Reducing Linearizability to Classic Verification Problems
Checking Lin. using “bad patterns”

• Reduce linearizability checking to reachability (EXPSPACE-complete):
 • Define (sequential) data-structure S using inductive rules
 • S is data independent and closed under projection
 • Characterize sequential executions of S using bad patterns
 • Characterize concurrent executions, linearizable w.r.t. S using bad patterns (one per rule)
 • Define a regular automaton A_i for each bad pattern
 • Reduce “L is linearizable w.r.t. S” to: for all i, $L \cap A_i = \emptyset$
Histories = Posets of events

Thread 1
- push(1)
- pop ⇒ 2

Thread 2
- pop ⇒ 1
- push(2)
- push(3)
- pop ⇒ 3

happens-before partial order
Concurrent Queues

Value v dequeued without being enqueued
\[
\text{deq} \Rightarrow v
\]

Value v dequeued before being enqueued
\[
\text{deq} \Rightarrow v \quad \text{enq}(v)
\]

Value v dequeued twice
\[
\text{deq} \Rightarrow v \quad \text{deq} \Rightarrow v
\]

Value \(v_1\) and \(v_2\) dequeued in the wrong order
\[
\text{enq}(v_1) \quad \text{enq}(v_2) \quad \text{deq} \Rightarrow v_2 \quad \text{deq} \Rightarrow v_1
\]

Dequeue wrongfully returns empty
\[
\text{deq} \Rightarrow \text{empty}
\]

\[
\text{enq}(v_1) \quad \text{deq} \Rightarrow v_1
\]

\[
\text{enq}(v_2) \quad \text{deq} \Rightarrow v_2
\]

\[
\text{enq}(v_n) \quad \text{deq} \Rightarrow v_{n-1}
\]

\[
\text{deq} \Rightarrow v_n
\]
Concurrent Stacks

Value v popped without being pushed
Value v popped twice
Value v popped before being pushed
Pop wrongfully returns empty

Pop doesn’t return the top of the stack

push(v) \rightarrow pop \Rightarrow v

push(v_1) \rightarrow pop \Rightarrow v_1

push(v_2) \rightarrow pop \Rightarrow v_2

\ldots \ldots \ldots

push(v_{n-1}) \rightarrow pop \Rightarrow v_{n-1}

push(v_n) \rightarrow pop \Rightarrow v_n
Checking Lin. using “bad patterns”

- Reduce linearizability checking to reachability (EXPSPACE-complete):
 - Define (sequential) data-structure S using inductive rules

- S is data independent and closed under projection

- Characterize sequential executions of S using bad patterns

- Characterize concurrent executions, linearizable w.r.t. S using bad patterns (one per rule)

- Define a regular automaton A_i for each bad pattern

- Reduce “L is linearizable w.r.t. S” to: for all i, $L \cap A_i = \emptyset$
Inductive definition of the Register

\[R_{wr} : \ u \in R \implies Write_x \cdot (Read_x)^* \cdot u \in R \]
- including the empty sequence

Examples
Inductive definition of the Queue

Two rules to build the sequences belonging to the Queue such as

\[Enq_4 Enq_3 Deq_4 Deq_3 EMP Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

- \(R_{Enq} : \quad u \in Q \land u \in Enq^* \Rightarrow u \cdot Enq_x \in Q \)
- \(R_{EnqDeq} : \quad u \cdot v \in Q \land u \in Enq^* \Rightarrow Enq_x \cdot u \cdot Deq_x \cdot v \in Q \)
- \(R_{EMP} : \quad u \cdot v \in Q \land \text{no unmatched Enq in } u \Rightarrow u \cdot EMP \cdot v \in Q \)

Derivation:

\[\epsilon \in Q \]
\[\rightarrow \quad Enq_1 Deq_1 \in Q \]
\[\rightarrow \quad Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
\[\rightarrow \quad Enq_3 Deq_3 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
\[\rightarrow \quad Enq_4 Enq_3 Deq_4 Deq_3 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
\[\rightarrow \quad Enq_4 Enq_3 Deq_4 Deq_3 EMP Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
Inductive definition of the Stack

\[R_{PushPop} : u \cdot v \in S \land \text{no unmatched } Push \text{ in } u, v \Rightarrow Push_x \cdot u \cdot Pop_x \cdot v \in S \]

\[R_{Push} : u \cdot v \in S \land \text{no unmatched } Push \text{ in } u \Rightarrow u \cdot Push_x \cdot v \in S \]

\[R_{EMP} : u \cdot v \in S \land \text{no unmatched } Push \text{ in } u \Rightarrow u \cdot EMP \cdot v \in S \]

Derivation for \(Push_1 Push_2 Pop_2 Pop_1 EMP Push_3 Pop_3 \in S \)

\[\epsilon \in S \]
\[\rightarrow \text{ Push}_3 \text{ Pop}_3 \in S \]
\[\rightarrow \text{ Push}_2 \text{ Pop}_2 \text{ Push}_3 \text{ Pop}_3 \in S \]
\[\rightarrow \text{ Push}_1 \text{ Push}_2 \text{ Pop}_2 \text{ Pop}_1 \text{ Push}_3 \text{ Pop}_3 \in S \]
\[\rightarrow \text{ Push}_1 \text{ Push}_2 \text{ Pop}_2 \text{ Pop}_1 \text{ EMP } \text{ Push}_3 \text{ Pop}_3 \in S \]
Data Independence

• Input methods = methods taking an argument
• A sequential execution u is called *differentiated* if for all input methods m and every x, u contains at most one invocation $m(x)$

S_\neq is the set of differentiated executions in S

A *renaming* r is a function from \mathbb{D} to \mathbb{D}. Given a sequential execution (resp., execution or history) u, we denote by $r(u)$ the sequential execution (resp., execution or history) obtained from u by replacing every data value x by $r(x)$.

Definition 6. The set of sequential executions (resp., executions or histories) S is data independent if:

- for all $u \in S$, there exists $u' \in S_\neq$, and a renaming r such that $u = r(u')$,
- for all $u \in S$ and for all renaming r, $r(u) \in S$.

Theorem: A data-independent implementation I is linearizable w.r.t. a data-independent specification S iff I_\neq is linearizable w.r.t. S_\neq
Closure under projection

Projection: Subsequence consistent with the values

If

\[Enq_4 Enq_3 Deq_4 Deq_3 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

Then

\[Enq_4 Deq_4 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

Lemma

Any **data structure** defined in our framework is **closed under projection**

Proof.

The **predicates** used (\(u \in Enq^* \) and “no unmatched \(Enq \) in \(u \)”) are closed under projection
Characterization of sequential executions

We assume that the rules defining a data-structure are well-formed, that is:

- for all \(u \in [S] \), there exists a unique rule, denoted by \(\text{last}(u) \), that can be used as the last step to derive \(u \), i.e., for every sequence of rules \(R_{i_1}, \ldots, R_{i_n} \) leading to \(u \), \(R_{i_n} = \text{last}(u) \). For \(u \notin [S] \), \(\text{last}(u) \) is also defined but can be arbitrary, as there is no derivation for \(u \).

- if \(\text{last}(u) = R_i \), then for every permutation \(u' \in [S] \) of a projection of \(u \), \(\text{last}(u') = R_j \) with \(j \leq i \). If \(u' \) is a permutation of \(u \), then \(\text{last}(u') = R_i \).

Example 6. For Queue, we define \(\text{last} \) for a sequential execution \(u \) as follows:

- if \(u \) contains a DeqEmpty operation, \(\text{last}(u) = R_{\text{DeqEmpty}} \),
- else if \(u \) contains a Deq operation, \(\text{last}(u) = R_{\text{EnqDeq}} \),
- else if \(u \) contains only Enq’s, \(\text{last}(u) = R_{\text{Enq}} \),
- else (if \(u \) is empty), \(\text{last}(u) = R_0 \).

Since the conditions we use to define \(\text{last} \) are closed under permutations, we get that for any permutation \(u_2 \) of \(u \), \(\text{last}(u) = \text{last}(u_2) \), and \(\text{last} \) can be extended to histories. Therefore, the rules \(R_0, R_{\text{EnqDeq}}, R_{\text{DeqEmpty}} \) are well-formed.
Characterization of sequential executions

- \(\text{MS}(R) = \) the set of sequences “matching” a rule \(R \)

Lemma 3. Let \(S = R_1, \ldots, R_n \) be a data-structure and \(u \) be a differentiated sequential execution. Then,

\[
 u \in S \iff \text{proj}(u) \subseteq \bigcup_{i \in \{1, \ldots, n\}} \text{MS}(R_i)
\]

Lemma (Characterization of Queue Sequential Executions)

\(w \in Q \) iff every projection \(w' \) of \(w \) is either of the form

- \(\text{Enq}_x \cdot u \cdot \text{Deq}_x \cdot v \) (with \(u \in \text{Enq}^* \)) or
- \(u \cdot \text{EMP} \cdot v \) (with no unmatched \(\text{Enq} \) in \(u \))
Characterization of concurrent executions

Definition 7. A data-structure \(S = R_1, \ldots, R_n \) is said to be step-by-step linearizable if for any differentiated execution \(e \), any \(i \in \{1, \ldots, n\} \) and \(x \in \mathbb{D} \), if \(e \) is linearizable with respect to \(\text{MS}(R_i) \) with witness \(x \), we have:

\[
e \setminus x \subseteq [R_1, \ldots, R_i] \implies e \subseteq [R_1, \ldots, R_i]
\]

- the history linearizable \(\text{MS}(R_{\text{EnqDeq}}) \) with witness \(d_1 \)
 - \(\text{Enq}(d_1) \) is minimal among all operations and \(\text{Deq}(d_1) \) minimal among all dequeue

- Excluding the operations on \(d_1 \), the history is linearizable w.r.t. \([R_{\text{Enq}}, R_{\text{EnqDeq}}] \), i.e., \(\text{Enq}(d_2) \) \(\text{Enq}(d_3) \) \(\text{Deq}(d_2) \) \(\text{Deq}(d_3) \)

- The notion of step-by-step linearizable ensures that the history is linearizable w.r.t. Queue
Step-by-Step Lin. of Register

Lemma 9. Register is step-by-step linearizable.

Proof. Let h be a differentiated history, and u a sequential execution such that $h \subseteq u$ and such that u matches the rule R_{WR} with witness x. Let a and b_1, \ldots, b_s be respectively the Write and Read’s operations of h corresponding to the witness.

Let $h' = h \setminus x$ and assume $h' \subseteq [R_0,R_{WR}]$. Let $u' \in [R_0,R_{WR}]$ such that $h' \subseteq u'$. Let $u_2 = a \cdot b_1 \cdot b_2 \cdots b_s \cdot u'$. By using rule R_{WR} on u', we have $u_2 \in [R_0,R_{WR}]$. Moreover, we prove that $h \subseteq u_2$ by contradiction. Assume that the total order imposed by u_2 doesn’t respect the happens-before relation of h. All three cases are not possible:

- the violation is between two u' operations, contradicting $h' \subseteq u'$,
- the violation is between a and another operation, i.e. there is an operation o which happens before a in h, contradicting $h \subseteq u$,
- the violation is between some b_i and a u' operation, i.e. there is an operation o which happens before b_i in h, contradicting $h \subseteq u$.

Thus, we have $h \subseteq u_2$ and $h \subseteq [R_0,R_{WR}]$, which ends the proof. □
Characterization of concurrent executions

Lemma 4. Let \(S \) be a data-structure with rules \(R_1, \ldots, R_n \). Let \(e \) be a differentiated execution. If \(S \) is step-by-step linearizable, we have (for any \(j \)):

\[
e \subseteq [R_1, \ldots, R_j] \iff \text{proj}(e) \subseteq \bigcup_{i \leq j} \text{MS}(R_i)
\]

Proof \((\iff)\) By induction on the size of \(e \). We know \(e \in \text{proj}(e) \) so it can be linearized with respect to a sequential execution \(u \) matching some rule \(R_k \) \((k \leq j)\) with some witness \(x \). Let \(e' = e \setminus x \).

Since \(S \) is well-formed, we know that no projection of \(e \) can be linearized to a matching set \(\text{MS}(R_i) \) with \(i > k \), and in particular no projection of \(e' \). Thus, we deduce that \(\text{proj}(e') \subseteq \bigcup_{i \leq k} \text{MS}(R_i) \), and conclude by induction that \(e' \subseteq [R_1, \ldots, R_k] \).

We finally use the fact that \(S \) is step-by-step linearizable to deduce that \(e \subseteq [R_1, \ldots, R_k] \) and \(e \subseteq [R_1, \ldots, R_j] \) because \(k \leq j \).

Lemma

\(E \) is linearizable to \(Q \) iff every projection \(E' \) of \(E \) is linearizable to the form \(\text{Enq}_x \cdot u \cdot \text{Deq}_x \cdot \nu \) (with \(u \in \text{Enq}^* \)) or to the form \(u \cdot \text{EMP} \cdot \nu \) (with no unmatched \(\text{Enq} \) in \(u \)).
Characterization of concurrent executions

Lemma 5. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have:

$$e \in S \iff \forall e' \in \text{proj}(e). e' \in \text{MS}(R) \text{ where } R = \text{last}(e')$$

$$e \notin S \iff \exists e' \in \text{proj}(e). e' \notin \text{MS}(R) \text{ (where } R = \text{last}(e'))$$

E is non-linearizable wrt Queue iff it has a projection E' of the form bad pattern 1, or bad pattern 2.

Bad Pattern 1 (rule R_{EnqDeq}):

- $\text{Enq}_1 \prec \text{Enq}_2$
- $\text{Deq}_2 \prec \text{Deq}_1$

or Deq_1 before Enq_1
Characterization of concurrent executions

Lemma 5. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have:

$$e \in S \iff \forall e' \in \text{proj}(e). e' \in \text{MS}(R) \text{ where } R = \text{last}(e')$$

$$e \notin S \iff \exists e' \in \text{proj}(e). e' \notin \text{MS}(R) \text{ (where } R = \text{last}(e'))$$

E is non-linearizable wrt Queue iff it has a projection E' of the form bad pattern 1, or bad pattern 2.

Bad Pattern 2: (rule R_{EMP})

```
  Enq₁  EMP  Deq₁
  /     /     /
Enq₁  Enq₁  Deq₁
    /      /
  Enq₁  Deq₁
```
Characterization of concurrent executions

- define for each R, a finite state automaton A which recognizes (a subset of) the executions e which have a projection not linearizable w.r.t. MS(R)

Definition 8. A rule R is said to be co-regular if we can build an automaton A such that, for any data-independent implementation I, we have:

\[\mathcal{I} \cap A \neq \emptyset \iff \exists e \in \mathcal{I}_+, e' \in \text{proj}(e). \text{last}(e') = R \land e' \notin \text{MS}(R) \]

\[R_{\text{EnqDeq}} \]

\[R_{\text{EnqDeq}} \]

\[R_{\text{EnqDeq}} \]
Characterization of concurrent executions

- define for each R, a finite state automaton A which recognizes (a subset of) the executions e which have a projection not linearizable w.r.t. $MS(R)$

Definition 8. A rule R is said to be co-regular if we can build an automaton A such that, for any data-independent implementation I, we have:

$$I \cap A \neq \emptyset \iff \exists e \in I, e' \in \text{proj}(e). \text{last}(e') = R \wedge e' \notin MS(R)$$

REM

we assume that all actions call Enq(1) occur at the beginning