Basic abstraction

+ Process: an entity performing independant
computation.

+Algorithm for n processes {A1,...,An} where Ajis an
automaton (states, inputs, outputs) and a sequential
specification. May be deterministic or randomized.

- A processes that never falls takes infinitely many
steps

- Processes communicate by applying operations on
and receiving response from shared objects

- A shared objects is define by:
- states
- operations

- sequential specification

Queue

- operations : eng(item x) ; item deq() iInvocation

- states : sequence of items response

- sequential specification :

{state = f}eng(x){state = f.x} return ok
if (state # 0){state = a.f}deq(){state = f} return a

3

ok
enq(Xx)

Queue

Register

+ Operations: read, write

- state: item

- sequential specification:

{state = y}write(x){state =z} return ok
{state = y}read(){state = y} return y

5

Implementing an object

deq()
base objects:
g. registers, TAS()

e.

ok BN
ok

enq(x enq(y)

Implementation of object O

+ An operation on O is implemented using a
sequence of accesses to base objects

- Correctness ?

Histories

- A history is a sequence of invocation and response

enqi (1)engs(2)okiokaeng; (0)okideqa ()22

end(1) ok enq(0) ok

-]

deq() 2

Histories

- A history is a sequence of invocation and response

P2

enq1(1)engz(2)okiokaeng: (0)deqa ()22

enq(1) ok

enq(0
E aaw _
deq()

9

- A history is sequential if every invocation is
immediately followed by a corresponding response

- A sequential history has no concurrent operations

- A sequential history is legal if it satisfies the
sequential specification of the shared object

10

- A operation op is complete in a history H if H
contains both the invocation and the response of op

- A completion of H is a history H’ that include all

complete operations of H and a subset of
incomplete operation with their matching responses

11

Histories

H' = engq(1)enga(2)okq0kaeng: (0)dega()220k1

enq(0
deq() 2

12

- Histories H and H’ are equivalent if for all P; H

restricted to P; (H|p:) is equal to H’ restricted to P;

13

Linearizability (Atomicity)

- A history H is linearizable if there exists a
sequential legal history S such that:

-+ S preserves the precedence relation of H
- If op1 precede op2 in H (I.e the response of
op1 is before the invocation of op2 in H)

then op1 precede op2in S

S is equivalent to some completion of H

14

Histories

H = enqgi(1)engs(2)okioksengy (0)deqo()220kq
S = engz(2)okseng:(1)okideqs()22enqgq (0)ok

S sequential, legal, equivalent to some completion of H
preserve precedence relation

enq(1) ok

enq(0
" _
ok
deq()

P2

15

Histories

H = engi(1)okideqi ()engz(2)oks21deqa ()12

S 77

enq(1) ok deq() 2

s -
& . aaae

enq(2) ok deq() 1

16

Registers

- store values : binary? multivalued?
- two operations :

- read: one reader?many readers?
+write: one writer ? many writers?

- safety property

17

Registers

- Safety : if operations don’t overlap every read return
the last written value (or else the initial value)

- If operation overlap:
- safe register: any value

- regular register last written value or concurrently read
value

- atomic registers: the operations can be totally ordered
preserving legality and precedence (linearizability)

18

-+ weaker one: SRSW safe boolean register

- stronger one: MRMW Atomic multivalued register

19

Register Space

MRMW
MRSW
m-valued
SRSW Boolean
Safe .

Regular
Atomic

20

e Theorem: It Is possible to implement multivalued MWMR atomic
register from SWSR safe binary register

* From binary safe SRSW to binary safe MRSW

* From binary safe SWMR to binary regular SWMR

From binary regular MRSW to multivalued regular MRSW

From multivalued regular SRSW to multivalued atomic SRSW

e From multivalued atomic SRSW to multivalued atomic MRSW

From multivalued atomic MRSW to multivalued atomic MRMW

21

Binary safe SRSW to binary safe MRSW

PO is the only writer, v is the initial value

initially shared array R of n SWSR binary safe register init v

Code of PO Work also :
write(w){ _
for (int i=0; i<n; i++) RIi].write(w); for multivalued

;eturn (0k) regular
Code for Pi ; :
read({ j[doesn’t work for atomic]
return R[i].read() : ,,
\ register

22

SWMR binary safe to
SWMR binary regular

- PO is the only writer and v is the initial value

initially shared R SWMR binary safe register init
local to PO Iw:=v //last written value

Code of PO
write(w)
it wAw then
lw:=w; R.write(w)
return (ok)

}

Code for all processes
read(){
return R.read()

}

23

From binary regular MRSW to multivalued regular
MRSW

24

Representing m
Values

Unary representation:
bit[i] means value |

t[ojolojojojo

01234567

Writing m-Valued
Register

Write b

ololofof] |

01234567

RegBoolMRSWRegister [M] bit;

public void write(int x) {
bit[x] .write (true) ;
for (int i=x-1; 1>=0; i--)
bit[i] .write (false) ;
}

public int read() {
for (int i1=0; 1 < M; i++)
i1f (bit[i].read())
return 1i;

}}

27

SWSR regular to SWSR
atomic

- Where is the problem?

- regular but not linearizable

PO

P

Write(1) Write(2

Timestamp
Read()28 Read

SWSR regular to SWSR
atomic

PO is the only writer, P1 the only reader and v is the
initial value

initially shared R SWMR binary safe register init
local to PO t:=0 //ltimestamp
local to P1 1t:=0; lw //last timestamp, last written value
Code of PO
write(w)X
t:=t+1; R.write(t, w)
return (ok)

}

Code for P1
read(){
(t’,w’)=R.read()
if (lt<t’) then (It,lw):=(t’,w)
return lw
}

SWSR atomic to SWMR
atomic

initially shared table[n,n] SWSR atomic register
local to PO t:=0 //ltimestamp
local to readers It:=0; Iw //last timestamp, last written value
Code of writer
write(w){
t:=t+1; for (int i=0;i>n; i++) tableli,i].write(w,t) //write diagonal
return (ok)

}

Code for Preader |

read(X
Read the row |, take the value lw with the maximum timestamp It
Write the column with this (lw, It) except the diagonal
return Iw

}

SWMR atomic to MWMR
atomic

initially shared table[n] SWMR atomic register
local to PO t:=0 //ltimestamp
Code of writer |
write(w)X
Read table , take the maximum timestamplt in tablz
table[i]=(w,It+1)
return (ok)

}

Code for Preader |

read(X
Read table, take the value lw with the maximum timestamp It
return Iw

}

- All registers are (computationally) equivalent

32

