What Can be Observed Locally?

Round-based Models of Quantum Distributed Computing

Cyril Gavoille Adrian Kosowski

LaBRI - University of Bordeaux

Marcin Markiewicz

Institute of Theoretical Physics and Astrophysics University of Gdańsk

Florence, October 2010

Outline

- What does *quantum* mean?
 - Some intuition
 - Some definitions
- How does Quantum Information help?
 - Quantum Computing centralised models
 - Quantum Communication Complexity
- Where does *locality* come into play?
 - Locality in Computer Science vs. Locality in Physics
 - Quantum extensions of Linial's LOCAL model
 - Proving lower bounds on the round complexity of problems

A quantization of the *LOCAL* model:

Creating a quantum model which:

- when restricted to classical states is precisely the LOCAL model
- captures the same principles of locality.

A simple experiment in a classical world...

1. The observables

- What do we assume about the structure of the data? Let's say we know that the data is a pair of bits $(b_1, b_0) \in Y = \{00, 01, 10, 11\}$.
- What characteristics of the data are measurable?
 Let's say we can measure the value of bits b₁ and b₀ directly.

2. Measurement of the state

• What does the (randomized) algorithm in the black box produce? Identification: run an experiment many times independently, measuring $A = 2b_1 + b_0$ each time, obtain a probability distribution of values...

- Let's say the box flips a coin and outputs <u>01</u> or <u>10</u>. We have the state μ : $\mu(\underline{00}) = \mu(\underline{11}) = 0$, $\mu(\underline{01}) = \mu(\underline{10}) = \frac{1}{2}$
- Observables: random variables <=> a commutative matrix algebra over complex numbers

 Permissable probabilistic measures are described by linear functionals over the defined algebra of observables
 00
 01
 10
 11

$$\mathbf{E}_{\mu} \mathbf{A} = \sum_{x \in \Xi} \left[\mathbf{A}(x)^* \mu(x) \right] \quad <=> \quad \mathbf{E}_{\mu} \mathbf{A} = \mathrm{Tr} \left(\mathbf{A} \ \mu \right)$$

(the trace is the sum of elements on the diagonal)

1/2

 $\mu = |$

What is a measurement?

• Recall that we were measuring an observable **A** in state μ

- The expected result of the measurement was given as: Tr (A μ) = 1.5
- The possible outcomes are {0, 1, 2, 3} with probabilities {0, 1/2, 1/2, 0}, resp.
 - The outcomes are the eigenvalues λ_i of the matrix **A**... (**A** = $\sum \lambda_i \mathbf{P}_i$)
 - The probability of obtaining outcome λ_i is exactly Tr (**P**_i μ)
- What changes in the quantum case?
 We allow A to be any complex-valued matrix with positive (real) eigenvalues.

Introduction

The Quantum Framework

• As computer scientists, we will find the following intuition useful:

The quantum framework is a generalization of classical probability

- quantum algorithms are more powerful than randomized algorithms
- quantum information can be manipulated in ways in which classical information cannot

Why extension of probability is required?

The problem with our universe...

- It is possible to perform a physical experiment in which we look at 4 characteristics of a simple system, and obtain marginal distributions for which there does not exist a joint distribution, in *any* probabilistic space.
 - So called "violation of Bell's Theorem", first verified by Aspect (1982).
- Quantum Mechanics has to rely on an extension of the classical framework

What properties must a quantum state fulfill?

- Must be a density matrix (positive spectrum, trace normalised to 1)
- Two examples of valid states (density matrices):

$$\boldsymbol{\mu}_{1} = \begin{bmatrix} 0 & 0 & 01 & 10 & 11 \\ 0 & 0 & 0 \\ 1/2 & 0 \\ 0 & 0 \end{bmatrix} \qquad \qquad \boldsymbol{\mu}_{2} = \begin{bmatrix} 0 & 0 & 01 & 10 & 11 \\ 1/2 & 1/2 & 0 \\ 0 & 0 \end{bmatrix}$$

- Do μ_1 and μ_2 describe the same state? [Recall that: $E_{\mu}A = Tr (A \mu)$] Depends on what characteristics of the system are observable...
 - For the classical example with diagonal observables only same state
 - For a richer class of quantum observables these are distinct states...
 - The state μ_2 has no good classical interpretation!

Dirac's bra-ket notation for pure states

- A state μ is called projective if $\mu = \psi^+ \psi$ for some row vector ψ
 - the cross (+) denotes Hermitian transpose transpose & conjugate
 - projective states are equivalent to so-called pure states in this context

$$\boldsymbol{\mu}_{2} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}$$

• It is often more convenient to work on such vectors ψ , especially when using tensor products. A basis vector is usually written as a |ket>:

$$\psi = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} = -\frac{1}{\sqrt{2}} \quad \begin{vmatrix} 0 & 1 \\ 0 & 1/\sqrt{2} & 0 \end{vmatrix} = -\frac{1}{\sqrt{2}} \quad \begin{vmatrix} 0 & 1 \\ 0 & 1/\sqrt{2} & 0 \end{vmatrix}$$

What is a quantum bit?

- A classical bit: 0 or 1
- A probabilistic classical bit: (p₀ p₁)
- A quantum bit (or qubit):

$$\alpha \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

... where α , β are complex numbers

State of a quantum sytem ψ is denoted by |ψ> (bra/ket notation)
 (a 1-qubit or a *n*-qubit register)

Quantum Operators

- Operators on *n*-qubit system are represented by 2ⁿx2ⁿ complex-valued matrices
- There are restrictions on the possible operators, usually: **unitary matrix**.
- In particular, there is no operator M such that M. $|\Psi 0\rangle = |\Psi \Psi\rangle$

=> No Cloning Property

- Classical operator (NOT, AND ...) can be converted into algebraic operators (by adding extra wires)
- Like classical *n*-bit operations, quantum operators can be decomposed as combinations (products and tensor products) of 1-qubit operators (gates)
 - => Quantum Universal Turing Machine

A centralised quantum computer

Quantum circuits: the set-up

• Goal: transform a *k*-bit input vector into an *n*-bit output vector

- Encoding classical input the quantum way
- **U** transforming the quantum information (quantum operations)
- **M** performing a measurement to obtain classical output

A centralised quantum computer

Transforming the data: what is feasible?

• Any unitary matrix can be built up from single-input gates, and the two-input controlled-not (CNOT) gate

• Certain operations cannot be performed, e.g. "qubit copying".

A centralised quantum computer

Transforming the data: what's the complexity of operation U?

• Building up the system from elementary bricks.

- For both types of combinations, the complexity measure is subadditive: $C(U) \le C(U_1) + C(U_2)$
- Elementary gates acting on spaces of size O(1) are assumed to have complexity O(1).

Quantum Distributed Computing

Why should quantum information help?

- **Negative evidence**: even when Alice and Bob share entanglement, they cannot do any magic
 - (E.g. no way to exchange information without sending messages)
- Negative evidence: Holevo's theorem the usable information content (entropy) of an *n*-qubit state is not greater than that of an *n*-bit string.
 - so, does it make sense to send qubits at all?
- But: it turns out that
 Quantum information sometimes reduces communication complexity
 - One possible explanation: Information is no longer encoded at specific locations. *The state is a global property of the system*.
- First examples:
 - Grover's $O(\sqrt{n})$ -time search algorithm, 1997
 - Cleve & Buhrman, 1997 simple 3-party proof-of-concept example

Example (Cleve & Buhrman, 1997)

Problem definition

- Three parties, Alice, Bob, and Carol, are given an *n*-bit input string, each (strings *a*, *b*, *c*, respectively).
- It is known that for all *n* indices, the bits fulfill the condition: $a_i \oplus b_i \oplus c_i = 1$
- Goal: Alice is to compute the value of $a_1b_1c_1 \oplus a_2b_2c_2 \oplus ... \oplus a_nb_nc_n$

Theorem. Any classical protocol requires communication of at least 3 bits.

Quantum solution

- We do not change the communication capabilities of the system classical messages (classical bits) only.
- We allow Alice, Bob and Carol to preshare an *entangled* state:
 1/2 (|001> + |010> + |100> |111>) // repeated n times
- Now, the problem can be solved using 2 communicated bits in total (Bob sends Alice 1 bit, Carol sends Alice 1 bit.)

Example (Cleve & Buhrman, 1997)

Details

 Each party p transforms its *i*-th qubit (q_i) depending on the values of the *i*-th input bit (x_i).

for each
$$i \in \{1, ..., n\}$$
 do
if $x_i^p = 0$ then apply H to q_i^p
measure q_i^p yielding bit s_i^p
 $s^p \leftarrow s_1^p + \cdots + s_n^p$

- Each party other than Alice transmits its bit *s* to Alice.
- Alice returns $s^A \oplus s^B \oplus s^C$ as output.

The Question of Locality

The classical LOCAL model

Assumptions of the LOCAL model

- The distributed system consists of a set of processors V, |V|=n
- The system operates in synchronous rounds
- No faults are present
- The system input is encoded as a *labeled* graph:
 - edge set *E*; G=(*V*,*E*)
 - node labels x(v), for $v \in V$
- The result of computations is given through local variables y(v), for $v \in V$
- Messages exchanged in each round may have unbounded size
- The computational capabilities of each node are unbounded
- As a rule, we will assume that nodes have unique identifiers

Extending the LOCAL model

Quantum extensions

- **System initialization** (before the input is set)
 - by default: all the processors have an identical starting state
 - +S: the algorithm may predefine any global separable (=classical) state as a starting state of the system
 - +E: the algorithm may predefine any global entangled (=quantum) state as a starting state of the system
- Communication capabilities
 - by default: the processors communicate by exchanging classical messages (bits)
 - +Q: in each round, the processors can communicate by exchanging quantum information (qubits)

How much does the +E extension help?

- +E: Entangled initial state
 - allows us to take full advantage of quantum capabilities of the system
- Proof-of-concept "Mod 4" problem showing that +E does help: Variant of famous Greenberger-Horne-Zeilinger (GHZ) experiment
 - V consists of 3 nodes $\{v_1, v_2, v_3\}$, whereas E is empty
 - Each node has an input label $x_i \in \{0,1\}$ provided $(x_1 + x_2 + x_3) \in \{0,2\}$
 - **Goal**: output labels $y_i \in \{0,1\}$ must be such that:

$$2(y_1 + y_2 + y_3) \equiv (x_1 + x_2 + x_3) \mod 4$$

- cannot be solved with Pr > ³/₄ in (classical) LOCAL+S model, in any time
- can be solved deterministically in 0 rounds with the +E extension (pre-shared GHZ state |000>+|111>)

$$v_1 x_1 = 1$$
 $y_1 = 1$

$$x_3 = 1$$
 $y_3 = 0$

The $\Lambda OXA\Lambda + E$ model

Outcome of a quantum algorithm for the "Mod 4" problem

Input (x_1, x_2, x_3)	Probability p^i	Output (y_1^i, y_2^i, y_3^i)	Input (x_1, x_2, x_3)	Probability p^i	Output (y_1^i, y_2^i, y_3^i)
(0, 0, 0)	$ \begin{array}{c c} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{array} $	(0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0)	(0, 1, 1) or (1, 0, 1) or (1, 1, 0)	$ \begin{array}{c c} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{array} $	(1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)

 $2(y_1 + y_2 + y_3) \equiv (x_1 + x_2 + x_3) \mod 4$

$\Lambda OXA\Lambda$ models

A comparison of the computational power of quantum models

The quantum models are more powerful than the classical ones. **Do they have any natural limits (lower time bounds)?**

... the ϕ - Λ OXA Λ model

A comparison of the computational power of quantum models

The quantum models are more powerful than the classical ones. **Do they have any natural limits (lower time bounds)?**

The meaning of locality

Understanding of locality in the LOCAL model

- each node builds up its view during the execution of the algorithm
 - after t rounds, VIEW_t(Gx, v) describes the distance-t neighbourhood of v in the labeled input graph Gx
- when considering deterministic algorithms, an output vector **y** can be reached in *t* rounds if and only if there exists a function *f* such that:

 $y(v) = f(VIEW_t(Gx, v)), \quad \text{for all } v \in V$

- this intuition can be extended to allow for randomized algorithms.
- no similar complete characterization is known for quantum approaches
 - doing it precisely would give a nice result on the capabilities of quantum operations (completely positive maps)
- **However**: we know of a weaker, but still view-based, bound on the computational power of any quantum algorithm.

The meaning of locality

Physical locality: the φ -LOCAL model

- Thesis. Locality is violated if and only if, based on the available output data, we can conclusively verify that after *t* rounds: some subset *S* of processors was affected by input data initially localized outside its view, which is VIEW_t(Gx, S) := U_{v∈S} VIEW_t(Gx, v).
- The preservation of locality should be interpreted in a probabilistic way:
 - consider the outcome of an algorithm after t rounds; for the subset S, we look at the probability p of obtaining any given output vector y[S]
 - if two inputs differ only by edges/label located outside VIEW_t(Gx⁽ⁱ⁾, S), then this probability p must necessarily be the same for both inputs
 - (otherwise, we would be able to detect this remote difference in the input by performing many parallel executions of our algorithm)
- φ-LOCAL is provably not less powerful than the quantum models

The meaning of locality

Example: why is the "Mod 4" problem in φ -LOCAL?

$Input (x_1, x_2, x_3)$	$\begin{array}{ c } \text{Probability} \\ p^i \end{array}$	$\begin{array}{c} \text{Output} \\ (y_1^i, y_2^i, y_3^i) \end{array}$	$Input (x_1, x_2, x_3)$	$\begin{array}{c c} \text{Probability} \\ p^i \end{array}$	$\begin{array}{c} \text{Output} \\ (y_1^i, y_2^i, y_3^i) \end{array}$
(0, 0, 0)	$ \begin{array}{c c} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{array} $	$egin{array}{llllllllllllllllllllllllllllllllllll$	(0, 1, 1) or $(1, 0, 1)$ or $(1, 1, 0)$	$1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4$	(1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)

- we consider the above solution (obtained by the quantum algorithm), and one by one all possible sets *S*.
 - for example, let $S = \{v_1\}$; since the graph is empty, $VIEW_t(Gx, S) = \{v_1\}$
 - what are the probabilities of particular outputs?
 - in this case, regardless of Gx: $Pr[y_1=0] = \frac{1}{2}$ and $Pr[y_1=1] = \frac{1}{2}$
 - so, these probabilities are not affected by the values of x_2 , x_3 , and the φ -LOCAL condition is not violated.

So, what lower bounds can be proved in φ -LOCAL?

- Most proofs of lower time bounds which rely on view-based arguments will hold in φ -LOCAL (and hence also all the quantum models)
 - The problem of finding a maximal independent set in the system graph requires Ω(√(log n / log log n)) rounds to solve [Kuhn, Moscibroda, Wattenhofer, 2004]
 - The problem of finding a locally minimal (greedy) coloring of the system graph requires Ω(log n / log log n) rounds to solve [G., Klasing, K., Navarra, Kuszner, 2009]
 - The problem of finding a spanner with O(n^{1+1/k}) edges requires Ω(k) rounds to solve [Elkin 2007; Derbel et al. 2008]
- What about Linial's famous $\Omega(\log^* n)$ bound on (Δ +1)-coloring?
 - The neighbourhood-graph technique does not work in $\phi\text{-}\Lambda\text{OCAL}$...

Example: time required to 2-color the even ring

- In the LOCAL model, n/2 1 rounds are required and sufficient
 - simpler version of the same neighbourhood graph technique
- In φ -LOCAL, [n-2]/4 rounds are required and sufficient
- Sketch of lower bound
 - let t < [n-2] / 4, there will be at least two nodes u and v of the ring whose views are still disjoint
 - let $S = \{u, v\};$
 - the color values of *u* and *v* are necessarily the same if these vertices are at an even distance, and odd otherwise
 - there exist corresponding input graphs Gx⁽¹⁾ and Gx⁽²⁾ with odd and even distance between *u* and *v*, respectively
 - but the difference cannot be detected based on the local views of *u* and *v*.

Is it possible to design a real quantum routine for 2-coloring C_6 in 1 round?

in the LOCAL model, 2 rounds are required and sufficient 632 125 612 **4**35 in the φ -LOCAL model, 1 round is required and sufficient

C. Gavoille, A. Kosowski, M. Markiewicz - Round-based models of Quantum Distributed Computing

Some open problems:

- Can quantum distributed algorithms be designed for any combinatorial problems of significance to practice or theory?
- How many rounds are required to 3-color the ring in the studied quantum models and in φ -LOCAL?
- What is the lower time bound on the $(\Delta+1)$ -coloring problem in quantum models? (currently all we know is that we need at least one round...)
- Is it possible to design a real quantum routine for 2-coloring C_6 in 1 round? (in the φ -LOCAL model 1 round is required and sufficient)
- Does LOCAL+E = φ -LOCAL?

Thank You!