto it. This is a critical departure from the moregeneral case of rational functions where the existence of such a minimal objectis still unsettled, cf. [13]. Thus, though more complex than �nite determin-istic automata, subsequential transducers enjoy the same \syntactical" prop-erty and the techniques for proving this fact are not substantially di�erent.This appeared in my doctorial thesis and in the proceedings of the ICALP'79conference. To be more precise, this was actually stated in a slightly largercontext, since the function was supposed to map the free monoid into thefree group. In spite of being more general and easily \downgradable" to freemonoids, this formalism has probably confused some readers and obscuredthe fact that it was dealing with free monoids also.The second objective is to give an account of the further works concernedwith the actual construction of minimal transducers. All the constructionsare based on the observation, which I made in my ICALP paper, that itis possible to preserve the structure of the underlying automaton and pullthe ouput labels \upstream" in such a way that the longest common pre�xof the labels of all the �nal paths leaving a given state is the empty word.A transducer enjoying this property can be minimized by considering theunderlying �nite automaton only. As a consequence, the problem reducesto estimating the cost of computing for each state these longest commonpre�xes. This approach is done in [12, p. 70] where it is observed that1

the computation is polynomial in time but no estimate on the exponent ofthe polynomial is given. The �rst serious attempt dates back to [8], seealso [10], where a worst case time complexity in O((L + 1)m) is claimed,with m the number of transitions and L is the maximum length, rangingover the states, of these longest common pre�xes. Though this algorithmworks correctly on most randomly given transducers, it is based on a wrongimplicit assumption which makes it fail in some \pathological" cases, anexample of which is given in the last section. Recently, M.-P. B�eal andO. Carton established this claim rigourously, [3]. Their proof shows thatthe result requires a much more sophisticated artillery than that employedby Mohri. Later on, Breslauer tackled the problem in a di�erent way byreducing it to a problem of single source shortest paths in a graph and byexhibiting an algorithm whose complexity is essentially proportional to thesum of the lengths of the output labels of the transducer. It starts withobserving that substituting lengths for the actual outputs gives an upperbound on the length of the longest common pre�xes. The clever idea consistsin imposing an extra condition which combined with the length conditiongives the correct result. It is di�cult to compare the two complexities sincethey are expressed in terms of di�erent parameters. It can however be saidroughly, that Breslauer's algorithm is slightly less e�cient than the correctedversion of Mohri's algorithm for \randomly" given transducers.There is a growing interest for subsequential functions outside the com-munity of theoretical computer scientists. Indeed, it was long observed thatthey are relevant to lexical analysis, text processing, coding theory, com-puter arithmetics etc. Nowadays, transducers are commonly used by peopleinvolved with speech recognition [10] and machine learning [11]. Actually,there is ongoing research for extending these results to the much more di�-cult case where the outputs of the transducers are subsets of words, cf., e.g.,[9]. So, the topic is not yet exhausted. Subsequential functions can actuallybe viewed a as special case of rational relations. We refer the reader to JeanBerstel's textbook on the topic for a general exposition of transducers andtheir relation to traditional language theory, [4].2 PreliminariesThe present theory deals a lot with partial functions. Indeed, the predecessorsof the subsequential transducers were the generalized sequential machines ofGinsburg and Rose, [7], all the states of which were �nal (equivalently whichde�ned total functions). Soon some authors introduced the distinction be-tween �nal and non-�nal states but Sch�utzenberger added an initial and �nal2

processing of each input word which preserved the main feature of the modelof being completely deterministic while suppressing the arti�cial conditionsof the original de�nition. That this model is relevant is proven by the nicefunctional equations characterizing subsequential functions, [14], or the met-ric characterization \�a la Ginsburg and Rose" which they enjoy, [6]. Howeverthe price to pay is having to speak of partial rather than total functions. Inorder to avoid tedious case studies as much as possible, we augment any setX with an extra element representing the \unde�ned value" denoted by 0and we view each partial functions f : X ! Y as a total function mappingX [f0g into the set Y [f0g where f(x) = 0 whenever f(x) is unde�ned andwith the convention f(0) = 0. Observe that the new \unde�ned value" iscommon to all sets considered, be it a free monoid, a set of states or what-ever. We may think of f as assigning the singleton ff(x)g to the singletonfxg whenever f(x) is de�ned and the emptyset otherwise. Equivalently, the0 represents the empty set. The domain of the partial function f is the setof x 2 X such that f(x) 6= 0 and is denoted as usual by Dom(f).2.1 NotationsThe free monoid generated by a set (or alphabet) A is denoted by A�. Itselements are words, its unit is the empty word and is denoted by �. Weset M(A) = A� [f0g. By making the element 0 act as a zero on M(A)(u0 = 0u = 0 for all u) M(A) is a monoid. The concatenation productbetween elements is extended in the standard way to subsets: if X;Y aretwo subsets then XY = fxy j x 2 X; y 2 Y g. In particular if X = ; thenXY = ;.Given two elements u; v 2M(A), we say u is a pre�x of v whenever thereexists an elementw such that v = uw holds and we write u � v. Observe thatthis de�nes a partial ordering whose greatest element is 0. Given a subsetX �M(A) we denote by VX the longest common pre�x of the words in Xif X 6= ;. We pose VX = 0 if X contains no word, i.e., X = ; or X = f0g.WhenX contains two, not necessarily di�erent elements u; v, we simply writeu ^ v instead of ^fu; vg. It is clear that if X \A� 6= ;, then there exist twowords u and v such that VX = u ^ v.Given two elements u; v 2 M(A), we pose u�1v = w if v = uw holdsfor some unique element w and u�1v = 0 otherwise. E.g., (ab)�1abaa = aa,(ab)�1baa = 0 (there is no element w), (ab)�10 = 0, and 0�10 = 0 (there are3

in�nitely many elements w). The following holds8u; v; w 2M(A); (uv)�1w = v�1(u�1w) (1)8u 2M(A); u�10 = 0�1u = 0 (2)8u 2 A�; u�1u = � (3)Of course if x is an element and X;Y are two subsets of M(A) we havexX � Y)^Y � x^X (4)^xX = x^X (5)2.2 Subsequential transducers and subsequential func-tionsWe recall the basics on the notion of subsequential transducers introducedby Sch�utzenberger in [14]. It is a deterministic device provided with a �nitememory that performs a mapping from a free monoid into another.A subsequential transducer is a construct T = (Q;A;B, q�; t; i) wherei) A and B are the input and output alphabetsii) Q is the �nite set of statesiii) q� is a subset of Q containing at most one element in which case weidentify this element with the subset and we call it the initial stateiv) t : Q! B� is the termination partial functionv) i 2M(B) is the initialization value with i 2 B� if q� is a singleton andi = 0 if q� = ;We assume a transition partial function is given which associates witheach pair (q; a) 2 Q�A of its domain the next state q � a 2 Q. Observe thatthe function de�nes an action on the monoid M(A) by the usual inductionon the length of the words and by setting q � 0 = 0 for all q 2 Q and 0 � a = 0for all a 2 A [f0g. Also a production function associates with each pair(q; a) 2 Q � A of its domain the output word q � a 2 B�. We denote byQ+ the domain of t and call it the subset of �nal states. A path is a �nitesequence of quadruples in Q�A�B� �Q [f(0; 0; 0; 0)g.(q0; a0; y0; q1); (q1; a1; y1; q2) : : : ; (qn�1; an�1; yn�1; qn)4

with qi � ai = qi+1 and qi � ai = yi for all i = 0; : : : ; n � 1. We say the pathstarts in q0 and ends in qn. A path is �nal if qn 2 Q+ and it is successful iffurthermore q0 = q�. In particular, when q� = 0 then there is no successfulpaths. The elements a0a1 : : : an�1 2 M(A) and y0y1 : : : yn�1 2 M(B) arerespectively the input and the output labels of the path. We consider anempty path (n = 0) for each state q and we view it as starting and endingin q and labeled by �. A transducer is trimmed if each state q 2 Q lies on asuccessful path.The function realized by the subsequential transducer is also called sub-sequential and is de�ned for all u 2M(A) by the conditionf(u) = i(q� � u)t(q� � u)It is clear from the de�nition that there is no loss of generality to assumethat the transition and the production functions have the same domain ofde�nition.For example the function realized by the transducer of Figure 1 has theinitial state (here 0) indicated by an incoming arrow with no source andlabeled by i = �. The �nal states q (here 1 and 3) are indicated by outcomingarrows with no target and labeled by t(q) (here ba and a respectively).
30 21

�
a baa=abb=ba=abba=ab a=bab b=bab=bb=ab Figure 1: A subsequential transducerUnless otherwise stated, all transducers considered in this paper are as-sumed trimmed. Observe, there exists a unique trimmed transducer realizingthe function which is nowhere de�ned.5

3 Syntactic congruenceGiven a function f : A� ! B�, with each u 2 A� we set F (u) = Vw2A� f(uw) 2M(B). Observe that by equality (4) this function F is pre�x preserving, i.e.,u � v implies F (u) � F (v). For all u; v 2 A� we de�ne u �f v if and only ifthe following is satis�edfor all w 2 A�; F (u)�1f(uw) = F (v)�1f(vw) (6)This equivalence relation is �ner than the right equivalence associatedwith the underlying automaton (the \regular" equivalence in the literature)since the following holdsu �f v implies for all w 2 A� : uw 2 Dom(f), vw 2 Dom(f) (7)In order to check that it is right invariant we denote by g(w) the com-mon value of both handsides of equation (6). Observe that F (u) = 0 holdsif and only if F (v) = 0. In this case we have F (ua) = F (va) = 0 and we aredone. Assume now F (ua) 6= 0 and F (va) 6= 0 and set x = Vw2A� g(aw) 2 B�.By equality (5) we getF (ua) = ŵ2A� f(uaw) = ŵ2A� F (u)g(aw) = F (u) ŵ2A� g(aw) = F (u)xand thus F (ua)�1f(uaw) = (F (u)x)�1F (u)g(aw) = x�1g(aw)The last equality follows from (F (u)x)�1F (u) = x�1(F (u)�1F (u)) = x�1 invirtue of identities (1). In the sameway we would prove that F (va)�1f(vaw) =x�1g(aw) holds.We call �f the syntactic congruence of the function.We may associate with each partial function f : A� ! B� a (not neces-sarily �nite) subsequential transducerTf = (Qf ; A;B; qf; tf ; if) (8)where Qf = f[u] j F (u) 6= 0g, qf = f[�]g if F (�) 6= 0 and qf = ; otherwise,if = F (�) and tf([u]) = F (u)�1f(u) for all u 2 A� which is well-de�ned byequality (6). For the transition function we set [u] � a = 0 if F (ua) = 0 else[u] � a = [u � a] which is well-de�ned since the equivalence is right invariant.The production function is de�ned by [u] � a = F (u)�1F (ua). In order to6

show that this is also well-de�ned consider u �f v. We have F (ua) = 0if and only if F (va) = 0. Assume thus F (ua) 6= 0 and choose an arbitraryword w such that uaw; vaw 2 Dom(f) (such a word exists by (7)). Thenapplying the de�nition of the syntactic equivalence to u �f v there existsx 2 B� such that f(uaw) = F (u)x and f(vaw) = F (v)x. Also, the conditionua �f va implies that there exists y 2 B� such that f(uaw) = F (ua)y andf(vaw) = F (va)y holds. Now, F is pre�x preserving and f(uaw) = F (u)x =F (ua)y which shows that for some z 2 B� we have x = zy. Then we obtainz = F (u)�1F (ua) = F (v)�1F (va) as claimed.Now, we verify that the transducer thus de�ned computes the functionf . Let us calculate the image of u = a1a2 : : : an 2 A� in the subsequentialtransducer. Pose qi = qf � a1 : : : ai for all i = 0; : : : ; n. ComputeF (�)(qf � u)tf (qf � u) = F (�)(qf � a1)(q1 � a2) : : : (qn�1 � an)tf (qn)= F (�)(F (�)�1F (a1))(F (a1)�1F (a1a2)) : : :(F (a1 : : : an�1)�1F (a1 : : : an))F (u)�1f(u)= f(u)Indeed, if all F (a1 : : : ai)'s are di�erent from 0, then everything cancels outexcept f(u). Otherwise both hansides are equal to 0.Theorem 1 A function f : A� ! B� is subsequential if and only if itssyntactic congruence has �nite index.Proof. Clearly the condition is necessary. Indeed, let T be a subsequentialtransducer realizing f and consider the equivalence on A� de�ned by u � vif and only if q� � u = q� � v. If q� � u = q� � v = 0 then F (u0) = F (v) = 0and condition (6) is met. Otherwise, if q = q� � u = q� � v 6= 0 holds for allw 2 A� denote by h(w) the value (q �w)t(q �w). Finally, let y = Vw2A� h(w).Then we have F (u) = i(q� � u)y, F (v) = i(q� � v)y and thusF (u)�1f(uw) = y�1h(w) = F (v)�1f(vw)Since the relation � is �ner than the syntactic congruence, the latter has�nite index.The converse is a consequence of the construction previous to the presenttheorem. 7

4 Morphisms of subsequential transducersThe purpose of this section is to show that it is posible to de�ne a notion ofmorphisms on the set of trimmed subsequential transducers. Consider twosuch transducers.T (1) = (Q(1); A;B; q(1)� ; t(1); i(1)) and T (2) = (Q(2); A;B; q(2)� ; t(2); i(2))We are given a partial mapping h : Q(1) ! Q(2) and a total mapping ` :Q(1) 2 B� [(B�)�1 where (B�)�1 is the set of formal inverses of elementsof B�. We denote by Q(1)+ ; and Q(2)+ the sets of �nal states of T (1) and T (2)respectively.The pair (h; `) is a morphism of T (1) onto T (2) if the following conditionshold h(q(1)�) = q(2)� and Q(1)+ = h�1(Q(2)+) (9)for all q 2 Q and a 2 A : h(q) �2 a = h(q �1 a) (10)i(2) = i(1)`(q�) (11)for all q 2 Q : t(2)(h(q)) = `(q)�1t(1)(q) (12)for all q 2 Q and a 2 A : h(q) �2 a = `(q)�1(q �1 a)`(q �1 a) (13)The mapping `, meant as de�ning a \lag" on the output labels, requiressome comment. Observe that the labels of the transitions leaving state 1 ofFigure 1 all start with the pre�x b. Since 1 is not a �nal state, the behaviourof the transducer is not modi�ed if this pre�x is stripped of these labelsand assigned to the right of the incoming transitions. A formal inverse ofu = b1 : : : bn we mean the sequence u = b�1n : : : b�11 . The formal inverse of theempty word � is � itself. If u 2 B� the notation u�1v is to be understood asin paragraph (2.1). If u 2 (B�)�1 then u is the formal inverse of u0 2 B� andby de�nition u�1v is equal to u0v.For example, the transducer of Figure 1 is mapped onto the followingtransducer via the morphism (h; `) where h(0) = h(2) = �0, h(1) = h(3) = �1`(0) = �, `(1) = ba, `(2) = �, `(3) = a.
8

�0 �1� aa=abbaa=bab=b b=baFigure 2: A morphic image of the subsequential transducer of Figure 1Proposition 1 If (h; `) is a morphism from T (1) onto T (2) then the twotransducers realize the same subsequential functions.Proof. Indeed, consider a word u = a1a2 : : : an and its computation in thetransducer T (1). For all 0 � i � n set q� � a1 : : : ai = qi. Then the image ofu in T (1) is the wordi(1)(q0 �1 a1)(q1 �1 a2) : : : (qn�1 �1 an)t(1)(qn)By the de�nition of the morphism, and by setting h(qi) = q(2)i for i =0; : : : ; n, the image of the same word in the transducer T (2) isi(2)(q(2)0 �2 a1)(q(2)1 �2 a2) : : : (q(2)n�1 �2 an)t(2)(qn)= i(1)`(q0)(`(q0)�1(q0 �1 a1)`(q1)) : : :(`(qn�1)�1(qn�1 �1 a1)`(qn))`(qn)�1t(1)(qn)= i(1)(q0 �1 a1)(q1 �1 a2) : : : (qn�1 �1 an)t(1)(qn)Because of the hypotheses on h, the converse is also true.Proposition 2 For all trimmed subsequential transducer T realizing a sub-sequential function f , there exists a unique morphism from T onto Tf .Proof. Given a transducer T = (Q;A;B; q�; t; i) and the transducer (8),we de�ne a mapping (h; `) from the former onto the latter and then we verifythat it satis�es conditions (9) { (13). For all q 2 Q we seth(q) = [u] for some arbitrary u with q� � u = q`(q) = ^q�w2Q+(q � w)t(q � w)Clearly h is well-de�ned since q� � u = q� � v implies [u] = [v].It is straightforward to see that condition (9) is satis�ed. Because �fis right invariant we have h(q � a) = [ua] = [u] � a = h(q) � a proving that9

condition (10) also holds. Observe that the function ` satis�es for all u 2 A�and q� � u = q, i(q� � u)`(q) = F (u) (14)Indeed, we haveF (u) = ŵ2A� i(q��u)(q�w)t(q�w) = i(q��u) ŵ2A�(q�w)t(q�w) = i(q��u)`(q)As a consequence we get F (�) = i`(q�) which is condition (11). For allq� � u = q 2 Q+ the following holdstf(h(q)) = F (u)�1f(u) = F (u)�1i(q� � u)t(q) = `(q)�1t(q)which establishes condition (12).Applying equality (14) to ua, we have i(q� � ua)`(q � a) = F (ua). Thisentails `(q)�1(q � a)`(q � a)= F (u)�1i(q� � u)(q � a)(q� � ua)�1i�1F (ua)= F (u)�1F (ua)which completes the veri�cation of condition (13).5 Complexity considerationsGiven a subsequential transducer T and a state q, denote by �T (q) the longestcommon pre�x of all the output labels of the �nal paths starting from q, i.e.,�T (q) = û2A�(q � u)t(q � u)The construction of the minimal transducer realizing a given subsequentialfunction is based on the simple property �rst observed in [6, p. 96] thatthere exists a transducer T 0 realizing the same function as T having thesame underlying automaton and such that �T 0(q) = � holds for all statesq 2 Q. Indeed, de�ne a total mapping � : Q! B� by setting�(q) =^f(q � u)t(q:u) j q � u 2 Q+g (15)De�ne a new production function by setting q � a = �(q)�1(q � a)�(q � a).That q � a 2 B� holds results from equality (4) and the following inclusion(q � a)f((q � a) � u)(t(q � au)) j a 2 A;u 2 A�g= f(q � au)(t(q � au)) j a 2 A;u 2 A�g � f(q � u)(t(q � u)) j u 2 A�g10

The resulting transducer has the right property. As a consequence of Propo-sition 2, minimizing the transducer T 0 can be achieved by minimizing itsunderlying �nite automaton since the function ` in the de�nition of a mor-phism is then necessarily constant and equal to the empty word. E.g., thetransducer of Figure 1 can be transformed into the following transducer whichenjoys the right property.
30 21

�
� �a=abbab=ba=abbaa=b a=b b=bab=bb=ba Figure 3: A subsequential transducerMinimizing an automaton can be achieved in worst case time complexityO(n log n) where n is the number of states, cf. [1], while computing allthe longest pre�xes has complexity O((L + 1)m) where m is the number oftransitions and L is the maximum of the lengths of �T (q) for q 2 Q as isbrie
y reported now.Several authors have investigated the complexity of constructing the min-imal transducer, [8, 5, 3]. They use di�erent methods but they all start byobserving that the input labels are irrelevant and thus can be ignored. Inorder to account for the functions t and i, two new vertices, a source s and atarget t, are added. The resulting object is a �nite graph G = (Q;E) whosevertices are the states of the transducer and whose set E of edges, labelledby words in B�, are its transitions. In order to make this more evident weadopt the terminology of graphs and speak of nodes rather than states, ofedges rather than transitions. The label born by the edge (q; p) is denotedby label(q; p) (with label(q; p) = 0 if (q; p) =2 E). The question becomeshow to compute, for all nodes q of the graph, the longest common pre�x �(q)of all the paths starting in q and ending in t. E. g., Figure 1 is transformedinto the following graph 11

30 21s t�
a baabbabbab babba

babFigure 4: The graph associated with Figure 1Denote by L the maximum length of �(q) when q ranges over Q. Mohri wasthe �rst to propose an algorithm with claimed worst case time complexityin O((L+ 1)m) where m is the number of edges. However, it does not workcorrectly in all cases since it is based on the wrong (though not explicitlystated) assumption that in order to guarantee the \global" condition �(q) = �for all q 2 Q, it su�ces to ensure the \local" condition: V(q;p)2E label(q; p) =� for all q 2 Q. Figure 5 shows that this need not be the case. In fact itis tempting to consider the Q-tuple (�(q))q2Q as the solution of a system ofequations over the monoid M(B).s t0 12� ���a3a2 a2Figure 5: A system with several solutionsE. g., with the above graph we are lead to associate a system which when12

reduced to the unknowns �(0), �(1) and �(2) is as follows�(0) = a3�(1) ^ �(1) ^ a2�(2)�(1) = �(0) ^ a2�(2)�(2) = � (16)Clearly, this system has three di�erent solutions in the variables �(0) and�(1), to wit, �(0) = �(1) = �, �(0) = �(1) = a, and �(0) = �(1) = a2. Thelongest common pre�xes are actually given by the last solution, which is thegreatest �xed point of the decreasing function de�ned in (16). The solution isthus obtained by setting all three unknowns to 0 and by iteratively applyingfunction (16). Mohri's algorithm however, would compute the �rst solution.It would determine the states where the outputs of the leaving edges have acommon pre�x di�erent from the empty word. For such states, the maximumcommon pre�x would be deleted from the labels of the leaving edges and itwould be added to the right of the labels of the entering edges, see Figure 6.Here it would stop without doing anything.x1: : : xn zy1 : : :zy` x1z: : : xnz y1 : : :y`Figure 6: The common pre�x migrates \upstream"More precisely, Mohri considers the classical decomposition of the graphinto its largest strongly connected components (SCC) and visits the compo-nents in a reverse topological ordering. Each component C is treated suc-cessively. Every node in C is given a status: dead, live, sleeping. A nodeq is dead whenever there exist two leaving arcs labelled by two non-emptywords starting with di�erent letters: label(q; p) = au and label(q; r) = bvfor p; r 2 Q, a 6= b 2 A, u; v 2 A�. Clearly, in this case, we have �(q) = �and the node need no further treatment. A node q is live if the labels of allleaving edges have a non empty common pre�x, say w. Then w may migratefrom leaving to entering edges. Finally, a node q is sleeping in all othercases, i.e., it has a leaving arc labelled by �. The sleeping nodes are notdiscarded since they may change status (the empty label may receive some13

non-empty word from a neighbouring live node). The algorithm investigatesthe live nodes only and when it stops it guarantees that all nodes satisfy thecondition on the labels \locally" but not globally, i.e.,8q 2 Q : p̂2Qlabel(q; p) = � (17)M.-P. B�eal and O. Carton have corrected this error in [3]. More precisely,denote by LG the maximum length of the strings of the form �(q) whereq 2 Q. A depth-�rst search on the subgraph G0 obtained by deleting all non-empty labels is run in order to determine its maximum strongly connectedcomponents and compute the �rst common letter of all the outgoing labelsif such a letter exists at all. A second depth-�rst search on the entire graphG performs the migration of this letter resulting in a new graph G1. At thispoint, we have LG1 = LG � 1. It su�ces to proceed in this manner LG timesin order to obtain the desired graph. The overall cost is in O((L + 1)m) asclaimed.Breslauer proceeds in a di�erent manner, by reduction to a problem ofshortest-path in a graph. Indeed, replace the label of each edge by its lengthand view it as a \distance" between the two ends of the edge. The shortestdistance of each node q to some �nal node is an upper bound on the length of�(q). In general it is strictly greater. In order to enforce equality the authoruses the following approximation of �(q). De�ne an arbitrary covering forestof the graph where the �nal nodes are the roots of the trees composing theforest. With every node q associate the label L(q) of the unique path leadingfrom q to some root and setC(q) = ^(q;p)2E label(q; p)L(p) (18)Add a vertex > and connect each root to this node with an edge ofdistance 0. Also connect each node q with an edge of distance jC(q)j. Theauthor proves that �(q) is the pre�x of C(q) whose length is the shortestdistance from q to >. These values can be computed e�ciently by anyvariant of Dijkstra's algorithm, cf., [2]. The overall complexity is dominatedby the cost of solving (18). Using the structure of \su�x tree", the authorshows that the complexity is in O(n +m + sjBj) where s is the sum of thelengths of the labels of the graph and jBj the cardinality of the alphabet.References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysisof Computer Analysis. Addison Wesley, 1974.14

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice-Hall, Englewood Cli�s, NJ., 1993.[3] M. P. B�eal and Olivier Carton. Computing the pre�x of an automaton.RAIRO Inform .Th�eor. Applic. to appear.[4] J. Berstel. Transductions and context-free languages. B. G. Teubner,1979.[5] D. Breslauer. The su�x tree of a tree and minimizing sequential trans-ducers. Theoret. Comput. Sci., 191:131{144, 1998.[6] C. Cho�rut. A combinatorial problem in the theory of free monoids. InH. A. Maurer, editor, 6th ICALP Conference, volume 71, pages 88{103.Lect. Notes Comp. Sci., 1979.[7] S. Ginsburg and G. F. Rose. A characterization of machine mappings.Can. J. Math., 18:381{388, 1966.[8] M. Mohri. Minimisation of sequential transducers. volume 807, pages151{163. Lect. Notes Comp. Sci., 1994.[9] M. Mohri. Finite-state transducers in language and speech processing.Comput. Linguistics, 23:269{311, 1997.[10] M. Mohri. Minimization algorithms for sequential transducers. Theoret.Comput. Sci., 234:177{201, 2000.[11] J. Oncina, P. Garcia, and E. Vidal. Learning subsequential transducersfor pattern recognition and interpretation tasks. In IEEE Trans. PatternAnal. Machine Intell., volume 15, pages 448{458, 1993.[12] C. Reutenauer. Subsequential functions: characterizations, minimiza-tion, examples. In Internat. Meeting of Young Coputer Scientists, num-ber 464 in Lect. Notes Comp. Sci., pages 62{79. Springer-Verlag, 1990.[13] C. Reutenauer and M. P. Sch�uzenberger. Minimization of rational wordfunctions. Siam J. Comput., 30(4):669{685, 1991.[14] M. P. Sch�uzenberger. Sur une variante des fonctions s�equentielles. The-oret. Comput. Sci., 11:47{57, 1977.15

