
What Can be Observed Locally?

Round-based Models of Quantum
Distributed Computing

Cyril Gavoille
Adrian Kosowski
LaBRI - University of Bordeaux

Marcin Markiewicz
Institute of Theoretical Physics and Astrophysics
University of Gdaosk

Florence, October 2010



C. Gavoille, A. Kosowski, M. Markiewicz - Round-based models of Quantum Distributed Computing 2/41

• What does quantum mean?

• Some intuition

• Some definitions

• How does Quantum Information help?

• Quantum Computing – centralised models

• Quantum Communication Complexity

• Where does  locality come into play?

• Locality in Computer Science  vs. Locality in Physics

• Quantum extensions of Linial’s LOCAL model

• Proving lower bounds on the round complexity of problems

Outline
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A quantization of the LOCAL model:

Creating a quantum model  which:

• when restricted to classical states is precisely the LOCAL model

• captures the same principles of locality.

GOAL
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A simple experiment in a classical world…

1. The observables

• What do we assume about the structure of the data? 
Let’s say we know that the data is a pair of bits (b1,b0) Y = {00, 01, 10, 11}.

• What characteristics of the data are measurable?
Let’s say we can measure the value of bits b1 and b0 directly.

2. Measurement of the state

• What does the (randomized) algorithm in the black box produce? 
Identification: run an experiment many times independently, measuring
A = 2b1 + b0 each time, obtain a probability distribution of values…

Describing a physical system

Black 
box

Data
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• Let’s say the box flips a coin and outputs 01 or 10.    We have the state m:

m(00) = m(11) = 0, m(01) = m(10) = ½

• Observables: random variables <=> a commutative matrix algebra over 
complex numbers

Describing a physical system
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• Permissable probabilistic measures are described by linear functionals
over the defined algebra of observables

EmA = xX [A(x)*m(x)]      <=> EmA = Tr (A m)

(the trace is the sum of elements on the diagonal)
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What is a measurement?

• Recall that we were measuring an observable A in state m

Describing a physical system
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• The expected result of the measurement was given as: Tr (A m) = 1.5

• The possible outcomes are {0, 1, 2, 3} with probabilities {0, 1/2, 1/2, 0}, resp.

• The outcomes are the eigenvalues li of the matrix A… (A =  li Pi)

• The probability of obtaining outcome li is exactly Tr (Pi m)

• What changes in the quantum case?
We allow A to be any complex-valued matrix with positive (real) eigenvalues.
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The Quantum Framework

• As computer scientists, we will find the following intuition useful:

The quantum framework is a generalization of classical 
probability

• quantum algorithms are more powerful than randomized algorithms

• quantum information can be manipulated in ways in which classical 
information cannot

Introduction
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The problem with our universe…

• It is possible to perform a physical experiment in which we look at
4 characteristics of a simple system, and obtain marginal distributions for 
which there does not exist a joint distribution, in any probabilistic space.

• So called ”violation of Bell’s Theorem”, first verified by Aspect (1982).

• Quantum Mechanics has to rely on an extension of the classical framework

Why extension of probability is required?
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What properties must a quantum state fulfill?

• Must be a density matrix (positive spectrum, trace normalised to 1)

• Two examples of valid states (density matrices):

Describing a physical system

• Do m1 and m2 describe the same state? [Recall that: EmA = Tr (A m)]
Depends on what characteristics of the system are observable…

• For the classical example with diagonal observables only – same state

• For a richer class of quantum observables – these are distinct states…

• The state m2 has no good classical interpretation!
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Dirac’s bra-ket notation for pure states

Describing a physical system
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• A state m is called projective if m  y y for some row vector y

• the cross (+) denotes Hermitian transpose – transpose & conjugate

• projective states are equivalent to so-called pure states in this context

00   01             10             11

• It is often more convenient to work on such vectors y, especially when
using tensor products. A basis vector is usually written as a  |ket>:

102/1012/1]02/12/10[ y
00   01             10             11
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What is a quantum bit?

• A classical bit: 0 or 1

• A probabilistic classical bit: (p0 p1)

• A quantum bit (or qubit):

α             + β              =  α|0> + β|1>

... where α,β are complex numbers

• State of a quantum sytem ψ is denoted by   |ψ>    (bra/ket notation)

(a 1-qubit or a n-qubit register)
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• Operators on n-qubit system are represented by 2nx2n complex-valued 
matrices

• There are restrictions on the possible operators, usually: unitary matrix. 

• In particular, there is no operator M such that M.|Ψ0> = |ΨΨ>

=>   No Cloning Property

• Classical operator (NOT, AND ...) can be converted into algebraic operators
(by adding extra wires)

• Like classical n-bit operations, quantum operators can be decomposed as 
combinations (products and tensor products) of 1-qubit operators (gates)

=>    Quantum Universal Turing Machine

Quantum Operators
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Quantum circuits: the set-up

A centralised quantum computer

• Goal: transform a k-bit input vector into an n-bit output vector

• Encoding classical input the quantum way

• U – transforming the quantum information (quantum operations)

• M – performing a measurement to obtain classical output

input bits -> n wires



C. Gavoille, A. Kosowski, M. Markiewicz - Round-based models of Quantum Distributed Computing 14/41

Transforming the data: what is feasible?

A centralised quantum computer

• Any unitary matrix can be built up from single-input gates, and the two-input 
controlled-not (CNOT) gate

• Certain operations cannot be performed, e.g. ”qubit copying”.
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Transforming the data: what’s the complexity of operation U?

A centralised quantum computer

• Building up the system from elementary bricks.

• For both types of combinations, the complexity measure is subadditive:
C(U)  C(U1) + C(U2)

• Elementary gates acting on spaces of size O(1) are assumed to have 
complexity O(1).

U = U1  U2 U = U2U1
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Quantum Distributed Computing
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Why should quantum information help?

• Negative evidence: even when Alice and Bob share entanglement, they 
cannot do any magic

(E.g. no way to exchange information without sending messages)

• Negative evidence: Holevo’s theorem – the usable information content 
(entropy) of an n-qubit state is not greater than that of an n-bit string.

• so, does it make sense to send qubits at all?

• But: it turns out that
Quantum information sometimes reduces communication complexity

• One possible explanation: Information is no longer encoded at specific 
locations. The state is a global property of the system.

• First examples:

• Grover’s O(√n)-time search algorithm, 1997

• Cleve & Buhrman, 1997 – simple 3-party proof-of-concept example
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Problem definition

Example (Cleve & Buhrman, 1997)

• Three parties, Alice, Bob, and Carol, are given an n-bit input string, each
(strings a, b, c, respectively).

• It is known that for all n indices, the bits fulfill the condition: ai   bi   ci = 1

• Goal: Alice is to compute the value of  a1b1c1  a2b2c2  …  anbncn

Theorem. Any classical protocol requires communication of at least 3 bits.

Quantum solution

• We do not change the communication capabilities of the system – classical 
messages (classical bits) only.

• We allow Alice, Bob and Carol to preshare an entangled state:
1/2 ( |001> + |010 > + |100 > − |111 > )        // repeated n times

• Now, the problem can be solved using 2 communicated bits in total
(Bob sends Alice 1 bit, Carol sends Alice 1 bit.)
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Details

Example (Cleve & Buhrman, 1997)

• Each party p transforms its i-th qubit (qi)
depending on the values of the i-th input bit (xi).

• Each party other than Alice transmits its bit s to Alice.

• Alice returns sA  sB  sC as output.
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The Question of Locality
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Assumptions of the LOCAL model

The classical LOCAL model

• The distributed system consists of a set of processors V, |V|=n

• The system operates in synchronous rounds

• No faults are present

• The system input is encoded as a labeled graph:

• edge set E; G=(V,E)

• node labels x(v), for vV

• The result of computations is given through local variables y(v), for vV

• Messages exchanged in each round may have unbounded size

• The computational capabilities of each node are unbounded

• As a rule, we will assume that nodes have unique identifiers
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Quantum extensions

Extending the LOCAL model

• System initialization (before the input is set)

• by default:  all the processors have an identical starting state

• +S: the algorithm may predefine any global separable (=classical) state as 
a starting state of the system

• +E: the algorithm may predefine any global entangled (=quantum) state as 
a starting state of the system

• Communication capabilities

• by default: the processors communicate by exchanging classical
messages (bits)

• +Q: in each round, the processors can communicate by exchanging 
quantum information (qubits)
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How much does the +E extension help?

The LOCAL+E model

• +E: Entangled initial state

• allows us to take full advantage of quantum capabilities of the system

• Proof-of-concept "Mod 4" problem showing that +E does help:
Variant of famous Greenberger-Horne-Zeilinger (GHZ) experiment

• V consists of 3 nodes {v1, v2, v3}, whereas E is empty

• Each node has an input label xi{0,1} provided (x1 + x2 + x3)  {0,2} 

• Goal: output labels yi{0,1} must be such that:

2(y1 + y2 + y3) ≡ (x1 + x2 + x3) mod 4

• cannot be solved with Pr > ¾ in (classical) LOCAL+S model, in any time

• can be solved deterministically in 0 rounds with the +E extension
(pre-shared GHZ state |000>+|111>)
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Mod 4 problem – a conceptual look

The LOCAL+E model

V1

V2

V3
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Mod 4 problem – a conceptual look

The LOCAL+E model

V1

V2

V3
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Mod 4 problem – a conceptual look

The LOCAL+E model

V1
x1=1

V2

V3
x3=1

x2=0
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Mod 4 problem – a conceptual look

The LOCAL+E model

V1
x1=1

V2

V3
x3=1

x2=0

y1=1

y2=0

y3=0
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Mod 4 problem – a conceptual look

The LOCAL+E model
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The LOCALE model

2(y1 + y2 + y3) ≡ (x1 + x2 + x3) mod 4

Outcome of a quantum algorithm for the "Mod 4" problem
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A comparison of the computational power of quantum models

LOCAL models

The quantum models are more powerful than the classical ones.

Do they have any natural limits (lower time bounds)? 
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A comparison of the computational power of quantum models

... the -LOCAL model

The quantum models are more powerful than the classical ones.

Do they have any natural limits (lower time bounds)? 
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Understanding of locality in the LOCAL model

The meaning of locality

• each node builds up its view during the execution of the algorithm

• after t rounds, VIEWt(Gx, v) describes the
distance-t neighbourhood of v in the labeled input graph Gx

• when considering deterministic algorithms, an output vector y can be 
reached in t rounds if and only if there exists a function f such that:

y(v) = f ( VIEWt(Gx, v) ), for all v V

• this intuition can be extended to allow for randomized algorithms.

• no similar complete characterization is known for quantum approaches

• doing it precisely would give a nice result on the capabilities of 
quantum operations (completely positive maps)

• However: we know of a weaker, but still view-based, bound on the 
computational power of any quantum algorithm.
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Physical locality: the -LOCAL model

The meaning of locality

• Thesis. Locality is violated if and only if, based on the available output data,
we can conclusively verify that after t rounds:
some subset S of processors was affected by input data initially localized 

outside its view, which is VIEWt(Gx, S) := Uv∈S VIEWt(Gx, v).

• The preservation of locality should be interpreted in a probabilistic way:

• consider the outcome of an algorithm after t rounds; for the subset S, 
we look at the probability p of obtaining any given output vector y[S]

• if two inputs differ only by edges/label located outside VIEWt(Gx(i), S), 
then this probability p must necessarily be the same for both inputs

• (otherwise, we would be able to detect this remote difference in the 
input by performing many parallel executions of our algorithm)

• -LOCAL is provably  not less powerful than the quantum models
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Example: why is the "Mod 4" problem in -LOCAL?

The meaning of locality

• we consider the above solution (obtained by the quantum algorithm),
and one by one all possible sets S.

• for example, let S={v1}; since the graph is empty, VIEWt(Gx, S) = {v1}

• what are the probabilities of particular outputs?

• in this case, regardless of Gx: Pr[y1=0] = ½ and Pr[y1=1] = ½

• so, these probabilities are not affected by the values of x2, x3, 
and the -LOCAL condition is not violated.
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So, what lower bounds can be proved in -LOCAL?

Lower time bounds in quantum models

• Most proofs of lower time bounds which rely on view-based arguments will 
hold in -LOCAL (and hence also all the quantum models)

• The problem of finding a maximal independent set in the system graph 
requires W((log n / log log n) ) rounds to solve
[Kuhn, Moscibroda, Wattenhofer, 2004]

• The problem of finding a locally minimal (greedy) coloring of the system 
graph requires W( log n / log log n) rounds to solve
[G., Klasing, K., Navarra, Kuszner, 2009]

• The problem of finding a spanner with O(n1+1/k) edges requires W(k)
rounds to solve  [Elkin 2007; Derbel et al. 2008]

• What about Linial’s famous W(log* n) bound on (D+1)-coloring?

• The neighbourhood-graph technique does not work in -LOCAL …
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Example: time required to 2-color the even ring

Lower time bounds in quantum models

• In the LOCAL model, n/2 – 1 rounds are required and sufficient

• simpler version of the same neighbourhood graph technique

• In -LOCAL,  n-2 / 4 rounds are required and sufficient

• Sketch of lower bound

• let t < n-2 / 4,    there will be at least two nodes u and v of the ring whose 
views are still disjoint

• let S = {u,v}; 

• the color values of u and v are necessarily the same if these vertices are at 
an even distance, and odd otherwise

• there exist corresponding input graphs Gx(1)  and Gx(2) with odd and 
even distance between u and v, respectively

• but the difference cannot be detected based on the local views of u and v.
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Is it possible to design a real quantum routine for 2-coloring C6 in 1 round? 

in the LOCAL model, 2 rounds are required and sufficient 

in the -LOCAL model, 1 round is required and sufficient

Lower time bounds in quantum models
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Some open problems:

Lower time bounds in quantum models

• Can quantum distributed algorithms be designed for any combinatorial 
problems of significance to practice or theory?

• How many rounds are required to 3-color the ring in the studied quantum 
models and in -LOCAL?

• What is the lower time bound on the (D+1)-coloring problem in quantum 
models? (currently all we know is that we need at least one round…)

• Is it possible to design a real quantum routine for 2-coloring C6 in 1 round? 
(in the -LOCAL model 1 round is required and sufficient)

• Does LOCALE = -LOCAL?
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Thank You!


