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Abstract

Every positive integer can be written as a sum of Fibonacci numbers; it can also
be written as a (finite) sum of (positive and negative) powers of the golden mean ¢.
We show that there exists a letter-to-letter finite two-tape automaton that maps the
Fibonacci representation of any positive integer onto its ¢-expansion, provided the
latter is folded around the radix point. As a corollary, the set of p-expansions of the
positive integers is a linear context-free language. These results are actually proved

in the more general case of quadratic Pisot units.

Résumé

Tout nombre entier positif peut s’écrire comme une somme de nombres de Fi-
bonacci; tout entier peut également s’écrire comme une somme (finie) de puissances
(positives et négatives) du “nombre d’or” . Nous montrons qu’il existe un automate
a deux bandes, fini et lettre-a-lettre, qui envoie la représentation d’un entier en base
de Fibonacci sur sa représentation dans la base ¢ modulo le fait qu’on a replié cette
derniére autour du point décimal. On en déduit que I’ensemble des représentations des
entiers en base ¢ est un langage context-free linéaire. Tous ces résultats sont en fait
établis dans le cas général on la base considérée est un nombre de Pisot quadratique
unitaire.
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. in an issue dedicated to Marcel-Paul Schiitzenberger

AUTOMATIC CONVERSION
FROM FIBONACCI REPRESENTATION TO REPRESENTATION IN BASE w,
AND A GENERALIZATION!

1 Where the reader is introduced to Fibonacci and base ¢ numera-
tion systems, presented with a small tribute to Marcel-Paul Schiit-

zenberger, and asked two questions.

The writing of numbers, the various waysit can take, have always attracted attention of
mathematicians as well as of computer scientists. Some systems — such as the redundant
decimal system with digits {—6,—5,...,6} — have been invented in order to implement
improved algorithms for some operations (¢f. [1]). Some have been considered because
they bring to light remarkable mathematical objects or properties. This is the case, for

instance, of both the Fibonaceci numeration system and the golden mean base.
Let ' = {F, | n € N} be the sequence of Fibonacci numbers, defined by the recurrence
relation
Fn+2 = Fn-l-l + Fn (*)

and by the “initial conditions” 2

It is well-known® that every positive integer can be written as a sum of Fibonacci numbers;
the sequence F' together with the two-digit alphabet A = {0, 1} defines thus the Fibonacci

numeration system, i.e., every integer is represented by a sequence of 0’s and 1’s; e.g.,
24 = g+ Iy and 24 is represented by 1000100 .

In contrast to what happens in the binary numeration system (i.e., the sequence of powers

of 2, together with A) the representation of numbers in the Fibonacci system is not unique;

e.g.,

24 =I5+ Fy+ F> and 24 is also represented by 110100 .

' A preliminary version of this paper appeared under the title “From the Fibonacci numeration system
to the golden mean base and some generalizations” in the Proceedings of the Conference “Formal Power
Series and Algebraic Combinatorics”, Florence, Italy, June 21-25, 1993, 231-244. In several places this

version has been significantly rewritten.
2These are not the “usual” initial conditions but they happen to be the “good” ones when one wants

to turn the Fibonacci sequence into a numeration system.
#and usually credited to Zeckendorf [21]; ¢f. also the Exercise 1.2.8.34 in [16].
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However, every non-negative integer can be given a normal representation, the largest?
in the lexicographic ordering, which is characterized by the fact it does not contain two
consecutive 1’s (cf. the exercise quoted above). The set of all normal representations of
the positive integers is thus

Rp = LA™\ A*114% |

a rational® set of words of the free monoid A*, i.e., a set of words recognized by a finite

automaton.

It seems that it was Schiitzenberger who first noticed that it is not only true that there
exists a finite automaton that recognizes the set of all normal representations but there
also exists a finite two-tape automaton (an automaton with output) that computes the
normal representation equivalent to any given representation. Figure 1 shows a facsimile

of a manuscript® of Schiitzenberger giving such an automaton”.

Figure 1: A Fibonacci “standardisateur” by Schiitzenberger.

In the same letter, Schiitzenberger also conjectured that this property should hold for

*when considering representations of the same length after adding leading 0’s to the shorter ones.
Sas we follow the terminology and notation of [18] — which are also those of [6] — we say rational
rather than regular (cf. Section 3).

SWe are thankful to Jean Berstel who kindly gave us a copy of it.

"Schiitzenberger writes numbers least significant digit first, .e., in the opposite way we are using here,
and his automaton performs then the reduction 110 gives 001. “Standardisateur” is a neologism that
Schuitzenberger coined for the occasion and means normalizer. Note also that this automaton is not
deterministic in the input; it is not the “simplest” that performs the Fibonacci normalization (cf. [18, p.
44] where a normalizer with 4 states is given) but it is a direct consequence of basic results ([3, Th. [V.2.8])

that such a normalizer cannot be deterministic in the input.

Corrected final version 4 February 9, 1998



. in an issue dedicated to Marcel-Paul Schiitzenberger

any numeration system defined by a linear recurrence relation (with integral coefficients).
It is now known that the result is not true in general but, roughly speaking, only for those
linear relations that correspond (via their characteristic polynomial) to Pisot numbers [9,

13], a statement that is probably even more striking than the original conjecture.

On the other hand, it has been observed that numbers (integers but also real numbers
in general) can be represented in (geometric) numeration systems defined by non-integral
bases (cf. [19]). Such representations form symbolic dynamical systems that have been

extensively studied.

In particular, let ¢ be the golden mean i.e., the larger zero of
PX)=X?-X -1,

which is the characteristic polynomial of the recurrence relation (). As above, it is known
(cf. [16, Exercise 1.2.8.35]) that every number x can be written as a sum of (positive and
negative) powers of ¢ and thus can be represented as a sequence — possibly infinite — of

0’s and 1’s together with a radix point; e.g.,

5=+ 4t and 5 is represented by 1000.1001 .

Such a sequence is called a @-representation of . For every real number there exists a
unique normal ¢-representation, called its @-expansion: the one that does not contain two
adjacent 1’s and does not terminate by the infinite factor 101010 . ... From this statement
follows that the set of all p-expansions (of the real numbers) is recognized by a finite
automaton (accepting infinite words) and it is not difficult to adapt the Schiitzenberger
normalizer in order to get a two-tape automaton (on infinite words) that computes the
p-expansion equivalent to any given -representation. This characterizes the set of the

p-expansions of the reals.

The comparison of the two situations leads to the following two questions. Does there
exist a characterization of the yp-expansions of the integers? And is there any relationship
between the -expansion of an integer and its normal representation in the Fibonacci

system?

2 Where the answer is given, the solution that leads to it presented,
still on the example of the Fibonacci system, and the domain of

validity of the answer precisely delimited.

The answer is yes, to both questions, and this is what the paper is all about. The answer is
yes to the first one, as a consequence of the yes to the second. The latter was announced in

the title: “automatic” is to be understood as “computable by a finite two-tape automaton”,
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just as, for instance, in “automatic group”, that are groups in which the multiplication

(by a generator) is realized by a (letter-to-letter) finite two-tape automaton (cf. [8]).

As we already stated, the set of all normal Fibonacci representations of the positive

integers® is the rational language
Rp =1A"\ A"114" .

To begin with, let us be empirical in approaching the characterization of the set R, of
the p-expansions of all positive integers. It first appears that every positive integer has a
finite p-expansion (c¢f. Proposition 1). Table 1 below gives the y-expansion of the first 15

integers together with their Fibonacci normal representation.

The position of the radix point, roughly situated, as Table 1 shows, in the middle of
every expansion, suggests that R, is not a rational language. It will be eventually shown
that R, is a linear context-free language” (see Corollary 4). This is the consequence of
a much more precise result that will require some transformations on R, in order to be
stated.

Let f.g be the p-expansion of an integer NV, i.e., an element of R,; the words f and g
belong to {0,1}*. It is a classical result ([20]) that R, is a linear context-free language if
the set

S=A{(f.9")1 f-9 € R.}

is a rational set in {0,1}* x {0,1}* (¢* denotes the mirror image of g). Moreover, as we
have already noted, the lengths of f and of ¢ are approximately equal — the difference of
these lengths is indeed bounded by 1 — and this property implies that S is a rational set
in {0,1}* x {0,1}" if, and only if, it is a rational set in ({0,1} x {0,1})* (¢f. [7, 6, 10]).
Such a statement will be made more intelligible by means of the following convention.
Every element of J = {0, 1} x {0, 1} will be written as a “vertical double-digit” :

_ 00 11
J—{0717071

Any element of J* can be read as the superposition of two words of equal length, an
“upper word” above a “lower word”. If f.g is the @-expansion of N, its expression (gft)
as an element of J* will naturally be called the folded p-expansion of N; e.g., the folded
p-expansion of 5 is (1597). Table 1 gives the folded w-expansion of the 15 first integers

as well.

Let T,, be the set of folded ¢-expansions of all positive integers; the announced char-

acterization of R, then reads:

81t is convenient not to deal with 0. Whatever representation is chosen for 0 — 0, to stick to common
sense, or the empty word, to be more consistent with the rest of the theory — it will not fit with the
general case.

?All definitions are postponed to Section 3.
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N | Fibonacci representations |  ¢-expansions Folded @-expansions
1 1 1. !
9 10 10.01 1o
3 100 100.01 o y0
4 101 101.01 690
5 1000 1000.1001 1001
6 1001 1010.0001 1060
7 1010 10000.0001 sioae
8 10000 10001.0001 61000
9 10001 10010.0101 59010

10 10010 10100.0101 59610

1 10100 10101.0101 596956

12 10101 100000.101001 R

13 100000 100010.001001 Toetse

14 100001 100100.001001 R

15 100010 100101.001001 R

Table 1: Fibonacci representations and ¢-expansions of the 15 first integers

ProrosiTioN A T, is a rational set of J*.

Indeed, Proposition A appears as the consequence of a much stronger result that, for
every integer IV, relates its Fibonacci representation and its folded ¢-expansion and which

is stated by the following:

THEOREM B There exists a letter-to-letter finite two-tape automaton A, that maps the

Fibonacci representation of any integer onto its folded p-expansion.

The automaton A, is not constructed directly. Rather, its construction is broken up
into several steps. A major one consists in the fact that normalization — i.e., computation
of the w-expansion from any @-representation — can be achieved by a letter-to-letter finite
two-tape automaton (cf. [9]). A few other ones amount to constructions involving letter-

to-letter finite two-tape automata (Propositions 7 and 8).
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But the main step in proving Theorem B (later, Theorem 2) is the construction of
an automaton 7, that reads words where the letters have been grouped into blocks of
length 4, and with the property that there is at most one digit 1 in every block. As seen
on its (deterministic) underlying input automaton shown in Figure 2, this automaton 7,
is remarkably simple. It has 5 states, in a one-to-one correspondence with the above
mentioned blocks; it consists in the complete oriented graph with 5 vertices, as indicated
in Table 2 which gives the input and output labels of every edge. Every state is final, and

denoted as such by an outgoing arrow.

Figure 2: The underlying input automaton of 7,. This is a partial view: the only transi-
tions represented are those labelled by 0 0 0 1 (bold arrows), by 0 0 1 0 (dashed arrows)
and by 0000 (loops). The transitions labelled by 0100 (resp. by 100 0) are the
reverse of those labelled by 0 00 1 (resp. by 001 0).

It should be noted that the output labels of the edges in 7, are far from being normal-
ized (since digits like 2 or even negative digits like 1 are allowed). It is this freedom in the
choice of the output labels that makes possible the construction of a two-tape automaton
with such a simple (and deterministic) underlying input automaton, here, and even more

strikingly in the general case.

The aim of this paper is to establish a more general version of Theorem B — and thus
Proposition A — the generalization consisting of proving the property not only for the

golden mean ¢ but for any quadratic Pisot unit 6.

The precise statement requires more definitions and notation that will be given in
the next section. The core of the proof will be the complete description of the two-tape
automaton 7y in the general case (Sections 6 and 7). This description is made possible
by the identification of the underlying input automaton of Ty with a finite Abelian group,
the existence of which is “discovered” in Section 6. In Section 5, it is shown how the
main theorem (Theorem 2) can be derived from the construction of 7y , the idea of which
arises — in Section 4 — from the computation (Proposition 5) of the #-expansion of the

elements of the sequence Uy (that generalizes the Fibonacci sequence F).
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end 0000 0001 0010 0100 1000
origin | label
0000 0000 / 8% | 000t /85 | 0010 /12 | 0100 /59 | 1000 / 122
0001 0100 / 158 | 0000 /%5 | 1000 / 129 | 0010 /59 | 000 / 808
0010 1000 / 4828 | 0010 / 85 | 0000 / 8522 | 0001 / 3428 | 0100 / 1658
0100 o001/ 1958 | 1000/ 1128 | 0100 /1852 | 0000 / 592 | 0010 / 122
1000 0010 / gong | 0100 / 500 | 0001 / gogo | 1000/ Zoo | 0000 / gooy

Table 2: The labelled edges of the two-tape automaton 7,

As said above, an immediate (and weak) corollary of the generalization of Proposition A
states then that the set of #-expansions of the integers is a (linear) context-free language. A
short note following this paper ([14]) establishes that, conversely, if the set of §-expansions

of the integers is a context-free language then 8 is a quadratic Pisot unit.

3  Where some definitions are made precise, some notation given,
and some classical results recalled, so as to state, at last, the main

theorem.

We first recall classical definitions about finite automata and numeration systems, and we

then state results on Pisot numbers upon which this paper is based.

3.1 Finite automata

We basically follow the exposition of [18] or [6] for the definition of finite automata over an
alphabet. An automaton over a finite alphabet A, A = (Q, A, E,1,T)is a directed graph
labelled by elements of A; () is the set of states, I C ) is the set of initial states, T' C Q is
the set of terminal states and F C @) x A X () is the set of labelled edges. The automaton A
is finite if () is finite, and this will always be the case in this paper. The transition function
of A is the function § : Q X A — P(Q) defined by é(p,a) ={q € Q | (p,a,q) € E}. The
automaton is deterministic if F is the graph of a (partial) function from @) X 4 into (). Note
that with these definitions, automata are non-deterministic by default and determinism

does not imply completeness.
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A computation in A is a finite path in the labelled graph A and thus the label of a
computation is the concatenation (or product) of the labels of the edges. A computation
is said to be successful if its origin is in [ and its end is in T". The subset of A* consisting
of labels of successful computations of A is called the set (or language) recognized by A.

A subset of A* is said to be rational'® if it is recognized by a finite automaton over A.

This definition of automata as labelled graphs extends readily to automata over any
monoid M. We shall consider here automata over the monoid A* x B* which are called
two-tape automata: a two-tape automaton A = (Q, A*x B*, E,I,T) is a directed graph
whose edges are labelled by elements of A*xB*. The automaton is finite if the set of edges
F is finite (and thus @ is finite), and this will always be the case in this paper. In the
literature two-tape automata are also often called non-deterministic generalized sequential
machines or transducers (see [3]). The set of labels of successful computations of A —
the behaviour of A — is then a subset of A* x B*, i.e., the graph of a relation from A*
into B*. If it is the behavior of such an automaton, a relation is is said to be computable
by a finite two-tape automaton — or, often, rational. In spite of its conciseness, we do
not use the latter word, for it causes an unnecessary interrogation to the mathematically
inclined reader, especially when it comes to functions. When the relation computed by
A is a function, we also say that A realizes this function, and we sometimes denote this
function by A (in Section 5 and 7).

A letter-to-letter two-tape automaton is a two-tape automaton whose edges are labelled
in A x B. A letter-to-letter two-tape automaton can thus be viewed as an automaton over
input alphabet AXB. The composition of two functions realized by letter-to-letter two-tape
automata is obviously realized by a letter-to-letter two-tape automaton (cf. [6, Sec. 1X.7]

and [10] for more results on those functions).

Let A be a letter-to-letter two-tape automaton over A*x B* . The automaton over
A obtained by taking the projection on A* of the label of every edge of A is called the
underlying input automaton of A. A letter-to-letter two-tape automaton is said to be (left)
sequential if its underlying input automaton is deterministic with every state being final.
A sequential two-tape automaton is often defined and denoted in the following way (cf.
[3, Sec. IV.2]): A= (Q, A, B,d, A, i), where 7 € () is the unique initial state, § : Qx A — Q
is the transition function of the underlying input automaton, and A : @ X A — B* is

the output function. Then, the set of edges of A, seen as a two-tape automaton, is
E={(p,(a,A(p,a)),0(p,a)) | p € Q, a € A}.

Let us end this paragraph with two brief words about infinite words and context-free

languages.

If sis a word of A*, s* denotes the infinite word obtained by indefinitely concatenat-

Y90ften regular in the literature. As said above, we follow [18] and [6] whose terminology fits well a

paper dedicated to M. P. Schiitzenberger.
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ing s. An infinite computation of an automaton A on A, A= (Q, A, F,1,T),is an infinite
path in the labelled graph A. The computation is successful if its origin is in [ and if
it goes infinitely often through 7. This definition of success is usually known as “Biichi
acceptance”. The definitions extend, more or less directly, to relations on infinite words,
directly in the case of relations realized by letter-to-letter two-tape automata since they

are automata over the alphabet of pairs of letters (see [10]).

We shall not make use of context-free languages for more than their mere definition
and for that purpose we refer the reader to [3] ot to [15]. Let us just mention that a
linear context-free language is a language generated by a context-free grammar whose

productions have a right-hand side with at most one occurence of a non-terminal symbol.

3.2 Representation of numbers

Two generalizations of representation of numbers in integer base are considered here:
general numeration systems for integers and non-integral real bases. All the alphabets we
consider are finite. By analogy with the classical decimal or binary systems, we shall say

“digit” for a symbol belonging to an alphabet of (possibly negative) integers.

3.2.1 Representation of integers in a numeration system U

Let U = (un)nZO be a strictly increasing sequence of integers with ug = 1. A representation
in the system U — or a U-representation — of a (positive) integer N is a finite sequence

of integers (d,.)o<n<k(v) such that
k(N)
N = Z Ay,
n=0

for a convenient index k(N) > 0. The sequence (dy)o<n<i(v) Will be denoted by the word

dy(ny - - - do, since numbers are written from left to right, most significant digit first.

Among all possible U-representations of a given integer N, one is distinguished and
called the normal U-representation of N: it is the one given by the classical “greedy
algorithm”, which as well turns out to be the greatest for the lexicographic ordering, when
an adequate number of 0’s is added on the left of representations of N so as to make them
all of the same length. The normal U-representation of N is denoted by (N)y. Under
the hypothesis that the ratio w,41/u, is bounded as n goes to infinity, the digits of the
normal U-representation of any integer N are bounded and are all contained in a minimal
alphabet Ay associated with U.

Let B be a finite alphabet of (possibly negative) digits'!; any finite sequence of digits,

1 There will be alphabets of various kind in the course of the paper. With the hope it will help the
reading, we have sticked to the following conventions. Regardless of superscript or subscript, A will denote

canonical alphabets, D alphabets of positive digits, B or C alphabets of possibly negative digits.
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or word in B*, is given a numerical value by the function 7y : B* — N which is defined by
k
mu(w) = Z d,u, where w=4dy---dy .
n=0

Two words v and w of B* are said to be equivalent if they have the same numerical
value, i.e., if 77(u) = 77 (v). The function that maps any word w of B* onto the normal
U-representation of the integer my7(w) — if w7 (w) is positive — is called the normalization

and is denoted by vy g (since it formally depends on U and B):

VU B: B* —>Az} .

3.2.2 Representation of real numbers in base 4

Let now € be a real number larger than 1. A representation in base § — or a 8-
representation — of a real number x is an infinite sequence ($n)—m<n<k(x) of integers

such that
k(z)

T = Z z,0"

n=—oo
for a convenient index k(z) in Z. It is natural to write the sequence (2,)_so<n<i(z) In
the form z(,) - @2o.x 122+, when k() is > 0, and 0.00 - - - 02 p(y)Tp(z)—1 - -, With the
adequate number of leading zeroes, when k(z) < 0, as one writes of a classical decimal

expansion.

As above, the greatest in the lexicographic ordering of all 8-representations of a given
positive real number z is distinguished as the normal 8-representation of z, usually called
the 8-expansion of z. The #-expansion of a real x can be computed by the following greedy
algorithm (see [19]):

Denote by |z] and by {z} the integer part and the fractional part of a num-
ber z. There exists k € Z such that ¥ < 2 < 0¥+, Let z, = [2/6%], and
re = {x/6%}. Then for k > i > —oo, put @; = |Or;11], and r; = {r;41}.

We get an expansion # = 2,08 + 2, 0*' 4+ ... If k < 0 (i.e., 2 < 1), we put
tg=2a_1 == g1 = 0. The f-expansion of z is denoted by (z)4. It follows from the
algorithm that every digit x; of the #-expansion of a number z is smaller than @, i.e., is

an element of the set
Ag=A{0,...,|0]} ,

called the canonical alphabet for 6 .2

12This holds indeed when 6 is not an integer; when # is an integer, Ap = {0, --- ,8 — 1} — but this latter

case will never occur here.
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An expansion ending with infinitely many zeroes is said to be finite, and the trailing

zeroes are omitted.

By convention (see [19], [17]) — and slight abuse —, we shall call 8-ezpansion of 1 ,
and denote it by d(1,80), the largest #-representation of 1 in the lexicographic ordering

which is smaller than “1.7 i.e., the largest sequence of integers (tn)nZI such that

1= ZtnO_” .

n>1

Let us introduce another definition: for every k in Z, the k-th initial section of Z is
the set of all integers smaller than or equal to k. The set of all initial sections of Z is
denoted by Z,. Let B be any finite alphabet of (possibly negative) digits. The set of
sequences (JUn)—oogngk with ; in B is thus denoted by B%». It is a natural convention to
consider that any finite sequence (y,,)i<m<k of elements in B is also an infinite sequence

(Ym ) —oo<m<k of B%w with y,, = 0 for all m < [.

Any element of BZv is given a numerical value by the function 7y : B — R which

is defined by

— 00

mols) = Y suf" where s = (su)-cognzi -
n=k

Two infinite words s and y of B%» are said to be equivalent if they have the same
numerical value. The function that maps any element s of B%» onto the #-expansion of

the real mg(s) — if mg(s) > 0 — is called the normalization and is denoted by vy p

Vg B : Bw A%w .

3.3 Pisot numbers

A polynomial P(X) =a, X"+ -4 ag in Z[X]is said to be monicif a, = 1. An algebraic
integer is a zero of a monic polynomial in Z[X] which can be supposed irreducible; its
algebraic conjugates are the other zeroes of this polynomial. A zero 6 of P(X) = 0 is
said to be dominant when every other zero is strictly smaller than # in modulus. A Pisot
numberis an algebraic integer such that all its algebraic conjugates have modulus smaller
than 1 (it is thus larger than 1).

An algebraic integer is said to be a wnit if the constant term ag of its minimal poly-
nomial P(X) = X"+ an_1 X" 1 4+ ... 4 ag is equal to 1. The minimal polynomial of a

quadratic Pisot unit 8 is thus of the form:
P(X)=X*-rX —¢

with either » > 1 and ¢ = +1, or » > 3 and ¢ = —1, cases which will be referred to as
Case 1 and Case 2 respectively throughout the paper.

Corrected final version 13 February 9, 1998



To appear in the International Journal of Algebra and Computation . ..

3.3.1 Representation of integers in base 6

When € is not an integer, the #-expansion of a positive integer is, in general, an infinite
sequence over the alphabet Ag. It turns out, however, that for certain Pisot numbers 6,
the f-expansion of every integer is finite. As stated by the following, this is the case for

the quadratic Pisot numbers on which we shall concentrate in the sequel of this paper.

ProposITION 1 [12]

If 0 is a quadratic Pisot number, then every integer has a finite 8-expansion.

3.3.2 Linear numeration systems associated to Pisot numbers

A very fundamental property of Pisot numbers (as far as §-expansions are concerned) is

given by the following;:

THEOREM 1 [4]
If § is a Pisot number, then d(1,8), the 8-expansion of 1, is eventually periodic.

Indeed, this property makes it possible to canonically associate a linear recurrent
sequence Uy with every Pisot number #. This system Uy is characterized by the fact
that normal Up-representations and #-expansions are defined by the same set of forbidden
words (they define indeed the same dynamical system). Two cases have to be considered,
according to whether d(1,6) is finite or infinite. We give here the construction of the
sequence Uy for the case of quadratic Pisot units we shall be studying. The general case

is analoguous.

DEFINITION 1 [5]
Case 1. (¢ =+1,r > 1 ;i.e., 6 is the dominant root of X*> —rX —1=0.) Then

Ag=A{0,---,r} and d(1,0)=r1 .
The linear recurrent sequence Uy = (Uk)kzo associated with @ is defined by
Ugt2 = IUE41 +Ug, k>0 and wy=1, wuy=r+1.
Case 2. (¢ =—1,r >3 ; i.e., 0 is the dominant root of X? —rX +1=10.) Then
Ag={0,---,r—1} and d(1,0)=r—1(r—2)* .
The linear recurrent sequence Uy = (Uk)kzo associated with @ is defined by

Ugt2 = TUEL41 — UE, k>0 and wg=1, wu=r .

In both cases, the sequence Uy, together with the alphabet Ay, define the linear nu-

meration system associated with 4.
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A brief word on what is known, in general, on the #-expansions and on the represen-
tations in the associated system Uy . In Case 1, an infinite sequence (resp. a finite word)
over Ag is a f-expansion (resp. is a Ug-representation) if and only if this sequence and
all the shifted ones are lexicographically smaller than (r0)¥. The associated dynamical
system is a subshift of finite type. Similarly in Case 2, an infinite sequence (resp. a finite
word) over Ay is a f-expansion (resp. is a Ug-representation) if and only if this sequence
and all the shifted ones are lexicographically smaller than d(1,0) = (r — 1)(r — 2)*. The

associated dynamical system is a sofic subshift (see [17] and [5]).

3.3.3 Normalization in base 8

The fundamental property that relates representation of numbers in a Pisot base and

automata theory is given by the following;:

ProposiTION 2 [9] If 6 is a Pisot number, then for every finite alphabet B, normal-
ization on BY in base @ is a function computable by a letter-to-letter finite two-tape

automaton.

Let us make three comments. This statement is the one that requires the definition of
functions on infinite words. In the course of the paper, the normalization will be applied
on finite words only. This is the reason why we did not find necessary to give more details

on this definition in Section 3.1.

In [9], Proposition 2 is proved in the case where every element of B is non-negative.
The proof extends readily to alphabets containing both positive and negative digits. As a
matter of fact, the converse of this result holds as well (see [2]), but this will not be used

here.

Normalization on B%® is slightly different from normalization on BY, because of the

presence of negative digits. We shall deal with this problem at Section 5.

3.4 Main result

After all these reminders we still have to introduce one more new operation on é-repre-

sentations (already sketched in the introduction), in order to state the main result.

3.4.1 Folded f-representation

Let B be an arbitrary alphabet of digits containing 0, and let B, = {} | a,b € B} be the

alphabet of pairs of elements of B, conveniently written one above the other, and called

t

“double-digits”. The mirror image of a word v is denoted by v’. Any element w of B}
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can be written as w = %, where u,v € B* and |u| = |v|. The upper part of w will be
denoted by W = u, and the lower part of w by W = v'. For instance, if A = {0,1} then
A, ={0,9.0, 1} Let w=155198; then % = 100101 and w = 001001.

Let s = f.g, with f,¢g € B*; by completing the shorter of f and ¢ with enough 0’s
(either at the left for f, or at the right for g), one can assume that |f| = |g|. Such an s
will be called a balanced (8-)representation. The folding operation p maps any balanced
representation s = f.g onto the element p(s) = gft of Bj. Conversely, the inverse of p,

p~1, called the unfolding operation, maps every element w = # of B7 onto the balanced

representation p~!(w) = p~1(v) = w.w'. Thus p(f.g) = f, pm = g, and p~H(w) =
..

The numerical value function 7y extends to folded representations : if w is a word on

By, then, by definition mg(w) = mp(‘w. ).

With these definitions and notations, a classical result in formal language theory (cf.
[3, Prop. V.6.5], [20]) that we have already quoted in the introduction can be stated as

follows.

ProrosiTioN 3 Let B be an arbitrary alphabet and let B, be the alphabet of “double-
digits”. Let K be a rational set of B}. Then p~Y(K) is a linear context-free language of

(BU{})"

3.4.2 The result

THEOREM 2 Let 8 be a quadratic Pisot unit and let D be an arbitrary finite alphabet
of non-negative digits. The function pg p that maps any word w on D* onto the folded 0-
expansion of my, (w), the integer represented by w in the linear numeration system (Ug, D),

is computable by a letter-to-letter two-tape automaton.

Since the image of D* by a function computable by a letter-to-letter two-tape automa-
ton is a rational language, it then follows immediately from Theorem 2 and Proposition 3

that we have:

COROLLARY 4 Let 8 be a quadratic Pisot unit. The set of folded 8-expansions of all
integers is a rational language. The set of 8-expansions of all integers is a linear context-free

language. ]
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4 Where the 0-expansion of the elements of the linear recurrent se-
quence Uy is computed, which leads to the reduction of the problem
to a smaller set of words and, at the same time, puts the reader

on the track of a finite two-tape automaton.

From now on, 6 is a quadratic Pisot unit, the dominant zero of P(X) = X? —rX —¢; and
Us = (un)nen is the linear recurrent sequence associated to 8§ as above. The result relies
indeed on the very regular expression of the elements of Uy in terms of the powers of 8, as

stated in the following :

ProprosiTION 5 Case 1. For every k in N,

Uy = 02k T (T‘ _ 1)02k—2 T 02k—4 4ot (T‘ _ 1)0—2k+2 T 0—2k

= Z g2k ) 1 (r—1) Z g2ht+2-4; , and

0<j<k 1<5<k

Ugpyr = 0L 4 (r = )02 922 o (r — 1) 2R g2k

_ Z gRrt1=4j | 4 g=2k-2 | (r—1) Z g2k—1-1;
0<j<k 0<5<k

Case 2. For every k in N,

Uk:0k+0k_2++0_k: Z 0k—2j )
0<j<k

Proof. Case 1. For every j in Z , the equality
07+ = rgitt 4 gl (1)
holds, and, as stated in Definition 1, the sequence Us = (u)>o is defined by

Ugt2 = TUky1 +ug, k>0 and =1, w=r+1.

Equation 1 gives (for j = =2 and j = —1) 1 = r6~1 4672 and r = § — ! from which

one gets
u1:r+1:0—0_1—|—7‘0_1+0_2:0‘|‘(r_1)0_1+0_2 (2)
Together with ug = 6% , this shows the property for k =0 .
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By induction, let us suppose that the statement holds for uy; and wuggyy . Then

Uk42 = TU2k4+1 T U2k
— (02k-|—1 F(r— 1)02F1 1 g2Ed g gL (g2l 0—2k—2)
T 02k T (T‘ _ 1)02k—2 T 02k—4 NS (T‘ _ 1)0—2k+2 T 0—2k

— re?k-l—l T (T‘ _ 1)7‘02k_1 T re?k—?) 4ot re—?k-l—l T (T‘ _ 1)7‘0_2k_1 T re—?k—?
T 02k T (T‘ _ 1)02k—2 T 02k—4 NS (T‘ _ 1)0—2k+2 T 0—2k

Grouping together terms of the form r8’~' 4+ 6772 for j ranging from —2k 4 2 to 2k + 2
yields

Ughyo = 02k+2 T (T‘ _ 1)02k T 02k—2 NI 0—2k-|—2 T (T‘ _ 1)7‘0_2k_1 T re—?k—?
and thus

Ughyo = 02k+2 T (T‘ _ 1)02k T 02k—2 NI 0—2k-|—2 T (T‘ _ 1)0—2k—1 T 0—2k—2
since
r—Lrd " 4 = (r -1 (T OO = (r = )T O
( )02k1 g—2k—2 ( )(02k1 ezkz) g—2k—2 ( )0% g—2k—2
The statement holds for uzg42. The computation of ugkys is then possible (and similar):

Uk+3 = TU2k42 + U2k+1
— (02k+2 S 1) e (1) 0—2k—2)
T 02k—l—1 T (T‘ _ 1)02k—1 T 02k—3 N (T‘ _ 1)0—2k—1 T 0—2k—2

=0 (r— )0 0P (r = 1) g P2
T 02k-|—1 T (T‘ _ 1)02k—1 T 02k—3 4ot (T‘ _ 1)0—2k—1 T 0—2k—2

Grouping together terms of the form r6/~1 4 =2, for j ranging from —2k — 1 to 2k + 3,
yields

Uogs = 0255 4 (= 1)8PH 4021 L (p = 1) L (4 1) 22
and thus

Ugpys = 023 4 (r — 1)L L @2l o (p = 1) g7 (1) PR3 g2k
since

(rH 17272 = g7 g (r )22 g2 by multiplication of (2) by #=2¢=2 |

The statement holds for uggys.
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Case 2. For every j in Z , the equation
07+ = rgitt _ i (3)
holds, and, as stated in Definition 1, the sequence Us = (u)>o is defined by

Upt2 = TUE41 — Ug, k>0 and upg=1, w=r .

Equation 3 (for j = —1) gives
r=60+6" (4)

which shows, together with ug = 6° , the property for k =0 and k=1 .

The induction step is similar to (and easier than) the one for Case 1. Suppose that

the statement holds for u; and ug4q. Then

U2 = TUky1 — Uk
:r(0k+1 T R +0—k—1)
_ek_ek_z_...—e_k
= P T g g
_ek_ek_z_...—e_k

Grouping together terms of the form r8/+' — §7, for j ranging from —k to k yields

Upgy = 0k-|—2 T 0k NS 0—k-|—2 T T‘O_k_l
— 0k-|—2 T 0k NS 0—k-|—2 T 0—k T 0—k—2
since
rg~ Rl = g7k 4 g=k—2 by multiplication of (4) by gkt .
The statement holds for ugyz. [ ]

In the case where 8 is equal to the golden mean ¢ , Proposition 5 takes an even
simpler form for the Fibonacci numbers (for which, to our surprise, we have not found any

reference):
COROLLARY 6 For every k in N,

sz — 992k _I_ S02k—4 _I_ . _I_ @—Qk—4 _I_ @—Qk — Z 992]6—4‘7 )
0<j<k

and Fappr = @R+l f o2h=3 | o2kl Z e B
0<j<k
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Proposition 5 can be rewritten in terms of the #-expansions of the elements of Uy:

ProrosiTiON 5 Case 1. Forevery k in N,

(uar)s = 1(0r—101)5.(0r—101)*
(waky1)o = 10 (r=1010)5(r=1010)r-11
(Uapez)g =  10r—1(010r—1)*(0107r—1)501

) ( t )

(tgpys)e =(107r=10)(107r=10) (10r=10) 10r—11
Case 2. For every k in N,

(ugr)g = 1 (01)%.(01)* (tgrs1)e = (10)F+HL.(10)F+!

Proposition 5 can be rewritten again in terms of the folded #-expansions of the elements

of Uy:
ProrosiTioN 5 Case 1. Forevery k in N,
r— k r— r—1\k
p((uar)e) = (8000)(V75" 200" pl(uarsa)e) = (86975 0106775")
p((tart1)e) = (ggirgl)(ral(l)(l)rgl)k p((uart3)e) = (1,210 1) (0,210 1)k
Case 2. For every k in N,
k k
0 plluasiale) = GLD(EY)

69" pl{warss)e) = (6169) (6707)"

p({uar)e) = (0000) (10
p((uary1)e) = (00

This series of equations strongly suggests writing words of Aj — and, for coherence,
writing words on any alphabet of digits D as well — as the concatenation (or product) of
blocks of length 4, the words having been first padded on the left by the adequate number
of 0’s to make the length a multiple of 4 . It is then convenient to have alphabets of blocks.
For the sequel of the paper, let

X ={z,a,b,¢,d}
be the alphabet of basic blocks, with
z=0000, a=0001, 6=0010, ¢=0100 and d=1000

For instance, the normal Ug-representation of the numbers u,,

(un)v, =10" ,
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can be written as words on the block alphabet X :

k

(ugpdr, = azF,  (uapg)v, = 025, (wapso)r, = ¢2F and  (ugpya)y, = d2F .

Relations and functions defined on words of D*, such as the numerical value 74 or
as the mapping onto the folded #-expansion pg p, as well as the definition of letter-to-
letter two-tape automaton, naturally extend to words of X*. With these conventions,

Proposition 5 may be rewritten (for the last time):

ProrosiTiON 5 Case 1. Forevery k in N,
pop(az®) = (3000)(775"210)"  men(e?) = (561751216875

k - k k - —10\k
W,D(bz )= (8817»91)(7,01%7»91) W,D(dz )= (%r91r01(1))((1n91r01(1))

Hence the restriction of yg p to the subset of words X z* is clearly realized by a letter-

to-letter two-tape automaton, the one given in Figure 3.

0000/ %105 0

001 0
OOlO/OOirfl

0000/ 0 10=1 0000/971 0 ¢

r-10
0100/ 5597} ~~ 0001/ 555

0000/9999 1000,/ 0 =10

1r101

0r101

Figure 3: An automaton realizing the restriction of ug p to 2*Xz2* .

In the case where 8 is the golden mean ¢, the automaton of Figure 3 corresponds to the
first row and the diagonal of Table 2 that describes the automaton 7, in the introduction.
The core of the paper — developed in sections 5 and 6 — consists in showing that this
restriction of yg p extends to all words of X'*, that is, more precisely and with the current

notation:
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THEOREM 3 There exist an alphabet of digits By and a letter-to-letter two-tape au-
tomaton Ty, with output alphabet By”, that maps any word f of X* onto a folded 6-

representation of y,(f), the integer represented by f in the numeration system Uy.

5 Where it is shown how Theorem 3 implies the main result. For
that purpose, we make the most of the properties of letter-to-letter
two-tape automata, by means of a new operation on words: the
digit-addition.

Let f = f,---fo and ¢ = g, ---g0 be two words of equal length on any alphabet of
digits B. The digit-addition of f and ¢ is the word f & g = (fu + gn) -+ (fo + go) over
the new alphabet of digits B’ = B & B obtained by adding pairs of elements of B. This
definition naturally extends to words over alphabets of blocks of digits of fixed length, as

well as to words over alphabets B, of pairs of digits.

ExaMpLE 1 : With the notation above we have:
ac®da= 10010101

and

0001 1900@10001010_1001 2010 O
00001100 % 10010000 — 10011100 -

Let D C {0,1,...,m} be an arbitrary finite alphabet of non-negative digits with

greatest element m. The following then clearly holds.

Fact 1 Any word of D*, the length of which is a multiple of 4, can be obtained by the
digit-addition of at most 4m words of X ™.

EXAMPLE 2 : With the notation above we have:

30212113 =da® da®ddDbaTachHbdDzb . O

Another obvious fact is that if f and f’, respectively ¢ and ¢', are equivalent 6-
representations, then f @ ¢ and f' @ ¢’ are equivalent f-representations. This property

extends to mappings that preserve the numerical value, with a little preparation.

A function (or a relation) a : B* — A* from an alphabet of digits onto another one
is said to be conservative if any word of B* is mapped onto an equivalent word (onto a
set of equivalent words) of A*. A two-tape automaton is said to be conservative as well if
the relation it realizes is conservative. The following property is then a simple exercise in

automata theory.

Corrected final version 22 February 9, 1998



. in an issue dedicated to Marcel-Paul Schiitzenberger

ProrosiTION 7 Let A and B be two conservative letter-to-letter two-tape automata.
There exists a (conservative letter-to-letter) two-tape automaton, denoted by A& B, such
that, for every f, g, f' and ¢’ with f' € A(f) and ¢’ € B(g), we have f'®g' € A® B(fdyg),
and conversely, if h' € A® B(h) then there exist f, f', g, g’ such that f' € A(f), ¢’ € B(g),
h=f®g,and = fDg.

Proof. [Idea]. Let us first remark that it is always possible to assume that a relation
realized by a (conservative) letter-to-letter two-tape automaton has the property that if
flisin ¥(f) then 0% f € (0% f) for any integer k. In such an automaton, called a padding

automaton, every initial state bears a loop with label (0,0).

Let A= (Q,BxA,E, 1, T)and B = (R,BxA,F,J,U) be two conservative padding

letter-to-letter two-tape automata. The automaton C = A @ B is defined as follows:
C =(@QxR,(B&B)x (Ag A),H,IxJ,TxU)
the edges which are made by the “addition” of the edges of A with those of B :

H={((p,r), (@, y)(g,9) | (0, (2,9),9) € E, (ry(k,1),s) € Fandw =i+ k, y =j+1}.

It is clear that any two successful computations of A and B, that can be supposed to be
of the same length since A and B are padding automata, can be “added” edge by edge to
give a successful computation of A& B. Conversely, any (successful) computation of A& B
can be “decomposed” — in possibly several different ways — into a pair of (successful)

computations of A and B . ]

The next result deals with the “transfer” of transformations of #-representations to

transformations of folded #-representations.

PropPosiTION 8 Let 1) : B%» — B%w be a relation realized by a letter-to-letter finite
two-tape automaton. Then the relation ¥* : By — B} defined by ¢* = pot o p~1is also

realized by a letter-to-letter finite two-tape automaton.

The statement makes use of the convention we mentioned in Section 3.2.2 : if w € B}
then p~'(w) is a finite sequence considered as an element of BZw. It is also understood
that the relation ¢ has the property that an infinite sequence the elements of which are
all equal to 0 from a certain rank on is mapped onto sequences with the same property.
Then ¢ (p~1((w)) is indeed a finite representation, that can be balanced and then folded.

Proof. [Sketch]. The relation % is realized by an automaton A = (Q,Bx B, FE,I,T).
Two automata Ay = (Q, B, x B,, Eq,I1,T1) and Ay = (Q, B, x B,, Ey, I3, T3) are then
built in the following way: for every edge (p, (¢,z),q) in E and every j and k in B, let

K3

(p, ((5), (glg)),q) be an edge in Fy and let (q, ((Z)7 (a]f»)),p) be an edge in E,. Up to some
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adequate tuning of Iy, Iy, Th, T (that depends indeed on the way the radix point is
treated by 1), it is then easy to check that ¢” is equal to the composition of the relation
realized by Ay with the relation realized by A,. [ |

Proof of Theorem 2. Let m be the greatest element of the digit alphabet D. Let 7y
be the two-tape automaton the existence of which is given by Theorem 3 and let A} be
the “sum” — in the sense of Proposition 7 — of 4m copies of Ty . Let f be a word in D*;
it is, in several ways, the digit-sum of at most 4m words of X*. The image of f by N
is a set of folded §-representations of 7y, (f) written on the pairs of digits of Cg = 4m By
(which stands for By & By & - - - & Bg, 4m times).

Let vy be the normalization in base € on C’;N. By Proposition 2, vy is realized by a
letter-to-letter finite two-tape automaton. By a simple shift (to the right) of the radix
point, this v transfers into a quasi-normalization v; from C’?w onto A%w that is realized by
the same letter-to-letter finite two-tape automaton as vy. It is not quite a normalization
anymore because the output may begin with a sequence of leading zeros — this may

1

happen because Cy contains negative digits. By Proposition 8, v;” = povjop~! is realized

by a letter-to-letter finite two-tape automaton.

Now, g p is the composition of Ny, v;”, and possibly the function ¢ that erases the
leading zeros and which is obviously realized by a finite two-tape automaton. Hence pg p
is realized by a finite two-tape automaton and we are almost done, but for the fact that,
since ¢ is not “length-preserving”, we have not yet proved that ug p is realized by a letter-
to-letter finite two-tape automaton. It would be tedious to proveit directly, i.e., by stating
properties of the actual output of Ay, so we rather prove that last step by an “external”

argument.

LEMMA 9 For any f in D*, the difference between the lengthes of f and pgp(f) is
bounded (independently of f).

Proof. Let f be a word of length £+ 1 that does not begin with a 0, and let N = 7y, (f).
Then up < N < m(ug+---+ug). Let & be the algebraic conjugate of 6. It is known that

for every n > 0, u,, = af” + 3", where o and 3 are real constants.

For Case 1, £ = =071, Since o+ 3 = up = 1, and af — 36071 = u; = r + 1, an easy

computation shows that a = zzif > 1and 8 < 0. Then

mup + -+ up) < ma@ —1)/0 -1 +m|B|(1+0+072 4673 4...)
<mab* /(0 — 1)+ m(a—1)8/(0 - 1)
< ma(0F +6)/(0 —1) <mad /(1) .
For Case 2, £ = #~!. From a4+ 3 = 1, and af 4 67! = u; = r, it follows that
a:%>1andﬁ<0. Then

muy + - -+ up) < ma(@ —1)/(0 = 1) +mpBo/(0 — 1) < mad*/(6 1) .
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Thus, in both cases, N < maf*+t1 /(6 — 1). Tt follows that N < 6*+? holds, with
p = |logs(maf/(6 — 1))] + 2. And then, recalling that 6¥ < uy < N, it holds:

|fl=1<|ugp()l <|fl+p - u

It is then a known result (cf. [7], [10, Cor. 2.5]), that a relation “with bounded length
difference” that is realized by a finite two-tape automaton is realized by a letter-to-letter
finite two-tape automaton. And the proof of Theorem 2 — assuming Theorem 3 — is

thus complete. [

The results established in this section call for some comments.

REMARK 1 Proposition 8 no longer holds if 4 is realized by a two-tape automaton
which is not assumed to be letter-to-letter. This is the step in the proof that makes
it necessary to specify throughout the paper that the relations we are dealing with are

actually realized by letter-to-letter two-tape automata.

REMARK 2 The construction involved in the proof of Theorem 2 is far from being
optimal (in the sense of the number of states) for the building of Ay from Ty . The precise

study of the complexity of the construction remains to be done.

REMARK 3 Proposition 7, stated here for ancillary purpose, also yields simplified proofs
for already known results in the domain of numeration systems and automata theory.
Although it does not pertain to the rest of the paper, let us state, for later reference, a

striking application (cf. [13]).

ProposiTION 10 Let U be a linear numeration system and let Ay = {0,1,---,m} be
the canonical alphabet. Let us assume that the characteristic polynomial of U has a domi-
nant zero larger than 1. The normalization vy p over any alphabet of non-negative digits D
is realized by a letter-to-letter two-tape automaton if and only if the normalization vy ar

over A" ={0,1,---,m+ 1} is realized by a letter-to-letter two-tape automaton.

Proof. First, if the normalization vy p is realized by a letter-to-letter two-tape automa-
ton then, for every subalphabet C' C D, vy is realized by a letter-to-letter two-tape
automaton as well. This gives the necessary part of the statement as well as the assurance

that it is sufficient to consider alphabet of digits that are intervals of the integers.

Conversely, let A be the letter-to-letter two-tape automaton that realizes vy 4 and let
T be the (1-state letter-to-letter) two-tape automaton that realizes the identity mapping
on the words on {0,---,k}. Then N & I maps any word on {0,---,m+ k+ 1} onto an
equivalent one on {0,---,m+ k}. The normalization on the alphabet {0,---,m+k+1}
is obtained by the composition of N & Zy, N & Zx_q, ..., N &7y, and N and the result

follows. ]
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A result analogous to Proposition 10 holds for normalization in base # (when 6 is the

dominant zero of an irreducible polynomial).

6 Where a finite Abelian group is discovered and then computed to

serve as the underlying input automaton of Ty .

Let us come back to Proposition 5 and to the “obvious” two-tape automaton 7'y it suggests
for the computation of a folded equivalent #-expansion of words of the form zz%, z € X.
In T’y , the reading of the letter a induces a transition from the initial state to a certain
state, say @ . In state @ , the reading of letter z (= 0000 ) causes T’y

i) tostayin a ;

ii) to output the “letter” (9751 9, 3) [if we are in Case 1; the letter 9390 if in Case 2].

If we thus keep reading z, T’ stays in @ and keeps outputting (975 2, 8) (resp. 9890).

Proof of Theorem 3 amounts to building a two-tape automaton 7y that extends (the
definition domain of) T’g to all words of X* . We shall assume that two properties —
that are met by 7'g — hold in 7y :

(H1)  Tp is (left) sequential;
(H2) in every state § of 7y , the reading of z causes Ty to stay in state § .

Thus (H1) leads to use notation of [3] that we have recalled in Section 3: Ty = (Q, X, B, 6, A, 1),
d is the transition function and X is the output function of Ts . (H2) then reads:

(H2) in every state § of Ty, 6(8,2) = § .

It turns out that these two hypotheses can be met but also lead naturally to a two-tape
automaton 7y that solves the problem — and that is remarkably simple. Let us explore

To “outside” T’y and consider the reading of a word w of the form
w = abz® .

The reading of a puts Ty in state @ , then the reading of b puts it in a certain state, say 3.

Let us try to compute A($, z) and let us remark for that purpose that w can be written as
w=azz" @ z2bzF (5)
from which follows that A(4, z) has to be the sum of A(a, z) and A(b, z) .

Let us be more specific (we suppose that we are in “Case 1”7 for the next paragraph).

Proposition 5 yields:

(azzFg = (0001)(0r=101)(0r—=101)5(0r=101)*(0r=101)(0000)
(zb2F)y = (0000)(0010)(r=1010)*(r=1010)(r=1100)(0000)
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and thus, by addition,

(abz")g =(0001)(0r—111)(r—1r—11 1) (r—1r—111)(r—1701)*(0000)
(6)

which implies, (going back to the folded #-representations)
A(‘§7 Z) = (rIlrIlril ril) .
It seems then adequate to identify
a to 0r—101, b to r—1010, and § to r—i1r—111

The idea behind the building of the underlying input automaton of 7y is to maintain this
identification between the states and the elements of Z* , the reading of a letter of X being
equivalent to an addition in Z* . The successive additions would yield an infinite number of
states if it was not taken into account that expressions such asin (6) are §-representations
and that two #-representations are equivalent if they give the same numerical value. This

equivalence, transfered on the factors of length 4 gives the following equalities'3:
1re0=7rc01=01r=01re=0000
Let us denote by vy the congruence of Z* generated by these equalities.

Hypotheses (H1) and (H2) have thus led us to choose as underlying input automaton
of T the submonoid!* Gy of Z*/v4 generated by @ , b , ¢ and d , the transition function
being defined by the canonical morphism § : X* — G4 (6(a) = a , etc.). We compute
Gy in the remainder of this section and we complete the description of 7y in the next

section.
In order to give precise and complete statements, we have to specify the case we are in.

Case 1. (¢ = +1, r > 1). @ is the zero larger than 1 of P(X) = X? —rX — 1. The
discriminant of P(X) is A = r? + 4.

ProprosiTION 11
(i) if r is odd, then Gy ~ Z/AZ ;
(ii) if r is even, and
a) if r =4m, then Gy ~Z/(3A)Z ;
b) if r =4m+ 2, then Gy =~ Z/(3AN)Z x /27 .

Case 2. (¢ = —1,r > 3). 6 is the zero larger than 1 of P(X) = X? — rX 4+ 1. The
discriminant of P(X) is A = r? — 4.

13With the convention that if n is an integer, 7 denotes —n, as already used in the introduction.
"We do not know yet that it is a subgroup.
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ProrosIiTION 12

(i) if r is odd, then Gy ~ Z/AZ ;
(ii) if r is even, then Gg ~Z/(3A)L X /27 .

Proof of Proposition 11.

1r10 =
r101 =
1017 =
0171 =
which imply:
0r0r =
ror0 =
The four generators of Gy are
a=0r—101, b=r—1010,
Thus
a+¢=0r0r=0000 and

[

By definition, 4 is generated by the following relations:

0000 (7)
0000 (8)
0000 (9)
0000 (10)
0000 (11)
0000 (12)
=010r—1, and d=10r—10
b+d=r0r0=0000 , (13)

and Gy is a subgroup, quotient of Z?, with generators @ and b . We have now to distinguish

between the cases where r is odd or even.

i) ris odd.

Claim 1

Proof. Letr=

ra —2b =

2n + 1. It comes

2(r—1)  r(r—i)
4n 2rn
2n 0
2n+1 0

0 0
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(14)
by (7) , 2n times,
by (9)
by (12) |
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The circular permutation on elements of Z* | applied to (14) , gives

rb—2¢=0000
which, by (13) , reads

rb4+2a=0000

It is an easy exercise to show the following.

(15)

LEMMma 13 Let = and y be two generators of Z*. The quotient of Z* by the relation

px + qy = 0 is isomorphic to Z X Z/dZ, where d is the gcd of p and q. If u is a generator

of Z and t is a generator of Z/dZ, a possible isomorphism is defined by x — (—(q/d)u,0)

and y - ((p/d)u, ).
Since r and 2 are relatively prime,

Z2/[ra—2b=0]~Z

with the isomorphism defined by @ — 2u and b — ru .

(r? 4+ 4)u = 0 and thus
G@ ~ Z/AZ .

ii) r =2nis even.

Claim 2

Rapbd

(n+1)a+(n—1)b=0000
Proof.

(n+ Va4 (n—Db= (n=1)(r—1) (n+1)(r—1) n—1

= r(n=1)41 n-1 1
= r(n—1) n—1 0
=0 0 0

The circular permutation on elements of Z* | applied to (16) , gives

(n+1)b+ (n—1)é=0000
which, by (13) , reads

(n+1)b—(n—1a=0000
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by (7) , n times
by (9)
by (8) , n — 1 times
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Two cases are to be considered, according to whether r is equal to 0 or to 2 modulo 4 .
a) r=2n=4m. Equations (16) and (17) become
2m+1)a+2m—-1)b=0000 (18)
@2m+1)b—(2m—-1)a=0000 (19)
As 2m + 1 and 2m — 1 are relatively prime,
Z3/[2m+Da+ (2m - 1)b =0~ Z

with the isomorphism defined by @ — —(2m — 1)u and b — (2m + 1)u . From (19) it
follows that

(2m+1)*+ (2m - 1)*) u= (58)u=0
and thus
Gy = Z/(%A)Z

b) r =2n=4m+ 2. Equations (16) and (17) become

(2m+2)a+2mb= 0000 (20)
(2m+2)b—2ma= 0000 (21)

As 2m + 2 and 2m have ged 2,
Z2/[(2m + 2)a + 2mb = 0] ~ Z X Z /21

with the isomorphism defined by @ — (—mu,0) and b — ((m + 1)u,1) . From (21) it
follows that

((2m + 2)(m + 1)u, 0) + (2m*u,0) = (0,0)

€.,

1
(Am* 4+ 4m + 2u = (ZA)U =0,

and thus

1
Gy :Z/(ZA)ZXZ/QZ . |
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Proof of Proposition 12. In this case, vy is generated by the following relations:

1710 =0000
r101 =0000
1017 =0000
01r1 =0000

The generators of Gy are
a=0101 and b=1010

and the equalities ¢ = @ and d="bhold: Gy is a quotient of Z?2.

Claim 3
ri—2b=0000 (26)

Proof.

=101r by (22)
=0000 by (24) ]
By circular permutation:
rb—2a=0000 . (27)

We have to distinguish again between the cases where r is odd or even.
i) ris odd. Since r and 2 are relatively prime,
Z2)[ra—2b=0]~Z

with the isomorphism defined by @ — 2u and b — ru . From (27) it follows that
(r* +4)u = 0 and thus
G@ ~ Z/AZ .

ii) r =2nis even. Then
Z2/[ra —2b = 0]~ Z x Z/2Z
with the isomorphism defined by @ — (u,0) and b~ (nu,1) . From (27) it follows that
(rnu,0) — (2u,0) = (0,0) ie., (2n* —2u=(zA)u=0
and thus

1
Gy :Z/(§A)Z><Z/QZ . |
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REMARK 4 The above construction can be given an interpretation that brings it closer

to the area of #-expansions.

i) Let & be a state of T ; we have identified § to an element of Z* , denoted 8 as well,
such that

A8, z) = p(8.8)

If, as in state § , one keeps reading z, 75 keeps outputting A(S, z) . One thus could say that
§ “potentially contains” the word §*.5* for any k and it would have been as legitimate to
identify the state § with the bi-infinite word

“ 5.8 (+)

which is periodic (of period 4) up to the radix point. The circular permutation on words

of length 4 corresponds to the shift on bi-infinite words.

In this setting, Z?is isomorphic to the set Y of periodic bi-infinite words on Z of

period 4.

ii) It is not only the group G that is finite but the whole group Y /4 a description of

which can be given by the definition of a normal form of its elements.

Let Ky be a set of “reduced words”, the exact description of which depends upon which

“case” we consider:

Case 1. Let # be the root greater than 1 of X? — rX — 1 = 0, with » > 1. Then Kjy is
the set of words of A} with the property that they, and all their conjugates, are strictly

smaller, in the lexicographical ordering, than r0r0.

Case 2. Let # be the root greater than 1 of X2 — rX + 1 = 0, with » > 3. Then Kj is
the set of words of A‘; with the property that they, and all their conjugates, are different
from (r —2)(r —2)(r — 2)(r — 2) and strictly smaller, in the lexicographical ordering, than

(r=1(r—=2)(r-2)(r-2).

ProrosiTION 14

Every class of Y modulo vy contains exactly one element represented by a word of K.

iii) Although it is not possible to give a numerical value to bi-infinite words such as
(%), 76 corresponds to a “numerical value equivalence” and Proposition 14 happens to be
the exact counterpart of a result of Parry characterizing the #-expansions of real numbers
([17]). Proposition 14 is completely independent from the rest of the paper : Proposition 11
and Proposition 12 prove that GGy is finite and that is enough for the construction of 7j.
Its proof is purely combinatorial and a bit lengthy. For these reasons, we have decided to
publish it elsewhere ([11]).

Corrected final version 32 February 9, 1998



. in an issue dedicated to Marcel-Paul Schiitzenberger

7 Where the description of Ty is completed.

As announced, Ty is a sequential (letter-to-letter) two-tape automaton and will be denoted

as such:

To = (G, X, Bg, 69, A9, 0)

To lighten the notation, and if there is no ambiguity, we write é and A instead of §y and

Ag respectively.

The group Gy is:
i) the subgroup generated by the images a , b , ¢, and dof X ,
ii) in the quotient of Z* by 4 .

By i), the canonical morphism from X* into Gy is surjective and, for coherence, every

element Gy is denoted as f, where f is an element of X*, and it holds:
WgeX"  fg=f+g
The identity element of Gy is denoted by 0 and 1/)-(\* =2=0.

The transition function 6 is the (right) action of X* over Gy (defined by the canonical
morphism):

Vgc Gy, VfeX™ 8. f)=g+f

By ii), every element § of G4 can be identified with an element of Z* , a fixed repre-

5

sentative of its class modulo v4 , chosen'® once for all and also denoted by § .

ExampLE 3 : e=41l,r=3, 7= %ﬁ is the dominant root of X? —3X — 1 = 0.

G,~7Z/13Z and @ = 0201 . A set of representatives'® of G, in Z* and the action of X

on (; is exhibited in Figure 4 . o

With these notation, the following lemma is a consequence of Propositions 11 and 12

and their proof.
LEMmMma 15 For any f, g, and h in X such that
h=g+f
in Gy , there exists an element u in Z* such that
h=g& fou

in Z*, which is a linear combination of the left-hand side of the defining relations of
v (equations (7) to (10) — Case 1 — or (22) to (25) — Case 2). |

15Proposition 14 tells what such a choice can be, but it is obviously immaterial to the proof.
Y8 Chosen according to Proposition 14.
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Figure 4: The action of X on G;: the only transitions represented are those labelled by
i = 0201 (bold arrows), and by b= 2010 (dashed arrows).

ExXEMPLE 3 (continued): Let § = 1122 and ¢ = 0201. Then

1122 40201 = 1323
=2013 by (7)
=1020=ga by (9)

Thus let

and the equation

holds. O

As we have seen in Section 4, Proposition 5 defines A(0, z) for every z in X and in
Section 6 we have defined A(g, z) to be

for every g in Gy .

EXEMPLE 3 (continued):
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The output function is then given by the following:

LEMMA 16 For every § in Gy and every z in X there exists a double-digit word of
length 4, X(g,z) (on a certain alphabet Bg), with the property that, for every integer k,

the equation

76 (Mg, 2)A(hy 2)%) = 7o (A (G, 2)F1) + 7o (A (0, 2) A (%, 2)") (28)
holds, with h = 5(g,z) .

Proof. Let us first rewrite (28) for unfolded #-representations:

5

W(X(g, 2)RFREX(G, ) = 7o (9F MY + W(X(o, 2)#% 20, 2)) (29)

The essence of the proof is to show that the word

in (28) is independent of k.

Let us now consider the analogous of the defining relations for 74 but “expanded to
the order £” on both sides of the radix point and “completed” on both sides to have full

words 17£0 as factors:

(0000)(17£0)5.(1720)*¥(0000) (7) &
(0001)(F£01) . (F£01)*(7200) (8) &
(0017)(£017)*.(2017)"(£000) (9) &
(0000)(017&)*.(0172)*¥(0000) (10) &

For any k, the numerical value my of any of these words is 0 .

Let u = u(g,z) be the element of Z* such that

h=0®tDu .
As stated in Lemma 15, u is a linear combination of the defining relations of v4 . The
same linear combination of the words (7) ; to (10) ; gives a word

u’uk .uku"

with numerical value 0 .

Let us set

2

NG o) = M0, 0)@gad and NG o) = A0,2) % g & u”

and the verification of (29) is straightforward. |
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EXEMPLE 3 (continued): In this example, (7) ; and (9) » read
(0000)(1210)*.(1210)*(0000) (7) &
(0012)(1012)*.(1012)*(1000) (9) &

and thus

v'oF R = (0012)(0202)%.(0202)%(1000)
which yields

IXT(1122,0201): 0001112240012 = 1130
/\7(1122,02015: 0000® 11223 1000 =0122
that is
A-(1122,0201)= 3330 m
The alphabet By is the set of all double-digits that appear in such computation of

A(g, z) when g ranges over Gy and & over X . We are now in a position to give an explicit

statement for Theorem 3:

THEOREM 3 Let Ty = (Gg, X, Bg, 8, X,0) be the sequential letter-to-letter two-tape au-
tomaton defined by the functions § and A as above. The two-tape automaton Ty maps

every word of X* onto a folded equivalent 8-representation , that is
vieX®  w(To(f) =mulf) -

Proof. By induction on |f|, we prove a more general relation :

Vfe X*, VkeN mo(To(f25) = mu (f25) . (30)

By construction of 7y , it holds
VfeXT, VkeN  To(f2) = Ta(Np(fFSF) (31)
and, also by construction, Proposition 5 yields (30) for |f] = 1.

We need two more pieces of notation: let Z = 3900 = A(0, z) be the block of four null

double-digits and let us denote by ’Tg(i@, f) the output of 75 when reading the word f from

the state h taken as initial state. It then comes:

Vee X, my(feh)

ﬂ'U(fzkH) + 7TU($Zk) by induction hypothesis,

=

9(7}(]‘2’“"’1)) + 7TU($Zk) by construction and Proposition 5,
o(To(HA, 251) + 76 (A0, 2)A(E, =)

(To(N)Z*YY + o (A(f, 251) + 7o (A0, 2) A (£, 2F)) by (28)
(7s(

(7s(

(7s(

=

=~

=

4

=

)
o(To(H)ZFY) + mo(MF, )M (T, 24))
6(To (/) Z"HY) + 7o (To(f, 22"))

)

o(To(/)To(f,22%)) = ma(Ta(f2")) . m

S A

=

=
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We have established in Section 5 that Theorem 3 proves Theorem 2.
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