
Basic abstraction

• Process: an entity performing independant 
computation. 

• Algorithm for n processes {A1,…,An}  where Ai is an 
automaton (states, inputs, outputs) and a sequential 
specification. May be deterministic or randomized.

• A processes that never fails takes infinitely many 
steps

1



• Processes communicate by applying operations on 
and receiving response from shared objects

• A shared objects is define by:

• states

• operations

• sequential specification 

2



Queue 

• operations : enq(item x) ; item deq() 

• states : sequence of items

• sequential specification :

{state = f}enq(x){state = f.x}

if(state 6= ;){state = a.f}deq(){state = f} return a

return ok

invocation

response

3



Queue

enq(x) enq(y)

deq()
x

ok ok

4



Register

• Operations: read, write

• state: item 

• sequential specification: 

return y

{state = y}write(x){state = x}

{state = y}read(){state = y}

return ok

5



Implementing an object 

base objects:
e.g. registers, TAS()

enq(x) enq(y)

deq()
x

ok ok

6



Implementation of object O

• An operation on O is implemented using a 
sequence of accesses to base objects 

• Correctness ?

7



Histories

• A history is a sequence of invocation and response

P1

P2

enq(2)

enq(1) enq(0)

deq()

ok

2

ok

ok

enq1(1)enq2(2)ok1ok2enq1(0)ok1deq2()22

8



Histories

• A history is a sequence of invocation and response

P1

P2

enq(2)

enq(1) enq(0)

deq()

ok

2

ok

enq1(1)enq2(2)ok1ok2enq1(0)deq2()22

9



• A history is sequential if every invocation is 
immediately followed by a corresponding response

• A sequential history has no concurrent operations

• A sequential history is legal if it satisfies the 
sequential specification of the shared object

10



• A operation op is complete in a history H if H 
contains both the invocation and the response of op

• A completion of H is a history H’ that include all 
complete operations of H and a subset of 
incomplete operation with their matching responses

11



Histories

P1

P2

enq(2)

enq(1) enq(0)

deq()

ok

2

ok

H
0 = enq1(1)enq2(2)ok1ok2enq1(0)deq2()22ok1

12

ok



• Histories H and H’ are equivalent if for all Pi H 
restricted to Pi (        ) is equal to H’ restricted to PiH|pi

13



Linearizability (Atomicity)
• A history H is linearizable if there exists  a 

sequential legal history S such that:

• S preserves the precedence relation of H

• if op1 precede op2 in H ( i.e the response of 
op1 is before the invocation of op2 in H)  
then op1 precede op2 in S

•  S is equivalent to some completion of H

14



Histories

P1

P2

enq(2)

enq(1) enq(0)

deq()

ok

2

ok

S sequential, legal, equivalent to some completion of H
preserve precedence relation 

S = enq2(2)ok2enq1(1)ok1deq2()22enq1(0)ok1

15

ok

H = enq1(1)enq2(2)ok1ok2enq1(0)deq2()22ok1
<latexit sha1_base64="duRkyzA4iLe+f4axcIrAjpAt0uU=">AAAC/XicjVHNSsNAGBzjX61/VY9eFovQXkoSBb0IRS89VrBW0BKSdFtD0yQmG0GK+CbevIlXX8CrXsU30Lfw220KahHdkM3szDeT/XadyPcSoetvE9rk1PTMbG4uP7+wuLRcWFk9TsI0dnnDDf0wPnHshPtewBvCEz4/iWJu9x2fN53egdSblzxOvDA4ElcRb/XtbuB1PNcWRFmF3doe48GFZZSMsgJmySyzsGcZcjKHkl5mbS6lMjMtU6l5q1DUK7oabBwYGSgiG/Ww8IoztBHCRYo+OAIIwj5sJPScwoCOiLgWBsTFhDylc1wjT96UqjhV2MT2aO7S6jRjA1rLzES5XfqLT29MToZN8oRUFxOWf2NKT1WyZH/LHqhMubcr+jpZVp9YgXNi//KNKv/rk70IdLCrevCop0gxsjs3S0nVqcidsy9dCUqIiJO4TXpM2FXO0Tkz5UlU7/JsbaW/q0rJyrWb1ab4kLukCzZ+Xuc4ODYrxlbFPNwuVvezq85hHRso0X3uoIoa6mhQ9i2e8IwX7Ua70+61h2GpNpF51vBtaI+fvVqg8A==</latexit>



Histories

P1

P2

enq(2)

enq(1) deq()

deq()

ok

1ok

S ??

2

H = enq1(1)ok1deq1()enq2(2)ok221deq2()12

16



Registers
• store values : binary? multivalued?

• two operations : 

• read: one reader?many readers?

• write: one writer ? many writers?

• safety property

17



Registers 
• Safety : if operations don’t overlap every read return 

the last written value (or else the initial value)

• if operation overlap:

• safe register: any value 

• regular register last written value or concurrently read 
value 

• atomic registers: the operations can be totally ordered 
preserving legality and precedence ( linearizability)

18



• weaker one: SRSW safe boolean register

• stronger one: MRMW Atomic multivalued register

19



Register Space

20

MRMW

MRSW

SRSW

Safe
Regular

Atomic

m-valued

Boolean



• Theorem: It is possible to implement multivalued MWMR atomic 
register from SWSR safe binary register 

• From binary safe SRSW to binary safe MRSW 

• From binary safe SWMR to binary regular SWMR 

• From binary regular MRSW to multivalued  regular MRSW 

• From multivalued regular SRSW  to multivalued atomic SRSW

• From multivalued atomic SRSW to multivalued atomic MRSW 

• From multivalued atomic MRSW to multivalued atomic MRMW

21



Binary safe SRSW to binary safe MRSW

• P0 is the only writer, v is the initial value
initially  shared array R of n SWSR binary safe register init v

Code of P0
write(w){

for ( int i=0; i<n; i++) R[i].write(w);
return (ok)
}

Code for Pi
read(){

return R[i].read()
}

doesn’t work for atomic 
register 

Work also :
for multivalued  

regular 

22



SWMR binary safe to 
SWMR binary regular

• P0 is the only writer and v is the initial value
initially  shared R SWMR binary safe register init  

local to P0 lw:=v //last written value 

Code of P0 
write(w){ 

if w   lw then  
lw:=w; R.write(w) 

return (ok) 
} 

Code for all processes 
read(){ 

return R.read() 
}

6=

23



From binary regular MRSW to multivalued  regular 
MRSW

24



Representing m 
Values

25

0 1 2 3 4 5 6 7 

1 00001

Unary representation: 
bit[i] means value i

0 0



Writing m-Valued 
Register

26

1 10000

Write 5

0 1 2 3 4 5 6 7 



  RegBoolMRSWRegister[M] bit; 

  public void write(int x) { 
    bit[x].write(true); 
    for (int i=x-1; i>=0; i--)  
     bit[i].write(false); 
  } 

  public int read() { 
    for (int i=0; i < M; i++) 
      if (bit[i].read()) 
        return i; 
   }}

27



SWSR regular to SWSR 
atomic

• Where is the problem?

• regular but not linearizable

P0

P1

Write(1)

12

Write(2)

Read()Read()
Timestamp

28



SWSR regular to SWSR 
atomic

• P0 is the only writer, P1 the only reader and v is the 
initial value

initially  shared R SWMR binary safe register init 
local to P0 t:=0 //ltimestamp
local to P1 lt:=0; lw  //last timestamp, last written value

Code of P0
write(w){

t:=t+1; R.write(t, w)
return (ok)
}

Code for P1
read(){ 

(t’,w’)=R.read()
if ( lt<t’) then  (lt,lw):=( t’,w)
return lw
}

29



SWSR atomic to SWMR 
atomic

initially  shared table[n,n] SWSR atomic register
 local to P0 t:=0 //ltimestamp

local to readers lt:=0; lw  //last timestamp, last written value
Code of writer
write(w){

t:=t+1;  for (int i=0;i>n; i++) table[i,i].write(w,t) //write diagonal
return (ok)
}

Code for Preader I
read(){ 

Read the row I , take the value lw with the maximum timestamp lt
Write the column with this (lw, lt) except the diagonal
return lw
}



SWMR atomic to MWMR 
atomic

initially  shared table[n] SWMR atomic register
 local to P0 t:=0 //ltimestamp
Code of writer I
write(w){

Read table , take the maximum timestamplt in tablz
table[i]=(w,lt+1)

return (ok)
}

Code for Preader I
read(){ 

Read table, take the value lw with the maximum timestamp lt
return lw
}



• All registers are (computationally) equivalent

32


