Consensus

FAULT TOLERANCE
• Processes
 ○ the number of the processes is n
 ○ Processes have unique (known) identities

• Communication
 ○ Shared memory (read/write)
 ○ Message passing (send/receive)
Failure

- **Link failure:**
 - Loss, duplication, modification...

- **Process failure:**
 - Crash failure
 - Omission (send/receive)
 - Byzantine failure

Correct/ incorrect process
Synchrony

- **Synchronous system:**
 - There is a bound δ such that for all processes p and q: if a message is sent by process p to process q at time τ then q receives this message by time $\delta + \tau$.
 - There is a bound δ such that for all processes p: in δ consecutive steps of any process p there is at least one step of any process.

- **Asynchronous system:** no bound

- **Partially synchronous system:**
 - The bound exists but is unknown.
 - There is a time after which the bound holds.
 - ….
A problem P, a system S of n processes:

- There does not exist an algorithm that solves P in system S assuming at most t failures.

- There exists an algorithm that solves P in system S assuming at most t failures (in some time, number of messages ...).
Round model

- At each round:
 - All (live) processes send a message to all processes.
 - Wait (following some condition) in order to receive the messages of the round
 - Make some computation
Synchronous system:

- There is a bound δ such that for all processes p and q: if a message is sent by process p to process q at time τ then q receives this message by time $\delta + \tau$.
- There is a bound delta such that for all processes p: in δ consecutive steps of any process p there is a step of any process.

Wait for δ time

All processes receive all the messages sent by correct processes.
Asynchronous system: no bound.

If t is the number of processes that may crash

Wait for $n-t$ messages

It is possible that a correct process does not wait for a message sent by another correct process
Consensus

- At the heart of fault tolerance systems:
 - At least the correct processes have to agree on something!

- Ex: active replication
 - Each process executes the same code
 - At each step they agree on the same inputs
 - They output the same sequence

- agree on the same inputs \implies Consensus
Processes propose some values, they have to agree (decide) on one of them.

- If all processes propose the same value v then all correct processes decide v.
- If processes propose different values then all correct processes have to decide the same value and this value has to be one of the proposed values.
Specifications

- **Agreement**: if two processes decide they decide the same value
- **Validity**: if a process decides it decides a value that has been proposed
- **Termination**: all correct processes decide
<table>
<thead>
<tr>
<th></th>
<th>synchronous</th>
<th>asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>No failure</td>
<td>Algo (1 round)</td>
<td>Algo (1 round)</td>
</tr>
<tr>
<td>Crash failure</td>
<td>Algo (t+1 rounds)</td>
<td>Impossible (FLP85)(t=1)</td>
</tr>
<tr>
<td>Byzantine failure</td>
<td>Algo if $n>3t$ (t+1 rounds)</td>
<td>Impossible if $n=3t$</td>
</tr>
</tbody>
</table>
If number of 1 > number of 0 then decide 0 else decide 1
If number of 1 > number of 0 then decide 0 else decide 1
If number of 1 > number of 0 then decide 0 else decide 1

D=?
In asynchronous systems if you design an algorithm that can tolerate t crashes you can only wait for $n-t$ processes.
<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Synchronous</th>
<th>Asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash failure</td>
<td>Algo (O(1)) expected rounds if (n>2t)</td>
<td>Algo if (n>2t) Impossible if (n\leq2t)</td>
</tr>
<tr>
<td>Byzantine failure</td>
<td>No better result</td>
<td>Algo if (n>3t) Impossible if (n\leq3t)</td>
</tr>
</tbody>
</table>
Ben-Or’s Algorithm

- Assume a majority of correct processes \((n>2t)\)
- Every process can toss a coin that gives value 0 or 1 with probability \(c>0\)
- Binary consensus

\[x:=\text{value proposed by } p\]
- For \(k:=1, 2, \ldots\)
 - send\((R, k, x)\) to all processes
 - wait for messages of the form \((R,k,*)) from \(n-t\) processes
 - If received \((R,k,v)\) with the same \(v\) then send\((P, k, v)\) to all processes
 else send\((P, k, ?)\) to all processes
wait for messages of the form \((R,k,*)\) from n-t processes
Property of majority

At the end of the round:

- All live processes send \((P, k, 0)\) or \((P, k,?)\)
- All live processes send \((P, k, 1)\) or \((P, k,?)\)
- **Impossible**: a process sends \((P, k, 1)\) and another \((P, k, 0)\)
Ben-Or’s Algorithm

- wait for messages of the form (P,k,*) from n-t processes
- If received (R,k,v) from t+1 with v ≠?
 - then decide v
 - else if received at least one (R,k,v) with v≠?
 - then x:=v
 - else x:=COIN_TOSS()
Agreement

- If a process decides \(\nu \), all processes have \(x=\nu \)
Decide 0---------0000000000000

0?? x=0
If all processes begin the phase k with the same value v
- All processes send(P,k,v)
- All processes send(R,k,v)
- All processes decide v
Validity

- If all processes begin with v all processes decide v at the end of the first phase.
- If not all processes begin with v then it is possible to decide either 0 or 1
Termination with proba 1

- At the end of a phase
 - either processes have the same value v
 - or some processes have v and some other toss coin

If the result of the coin toss is v, at the next phase all processes begin with the same value and decide.
Termination with proba 1

- Either all processes have the same value v (≠’?)
- or no process has a value (≠’?) and all processes toss coin the same value
- or some processes have v and some others toss coin v
Definition: A coin is called *weakly global* if there exists an absolute constant $c > 0$, such that for all v in $\{0, l\}$ the probability that at least $\min(n/2 + t + 1, n)$ processes all see outcome v is at least c.
Algorithm

- Idea: a leader randomly volunteers, and this leader tosses a coin.
- The procedure LEADER produces a local biased bit where the probability of a 1 (“I volunteer”) is equal to $1/n$;
- the procedure RANDOM_BIT produces a local unbiased bit.
Code for processor P:
Function COIN_TOSS
• leader:=LEADER()
• value:= RANDOM_BIT()
• send (leader, value) to all
• receive all (l, v) messages
• if all messages received with l = 1 have the same v then COIN_TOSS:=v
 else COIN_TOSS:=RANDOM_BIT()
Theorem: The function COIN_TOSS, produces a weakly global coin, where the constant probability for either common outcome is at least $1/e$ if $2t < n$.
Quantum?
Quantum

Can be used to obtain a weak global coin

<table>
<thead>
<tr>
<th></th>
<th>Synchronous</th>
<th>Asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash failure</td>
<td>No better results</td>
<td>No better result</td>
</tr>
<tr>
<td>Byzantine failure</td>
<td>Algo $O(1)$ expected rounds if $n>3t$</td>
<td>Algo if $n>3t$</td>
</tr>
<tr>
<td></td>
<td>Impossible if $n<3t$</td>
<td>Impossible if $n<3t$</td>
</tr>
</tbody>
</table>
Quantum weak global coin

Function COIN_TOSS()
Code for process \(p_i \)

Round 1:
- Generate the state \(|C_{\text{Coin}}_i\rangle = \frac{1}{\sqrt{2}} |0,0,...0\rangle + \frac{1}{\sqrt{2}} |1,1,...1\rangle \) on \(n \) qubits and send the \(k \)-th qubit to the \(k \)-th player (keeping one part to yourself)
- Generate the state
 \[|\text{Leader}_i\rangle = \frac{1}{n^3} \sum_{a=1}^{n^3} |a,a,...a\rangle \]
on \(n \) qubits, an equal superposition of the numbers between 1 and \(n^3 \). Distribute the \(n \) qubits among all processes
- Receive the quantum messages
Round 2:

- Measure (in the standard base) all Leader\textsubscript{j} qubits received in round 1. Select the process with the highest Leader value as the “leader” of the round.
- Measure the leader ‘s coin in the standard base return (measurement outcome of the leader’s coin)
Theorem: The function COIN_TOSS, produces a weakly global coin, where the constant probability for either common outcome is at least $\frac{1}{3}$ if $3t < n$.
Can we do better with quantum computing?

• Michael Ben-Or, Avinatan Hassidim: Fast quantum byzantine agreement. *STOC* 2005: 481-485