Finite beta-expansions

CHRISTIANE FROUGNY

Université Paris 8 and Laboratoire Informatique Théorique et Programmation, Institut Blaise Pascal, 4 place Jussieu, 75252 Paris Cedex 05, France

BORIS SOLOMYAK

Department of Mathematics GN-50, University of Washington, Seattle, Washington 98195, USA

(Received 22 July 1991 and revised 19 December 1991)

Abstract. We characterize numbers having finite β -expansions where β belongs to a certain class of Pisot numbers: when the β -expansion of 1 is equal to $a_1a_2...a_m$, where $a_1 \ge a_2 \ge \cdots \ge a_m \ge 1$ and when the β -expansion of 1 is equal to $t_1t_2...t_m(t_{m+1})^{\omega}$ where $t_1 \ge t_2 \ge \cdots \ge t_m > t_{m+1} \ge 1$.

1. Introduction

Representations of real numbers with an arbitrary base $\beta > 1$, called β -expansions, were introduced by Rényi [R]. They arise from the orbits of a piecewise-monotone transformation of the unit interval: $T_{\beta}: x \mapsto \beta x \pmod{1}$. Such transformations were extensively studied in ergodic theory (see [P] and the bibliography in [B1]).

Properties of β -expansions are strongly related to symbolic dynamics [B1]. The closure of the set of infinite sequences, appearing as β -expansions, is called the β -shift. It is a symbolic dynamical system, that is, a closed shift-invariant subset of \mathscr{A}^N , where the alphabet \mathscr{A} is the set of all possible digits $\{0, 1, \ldots, [\beta]\}$. A symbolic dynamical system is said to be of *finite type* if the set of its finite factors is defined by the interdiction of a finite set of words. It is said to be *sofic* if the set of its finite factors is recognized by a finite automaton. The β -shift has finite type if and only if $T_{\beta}^k 1 = 0$ for some k, and it is sofic if and only if the orbit $\{T_{\beta}^k 1\}$ is finite (see [B1]).

In this paper we study the set of numbers $x \ge 0$ having finite β -expansions, which we denote by Fin (β) . It is a subset of Per (β) , the set of numbers having eventually periodic β -expansions. For a standard system of numeration, when β is an integer greater than one, one has Per $(\beta) = \mathbb{Q}(\beta) \cap \mathbb{R}_+$ and Fin $(\beta) = \mathbb{Z}[\beta^{-1}] \cap \mathbb{R}_+$.

Eventually periodic β -expansions were investigated by Bertrand [Be] and Schmidt [S]. An algebraic integer is called a *Pisot number* if all its Galois conjugates have modulus less than one, and a *Salem number* if all its conjugates are less or equal than one in modulus and at least one conjugate has modulus one. It is proved in [Be, S] that if β is a Pisot number, then $\operatorname{Per}(\beta) = \mathbb{Q}(\beta) \cap \mathbb{R}_+$. Conversely, Schmidt proved [S] that if $\mathbb{Q} \cap [0, 1] \subset \operatorname{Per}(\beta)$, then β is a Pisot, or a Salem number. It is still unknown whether all rationals have eventually periodic β -expansions if β is a

Salem number. Boyd [Bo] has shown that if β is a Salem number of degree four, then the β -expansion of 1 is eventually periodic.

One of the authors proved in [Fr1] that addition (and multiplication by a fixed integer) in base β —where β is a Pisot number—is a function computable by a finite automaton. In this paper we find two classes of Pisot numbers for which the sum of two finite β -expansions is again a finite β -expansion. Examples show that this is false for some Pisot numbers.

We first prove that if $\mathbb{Z}_+ \subset \text{Fin}(\beta)$ then β is a Pisot number or a Salem number, and if $\mathbb{Z}[\beta^{-1}] \cap \mathbb{R}_+ \subset \text{Fin}(\beta)$ then β is a Pisot number (Lemma 1). It is also possible to show that $\mathbb{Z}[\beta^{-1}] \cap \mathbb{R}_+ = \mathbb{Z}_+[\beta^{-1}]$ if and only if β is a Perron eigenvalue of a primitive companion matrix (Lemma 2).

The main results of the paper are the following two theorems which give sufficient (but certainly not necessary) conditions for the inclusion $\mathbb{Z}_+[\beta^{-1}] \cap \mathbb{R}_+ \subset \mathrm{Fin}(\beta)$. Let β be the positive root of the polynomial $M(X) = X^m - a_1 X^{m-1} - a_2 X^{m-2} - \cdots - a_m$, $a_i \in \mathbb{Z}$, and $a_1 \ge a_2 \ge \cdots \ge a_m > 0$. Then β is a Pisot number, the β -shift is a system of finite type, and $\mathrm{Fin}(\beta) = \mathbb{Z}[\beta^{-1}] \cap \mathbb{R}_+$ (Theorem 2). The corresponding systems of numeration were considered in [Fra, PT]. Let $\beta > 1$ be a real number such that the β -expansion of 1 is equal to $t_1 t_2 \ldots t_m (t_{m+1})^\omega$, with $t_1 \ge t_2 \ge \cdots \ge t_m > t_{m+1} > 0$. Then β is a Pisot number, and $\mathbb{Z}_+[\beta^{-1}] \subset \mathrm{Fin}(\beta)$ (Theorem 3).

The numbers β in Theorem 2 and in Theorem 3 have a common feature: in fact, β belongs to one of these two classes if and only if the orbit of 1 under the β -transformation is non-increasing.

As a corollary we obtain the following result: for every Pisot number β of degree 2, $\mathbb{Z}_{+}[\beta^{-1}] \subset \text{Fin } (\beta)$.

At the end we give a quantitative version of the results above (Proposition 2) for application to substitution dynamical systems. Let ζ be the substitution of the alphabet $\{1, 2, \ldots, m\}$:

$$\zeta(1) = \underbrace{1 \dots 1}_{k_1} 2, \, \zeta(2) = \underbrace{1 \dots 1}_{k_2} 3, \dots, \, \zeta(m-1) = \underbrace{1 \dots 1}_{k_{m-1}} m, \, \zeta(m) = \underbrace{1 \dots 1}_{k_m}.$$

This substitution generates a minimal, uniquely ergodic measure-preserving system ('substitution dynamical system', see [Q]). In [So2] one of the authors proved that if β is a Pisot number of degree m such that the β -expansion of 1 is equal to $k_1k_2...k_m$, and if $\mathbb{Z}[\beta^{-1}] \cap \mathbb{R}_+ \subset \text{Fin}(\beta)$, then the substitution dynamical system has purely discrete spectrum. The class of numbers in Theorem 2 fits this scheme.

The properties of periodic and finite expansions are related to the theory of tilings (see [T]). Theorem 2 was used by Praggastis [Pr] to construct Markov partitions for some toral automorphisms.

Some of the results presented here can be found in [Fr2] and in [So1].

2. Representation of numbers

Let $\beta > 1$ be a real number. A representation in base β (or a β -representation) of a real number $x \ge 0$ is an infinite sequence $(x_i)_{k \ge i \ge -\infty}$, $x_i \ge 0$, such that

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_1 \beta + x_0 + x_{-1} \beta^{-1} + x_{-2} \beta^{-2} + \dots$$

for a certain integer $k \ge 0$. It is denoted by

$$x = x_k x_{k-1} \dots x_1 x_0 \dots x_{-1} x_{-2} \dots$$

A particular β -representation—called the β -expansion—can be computed by the 'greedy algorithm':

Denote by [y] and $\{y\}$ the integer part and the fractional part of a number y. There exists $k \in \mathbb{Z}$ such that $\beta^k \le x < \beta^{k+1}$. Let $x_k = [x/\beta^k]$, and $r_k = \{x/\beta^k\}$. Then for $k > i \ge -\infty$, put $x_i = [\beta r_{i+1}]$, and $r_i = \{\beta r_{i+1}\}$. We get an expansion $x = x_k \beta^k + x_{k-1} \beta^{k-1} + \cdots$. If k < 0 (x < 1), we put $x_0 = x_{-1} = \cdots = x_{k+1} = 0$. If an expansion ends in infinitely many zeros, it is said to be finite, and the ending zeros are omitted.

The digits x_i obtained by this algorithm are integers from the set $\mathcal{A} = \{0, \ldots, \beta - 1\}$ if β is an integer, or the set $\mathcal{A} = \{0, \ldots, [\beta]\}$ if β is not an integer. We will sometimes omit the splitting point between the integer part and the fractional part of the β -expansion; then the infinite sequence is just an element of \mathcal{A}^N .

For numbers x < 1, the expansion defined above coincides with the β -expansion of Rényi [R], which can be defined by means of the β -transformation of the unit interval

$$T_{\beta}x = \beta x \pmod{1}, \quad x \in [0, 1].$$

In fact, for $x \in [0, 1[$, we have $x_k = [\beta T_{\beta}^{k-1} x]$. However, for x = 1 the two algorithms differ: our expansion is just 1 = 1., while the Rényi expansion is

$$d(1, \beta) = .t_1 t_2 ..., t_k = [\beta T_{\beta}^{k-1} 1],$$

(the point is usually omitted).

Let D_{β} be the set of β -expansions of numbers of [0, 1[, and let $d:[0, 1] \rightarrow D_{\beta} \cup \{d(1, \beta)\}$ be the function mapping $x \neq 1$ onto its β -expansion, and 1 onto $d(1, \beta)$. Clearly, if $x = x_k \dots x_0 \dots x_{-1} \dots$ is a β -expansion, then $x/\beta^{k+1} = \dots x_k \dots x_0 x_{-1} \dots$ belongs to D_{β} .

Recall some results concerning the set D_{β} . The set \mathcal{A}^{N} is endowed with the lexicographical order (notation $<_{lex}$), the product topology, and the (one-sided) shift σ . The set D_{β} is shift-invariant. The β -shift S_{β} is the closure of D_{β} , it is a subshift of \mathcal{A}^{N} (see [Be] and [B1]). We have $d \circ T_{\beta} = \sigma \circ d$ on [0, 1[. Recall that the β -shift S_{β} is a system of finite type if and only if $d(1, \beta)$ is finite [P] (such numbers were called simple β -numbers by Parry). The β -shift S_{β} is a sofic system if and only if $d(1, \beta)$ is eventually periodic (Bertrand, see [B1]).

We recall the characterization of the set D_{β} [P]. By x^{ω} will be denoted the sequence xxx...

THEOREM 1. Let β be a real number greater than one, and let $d(1, \beta) = t_1 t_2 \dots$ Let s be an infinite sequence of positive integers.

(i) If $d(1, \beta)$ is infinite, the condition

$$\forall p \geq 0, \quad \sigma^p(s) <_{lex} d(1, \beta)$$

is necessary and sufficient for s to belong to D_{β} .

(ii) If $d(1, \beta)$ is finite, $d(1, \beta) = t_1 \dots t_{n-1} t_n$, then $s \in D_{\beta}$ if and only if $\forall p \ge 0$, $\sigma^p(s) <_{lex} d^*(1, \beta) = (t_1 \dots t_{n-1}(t_n - 1))^{\omega}$.

3. Finite expansions

Let Per (β) be the set of all numbers $x \ge 0$ having eventually periodic β -expansions. It is clear that Per $(\beta) \cap [0, 1[$ is the set of points whose orbits under T_{β} are finite.

Let $\mathbb{Q}(\beta)$ denote the smallest field containing the field of rational numbers \mathbb{Q} and $\beta > 1$. It is proved in [Be, S] that if β is a Pisot number, then $\operatorname{Per}(\beta) = \mathbb{Q}(\beta) \cap \mathbb{R}_+$. Conversely, Schmidt proved [S] that if $\mathbb{Q} \cap [0, 1[\subseteq \operatorname{Per}(\beta), \text{ then } \beta \text{ is a Pisot, or a Salem number.}$

Now, let Fin (β) stand for the set of $x \ge 0$ having finite β -expansions. Note that Fin $(\beta) \cap [0, 1[$ consists of those points whose orbits under T_{β} end up at zero.

For $\lambda > 0$, Let $\mathbb{Z}[\lambda]$ denote the ring of polynomials in λ with integral coefficients, $\mathbb{Z}_{+}[\lambda]$ the cone of polynomials with non-negative coefficients, and set $(\mathbb{Z}[\lambda])_{+} = \mathbb{Z}[\lambda] \cap \mathbb{R}_{+}$.

If $\beta > 1$ is an integer, then Fin $(\beta) = (\mathbb{Z}[\beta^{-1}])_+$. We will address the problems: for which β all integers have finite β -expansions? when Fin $(\beta) = (\mathbb{Z}[\beta^{-1}])_+$? More specifically, consider the following conditions on β :

$$(F_1)$$
 $\mathbb{Z}_+ \subset \operatorname{Fin}(\beta);$

$$(F_2)$$
 $\mathbb{Z}_+[\beta^{-1}] \subset \operatorname{Fin}(\beta);$

$$(F_3)$$
 $(\mathbb{Z}[\beta^{-1}])_+ \subset \operatorname{Fin}(\beta).$

Note that condition (F_1) implies that β is an algebraic integer (consider the β -expansion of $x = [\beta] + 1$). If β is an algebraic integer, then Fin $(\beta) \subset \mathbb{Z}[\beta, \beta^{-1}] = \mathbb{Z}[\beta^{-1}]$, so (F_3) actually means that Fin $(\beta) = (\mathbb{Z}[\beta^{-1}])_+$.

LEMMA 1. (a) If $\mathbb{Z}_+ \subset \text{Fin}(\beta)$, then β is a Pisot number or a Salem number; (b) condition (F_3) implies that β is a Pisot number.

Proof. (a) is proved similar to [S, 2.4] and even easier since we deal with finite expansions. We present the proof for convenience of the reader.

Suppose that β has a Galois conjugate γ , $|\gamma| > 1$. Let $\eta = \max(|\beta|^{-1}, |\gamma|^{-1})$, and $C = 2[\beta]\eta(1-\eta)^{-1}$. It is easy to see that one can find $m \in \mathbb{Z}_+$ so that $|\beta^m - \gamma^m| > C$. Then take $x = [\beta^m] + 1 \in \mathbb{Z}_+$. If x has a finite β -expansion, it must be of the following form:

$$x = \beta^m + \varepsilon_1 \beta^{-1} + \varepsilon_2 \beta^{-2} + \dots + \varepsilon_k \beta^{-k}.$$

Since $x \in \mathbb{Z}$, all Galois conjugates of β satisfy the same equation, and $x = \gamma^m + \varepsilon_1 \gamma^{-1} + \varepsilon_2 \gamma^{-2} + \cdots + \varepsilon_k \gamma^{-k}$. Subtracting these two representations of x and using that $|\varepsilon_i| \leq [\beta]$, we come to a contradiction.

(b) It remains to exclude the case of Salem numbers. As mentioned above, $\mathbb{Z}_+ \subset \text{Fin } (\beta)$ implies that β is an algebraic integer, and so $\beta \in \mathbb{Z}[\beta^{-1}]$. Thus, $\beta - [\beta] \in \text{Fin } (\beta)$, and so β is a root of a polynomial

$$X^{m}-k_{1}X^{m-1}-k_{2}X^{m-2}-\cdots-k_{m}, \quad k_{i}\in\mathbb{Z}_{+}.$$

It follows that β has no positive Galois conjugates. On the other hand, it is known that every Salem number α is reciprocal (see [Sa, p. 26]), and hence has a conjugate $\alpha^{-1} > 0$. Thus β is a Pisot number.

We do not know whether conditions (F_1) and (F_2) are equivalent. The relation between (F_2) and (F_3) can be understood with the help of the following lemma.

LEMMA 2. Let $\lambda > 0$. The following are equivalent:

- (a) $(\mathbb{Z}[\lambda^{-1}])_+ = \mathbb{Z}_+[\lambda^{-1}];$
- (b) λ is a Perron eigenvalue of a primitive companion matrix.

It is possible that this result is known. By a recent result of Handelman [H], condition (b) is equivalent to λ being a Perron number with no positive conjugates. Proof of Lemma 2. (a) \Rightarrow (b). If λ <1, then (a) is impossible since then $\mathbb{Z}_{+}[\lambda^{-1}] \cap [0, 1[=\emptyset]$, while $\lambda^{-1} - [\lambda^{-1}] \in (\mathbb{Z}[\lambda^{-1}])_{+}$. Let $\lambda \geq 1$. Then (a) implies that

$$1 - \lambda^{-1} = c_1 \lambda^{-1} + c_2 \lambda^{-2} + \dots + c_k \lambda^{-k}, \quad c_i \in \mathbb{Z}_+, \quad c_k > 0, \quad k \ge 1.$$

Then λ is a Perron eigenvalue of the companion matrix A of the polynomial $p(X) = X^k - (c_1 + 1)X^{k-1} - c_2X^{k-2} - \cdots - c_k$. One can check that A^k is strictly positive, so A is primitive.

(b) \Rightarrow (a). Suppose that λ is the Perron eigenvalue of a primitive companion matrix

$$M = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_k \\ 1 & 0 & \cdots & 0 & a_{k-1} \\ 0 & 1 & \cdots & 0 & a_{k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_1 \end{bmatrix}.$$

Let $x \in (\mathbb{Z}[\lambda^{-1}])_+$. Using the 'recurrence relation'

$$\lambda^{r} = a_1 \lambda^{r-1} + a_2 \lambda^{r-2} + \cdots + a_k \lambda^{r-k}, \quad r \in \mathbb{Z},$$

one can express x as an integral linear combination of k consecutive powers of λ . More precisely, there exist $s \in \mathbb{Z}_+$ and $B \in \mathbb{Z}^k$ such that

$$x = \lambda^{-s} \Lambda \cdot B$$
, $\Lambda = [\lambda^{-k+1}, \dots, \lambda^{-1}, 1]$,

('.' denotes the usual scalar product in \mathbb{R}^k). Since Λ is the left Perron eigenvector for M, one has

$$x = \lambda^{-s-l} \Lambda \cdot M^l B. \tag{1}$$

By the Perron-Frobenius theory (see [Se]),

$$\lim_{l\to\infty}\lambda^{-l}M^lB=\frac{\Lambda\cdot B}{\Lambda\cdot R}R=\frac{x\lambda^s}{\Lambda\cdot R}R>0,$$

where R is a strictly positive right eigenvector for M. Hence $M^lB = [d_i]_{i=1}^k > 0$ for l sufficiently large, and by virtue of (1),

$$x = \sum_{i=1}^{k} d_i \lambda^{-s-l-k+i} \in \mathbb{Z}_+[\lambda^{-1}].$$

COROLLARY. The following are equivalent:

- β satisfies condition (F₃);
- (ii) β satisfies condition (F_2) and β is a simple β -number $(d(1, \beta))$ is finite).

Proof. If β satisfies condition (F_3) then $\beta - [\beta] \in \text{Fin}(\beta)$, $\sigma(d(1,\beta)) = d(\beta - [\beta])$ hence $d(1,\beta)$ is finite. Conversely, if $d(1,\beta) = a_1 a_2 \dots a_m$, then β is the positive root of the polynomial $x^k - a_1 x^{k-1} - \dots - a_k$, which has a primitive companion matrix because $a_1 = [\beta] \ge 1$. Thus by Lemma 2, $(\mathbb{Z}[\beta^{-1}])_+ = \mathbb{Z}_+[\beta^{-1}]$, and conditions (F_2) and (F_3) are identical.

The following examples show that there are Pisot numbers such that $d(1, \beta)$ is finite but $\mathbb{Z}_+ \not\subset \text{Fin}(\beta)$.

Example 1. Let β be the dominant root of the polynomial $X^3 - 3X^2 + 2X - 2$. Then β is a Pisot number, $d(1, \beta) = 2102$, and the β -expansion of 6 is $6 = 20.210(00112)^{\omega}$. Example 2. Let β be the positive root of the polynomial $X^4 - 2X^3 - X - 1$. Then β is a unitary Pisot number, $d(1, \beta) = 2011$, and the β -expansion of 3 is $3 = 10.111(00012)^{\omega}$.

4. Systems of finite type

THEOREM 2. Let β be the positive root of the polynomial $M(X) = X^m - a_1 X^{m-1} - a_2 X^{m-2} - \cdots - a_m$, $a_i \in \mathbb{Z}$, and $a_1 \ge a_2 \ge \cdots \ge a_m > 0$. Then β is a Pisot number, $d(1, \beta) = a_1 a_2 \cdots a_m$, and Fin $(\beta) = (\mathbb{Z}[\beta^{-1}])_+$.

The special case of the Theorem when $M(X) = X^2 - X - 1$, and $\beta = (1 + \sqrt{5})/2$ is the golden ratio, is known and seems to belong to folklore. Note also that the case of $M(X) = X^2 - nX - 1$ is implicitly contained in [S, 3.4].

Proof. Since the sequence $a_1a_2 \ldots a_m$ is lexicographically greater than its shifts, one has from [P] that $d(1,\beta) = a_1a_2 \ldots a_m$. From [Br, Th. 2] it follows that β is a Pisot number with the minimal polynomial M(X). Using Lemma 2 and dividing by β^k if necessary, we see that one needs to prove only that $\mathbb{Z}_+[\beta^{-1}] \cap [0, 1[\subseteq \text{Fin } (\beta).$ Let $x \in \mathbb{Z}_+[\beta^{-1}]$, $0 \le x < 1$. Then x has a β -representation which ends in infinitely many zeros. Of course, it does not have to be the β -expansion of x. Let us say that a sequence is β -admissible if it corresponds to a β -expansion of some number. We are going to apply an algorithm which modifies a finite β -representation of x, aiming at a β -admissible sequence.

First we formulate the algorithm, and then prove that the process stops after finitely many passes. The following notations will be used: if $w = w_1 w_2 \dots$ is a sequence, then $s \bigoplus_k w$ denotes the sequence $s_1 s_2 \dots s_{k-1} (s_k + w_1) (s_{k+1} + w_2) \dots$ The factor $s_i \dots s_{i+k}$ of s will be denoted by s[i; i+k].

It follows from Theorem 1 that a sequence $s = s_1 s_2 \dots s_r 0^w$ is β -admissible if and only if for all k holds

$$s[k+1, k+m] <_{lex} a_1 \ldots a_m$$

ALGORITHM. Applied to a sequence $s = s_1 s_2 \dots s_r 0^w$, $s_i \in \mathbb{Z}_+$, such that $x = \sum_{i=1}^{\infty} s_i \beta^{-i} < 1$.

Step 1. If there is a factor $s[k+1, k+m] \ge a_1 a_2 \dots a_m$ (termwise), let $s' = s \bigoplus_{k} 1(-a_1) \cdots (-a_m)$.

Repeat this as long as possible, then go to Step 2.

Step 2. Find the least k such that

$$s[k+1, k+m] > _{lex} a_1 a_2 \dots a_m.$$
 (2)

If there is no such k, the sequence s is β -admissible, and the process stops (since Step 1 has been performed before, equality in (2) is impossible). Observe that $k \ge 1$, since $1 > x > s_1 \beta^{-1} \Rightarrow s_1 \le [\beta] = a_1$.

It follows from (2) that there exists $l \ge k+1$ such that

$$s[k+1, l-1] = a_1 a_2 \dots a_{l-k-1}, \quad s_l > a_{l-k}.$$

Since we have already performed all possible operations in Step 1, $l \le k + m - 1$. Let

$$s' = s \bigoplus_{k} [1(-a_1) \cdot \cdot \cdot (-a_m)] \bigoplus_{l} [(-1)a_1 \cdot \cdot \cdot a_m].$$

More explicitly, we have

$$s'_{i} = \begin{cases} s_{i}, & \text{for } i \leq k-1, \text{ and } i \geq l+m+1; \\ s_{i}+1, & \text{for } i=k; \\ 0, & \text{for } k+1 \leq i \leq l-1; \\ s_{i}-a_{l-k}-1, & \text{for } i=l; \\ s_{i}-a_{i-k}+a_{i-l}, & \text{for } l+1 \leq i \leq k+m \\ s_{i}+a_{i-l}, & \text{for } k+m+1 \leq i \leq l+m. \end{cases}$$
(3)

Go to Step 1.

It is clear that in both steps of the Algorithm s' is non-negative. The fact that s' is a representation of x in base β follows from the equation $\beta' = a_1 \beta^{r-1} + a_2 \beta^{r-2} + \cdots + a_m \beta^{r-m}$. Thus is remains to check that the process stops after finitely many passes of the algorithm.

Observe that after each operation in Step 1, the sum of all digits decreases: $\sum_i s_i' = \sum_i s_i - (a_1 + \cdots + a_m - 1)$. It follows that the operation in Step 1 can be applied only finitely many times.

Let us analyze what is going on in Step 2. First we note that the operation in Step 2 does not change the sum of the digits: $\sum_i s_i' = \sum_i s_i$. Let l be the index in Step 2. The quantity

$$Adm_x s = \sum_{i=1}^{l-1} s_i \beta^{-i},$$

will be called the β -admissible part of x with respect to s. Note that l is the maximal index such that the sequence $s_1s_2\ldots s_{l-1}0^w$ is β -admissible. We have to consider two cases.

Case 1. The sequence $s_1's_2' \dots s_{l-1}'0^{\omega}$ is β -admissible.

$$\operatorname{Adm}_{x} s' \ge \sum_{i=1}^{l-1} s'_{i} \beta^{-i} = \operatorname{Adm}_{x} s + \beta^{-k} - a_{1} \beta^{-k-1} - \cdots - a_{l-k} \beta^{-l+1} \ge \operatorname{Adm}_{x} s + \beta^{-l}.$$

Case 2. The sequence $s_1's_2'\dots s_{l-1}'0^{\omega}$ is not β -admissible.

Then from (3) and the choice of k and l in Step 2 it follows that $s'[k-m+1, k] = a_1 \dots a_{m-1}a_m$, and the operation in Step 1 will be applied in the next pass of the algorithm.

Conclusion of the proof. Let $s^{(0)} = s$, and let $s^{(j)}$ be the representations of x obtained by repeated application of the Algorithm. If the process stops at $s^{(N)}$, then it is β -admissible, and we get a finite β -expansion of x because $s_i^{(N)} = 0$ for i sufficiently large. Suppose that the process goes on indefinitely. Since the sum of the digits remains unchanged in Step 2 and decreases in each operation of Step 1, the operation in Step 1 can be applied only finitely many times. Choose K so that for j > K, only the operation in Step 2 was applied. Then for j > K we always find ourselves in Case 1. Let l_i be the index l for the sequence $s^{(j)}$,

$$l_j = \max\{r: s_1^{(j)} s_2^{(j)} \dots s_{r-1}^{(j)} 0^{\omega} \text{ is } \beta\text{-admissible}\}.$$

We have for j > K,

$$x \ge Adm_x s^{(j+1)} \ge Adm_x s^{(j)} + \beta^{-l_j}$$
.

Therefore, $l_j \to \infty$ as $j \to \infty$. Looking at (3) we see that $s_i^{(j+1)} = s_i^{(j)}$ for $i < l_j - 2m$, so there exists the limiting sequence \tilde{s} such that $\tilde{s}_i = s_i^{(j)}$ for all j sufficiently large. Since $\sum_i s_i^{(j)} \le \sum_i s_i = S$, we conclude that

$$x = \lim_{j \to \infty} \sum_{i=1}^{\infty} s_i^{(j)} \beta^{-i} = \sum_{i=1}^{\infty} \tilde{s}_i \beta^{-i},$$

and also $\sum_i \tilde{s_i} \leq S$. But $\tilde{s_i} \in \mathbb{Z}_+$, so there exists K_1 such that $\tilde{s_i} = 0$ for $i > K_1$. Let j_0 be such that $s_i^{(j)} = \tilde{s_i}$ for $i \leq K_1$, $j \geq j_0$. Then we have

$$x = \sum_{i=1}^{K_1} \tilde{s}_i \beta^{-i} = \sum_{i=1}^{\infty} s_i^{(j)} \beta^{-i}, \quad j \ge j_0,$$

whence $s_i^{(j)} = \tilde{s}_i$, $j \ge j_0$, for all *i*. But this means that $s_i^{(j+1)} = s_i^{(j)}$, so no operation was applied. This is a contradiction. We have shown that the process stops, and the proof of Theorem 2 is now complete.

5. Sofic systems

THEOREM 3. Let $\beta > 1$ be a real number such that $d(1, \beta) = t_1 t_2 \dots t_m (t_{m+1})^{\omega}$, with $t_1 \ge t_2 \ge \dots \ge t_m > t_{m+1} > 0$. Then β is a Pisot number, and $\mathbb{Z}_+[\beta^{-1}] \subset \text{Fin }(\beta)$.

Proof. From the equality $d(1, \beta) = t_1 t_2 \dots t_m (t_{m+1})^{\omega}$ one deduces that β is a real root of the polynomial

$$M(X) = X^{m+1} - (t_1 + 1)X^m + (t_1 - t_2)X^{m-1} + \cdots + (t_{m-1} - t_m)X + (t_m - t_{m+1}).$$

From a result of Perron (see [Br, II]) one has that β is a Pisot number and that M is the minimal polynomial for β .

Let $x \in \mathbb{Z}_+[\beta^{-1}]$. As in the proof of Theorem 2, one can assume that x < 1. Then x has a β -representation $x = \sum_{i=1}^r s_i \beta^{-i}$, $s_i \in \mathbb{Z}_+$. We shall use an algorithm which reduces a finite β -representation to a finite β -expansion. Set $t = d(1, \beta) = (t_i)_{i=1}^{\infty}$, keeping in mind that $t_i = t_{m+1}$ for $i \ge m+1$.

ALGORITHM. Applied to a sequence $s = s_1 s_2 \dots s_r 0^{\omega}$, $s_i \in \mathbb{Z}_+$, such that $x = \sum_i s_i \beta^{-i}$. Find the least k such that

$$s\lceil k+1, \infty \rceil >_{lex} d(1, \beta) = t.$$

If not found, the sequence s is β -admissible, and the process stops. Otherwise, let $l \ge k+1$ be such that

$$s[k+1, l-1] = t_1 \dots t_{l-k-1}, \quad s_l > t_{l-k}.$$

Put

$$s'=s\bigoplus_{\nu} [1(-t_1)(-t_2)\ldots]\bigoplus_{l} [(-1)t_1t_2\ldots],$$

or more explicitly,

$$s'_{i} = \begin{cases} s_{i}, & \text{for } i \leq k-1, \text{ and } i \geq l+m+1; \\ s_{i}+1, & \text{for } i=k; \\ 0, & \text{for } k+1 \leq i \leq l-1; \\ s_{i}-t_{l-k}-1, & \text{for } i=l; \\ s_{i}-t_{i-k}+t_{i-l}, & \text{for } l+1 \leq i \leq l+m. \end{cases}$$

Set s := s', and go to the beginning of the Algorithm.

From the choice of k and l, and the monotonic property of the t_i it follows that s' is a non-negative sequence. This sequence is a β -representation of x because $t = d(1, \beta)$. Finally, since $t_i = t_{m+1}$ for $i \ge m+1$, we have

$$\sum_{i=1}^{\infty} s_i' = \sum_{i=1}^{\infty} s_i - (l-k)t_{m+1} \le \sum_{i=1}^{\infty} s_i - 1.$$

Therefore s_i' terminates with infinitely many zeros, and the sum of all digits has decreased. So the process starting with $s^{(0)} = s$, $s^{(j+1)} = (s^{(j)})'$, stops at $s^{(N)}$, $N \le \sum_i s_i$, which provides a finite β -expansion of x.

As a corollary of Theorem 2 and Theorem 3 one has the following

PROPOSITION 1. For every Pisot number β of degree 2, $\mathbb{Z}_{+}[\beta^{-1}] \subset \text{Fin } (\beta)$.

Proof of Proposition 1 comes from the following characterization of Pisot numbers of degree 2.

Lemma 3. The only Pisot numbers of degree 2 are the dominant roots of the following polynomials in $\mathbb{Z}[X]$

$$X^2 - aX - b$$
 with $a \ge b \ge 1$;
 $X^2 - aX - b$ with $a \ge 3$ and $-a + 2 \le b \le -1$.

Proof. Let $P(X) = X^2 - aX - b$, with $b \neq 0$, and $a \neq 0$ (else its root cannot be a Perron number). Since one of the roots is positive, the discriminant $\Delta > 0$, and let $x_1 = (a + \sqrt{\Delta})/2$ and $x_2 = (a - \sqrt{\Delta})/2$.

First, we note that x_1 is a Perron number if and only if a > 0, thus if $a \ge 1$. Second, x_1 is a Pisot number if and only if $-2 + a < \Delta < a + 2$.

We have $\sqrt{\Delta} < a+2$ if and only if b < a.

Next, $-2+a < \sqrt{\Delta}$ if $a \le 2$. If $a \ge 3$, then $-2+a < \sqrt{\Delta}$ if and only if $2-a \le b$.

Proof of Proposition 1. The case $a \ge b \ge 1$ has been discussed in Theorem 2. The second case gives $d(1, \beta) = (a-1)(a+b-1)^{\omega}$, which has been treated in Theorem 3.

Finally, we give a 'quantitative version' of the results above, which is needed for the application to substitution dynamical systems. Condition (F_2) may be restated as follows: finite β -expansions can be added producing a finite β -expansion. Condition (F_3) means that subtraction is also allowed within finite expansions. One may ask if there is a bound on the increase of the length of the expansion in these operations. The answer is 'yes' if the base is a Pisot number. Let $\operatorname{Fin}_N(\beta)$ be the set of numbers x such that in the β -expansion $x_{-k} = 0$ for k > N.

PROPOSITION 2. Let β be a Pisot number. There exists $L = L(\beta)$ having the following property. Let $x, y \in \operatorname{Fin}_N(\beta)$, x > y. If $x + y \in \operatorname{Fin}(\beta)$ then $x + y \in \operatorname{Fin}_{N+L}(\beta)$, and if $x - y \in \operatorname{Fin}(\beta)$ then $x - y \in \operatorname{Fin}_{N+L}(\beta)$.

This property can be deduced from a result of the first author [Fr1] which says that, if β is a Pisot number, then addition (and subtraction) in base β is computable by a finite 2-automaton with bounded delay, that is a finite 2-automaton such that the distance between the two heads keeps bounded. We give here a direct proof, which is a simple modification of the Schmidt's argument in [S, p. 271].

Proof of Proposition 2. Let $z = x \pm y$. Dividing x and y by β^k , if necessary, we can assume that $z \in]0, 1[$. The hypotheses of the Proposition imply that

$$z = \sum_{i=1}^{N} A_i \beta^{-i}$$
, where $A_i \in \mathbb{Z}, |A_i| \le 2[\beta]$.

Let $z = \varepsilon_1 \varepsilon_2 \dots \varepsilon_M$ be the β -expansion. Consider

$$\rho^{(N)} = \left(z - \sum_{i=1}^{N} \varepsilon_{i} \beta^{-i}\right) \beta^{N} = T_{\beta}^{N} z.$$

Let *m* be the degree of β , and let β_2 , β_3 ,..., β_m denote the conjugate roots of $\beta = \beta_1$. Clearly, $\rho^{(N)} \in \mathbb{Z}[\beta] \subset \mathbb{Z}[\beta^{-1}]$, so one can write

$$\rho^{(N)} = \sum_{i=1}^{m} r_i \beta^{-i}, \quad r_i \in \mathbb{Z}.$$

We claim that $|r_i| \le C(\beta)$, where the constant $C(\beta)$ does not depend on N. Let

$$\rho_j^{(N)} = \sum_{i=1}^m r_i \beta_j^{-i}, \quad j = 1, 2, \dots, m.$$
 (4)

Note that β satisfies the equation:

$$\sum_{i=1}^{m} r_i X^{-i} = \sum_{i=1}^{N} (A_i - \varepsilon_i) X^{N-i}.$$

This implies that

$$\rho_j^{(N)} = \sum_{i=1}^m r_i \beta_j^{-i} = \sum_{i=1}^N (A_i - \varepsilon_i) \beta_j^{N-i}, \quad 1 \le j \le m.$$

Therefore, for $j \ge 2$,

$$|\rho_j^{(N)}| \le [\max(A_i) + \max(\varepsilon_i)](1-\eta)^{-1} \le 3[\beta](1-\eta)^{-1},$$

where $\eta = \max_{j \geq 2} |\beta_j| < 1$. On the other hand, $|\rho_1^{(N)}| = T_\beta^N z < 1$. Since the matrix $[\beta_j^{-k}]_{j,k \leq m}$ is nonsingular, it follows from (4) that $|r_i| \leq C(\beta)$, $i = 1, \ldots, m$. The claim is proved. Consider the finite set $G = \{t = \sum_{i=1}^m d_i \beta^{-i}, d_i \in \mathbb{Z}, |d_i| \leq C(\beta)\}$, and let $L = L(\beta)$ be the maximal length of β -expansions for numbers $t \in G \cap \text{Fin } (\beta)$. This L is the desired one, since $\rho^{(N)} \in G \cap \text{Fin } (\beta)$, and has the β -expansion $\rho^{(N)} = \varepsilon_{N+1} \varepsilon_{N+2} \ldots \varepsilon_M$.

REFERENCES

- [Be] A. Bertrand. Développements en base de Pisot et répartition modulo 1. C.R. Acad. Sci., Paris 285 (1977), 419-421.
- [B1] F. Blanchard. β-expansions and symbolic dynamics. Theor. Comp. Sci. 65 (1989), 131-141.
- [Bo] D. Boyd. Salem numbers of degree four have periodic expansions. Number Theory. eds., J.H. de Coninck and C. Levesque. Walter de Gruyter, 1989, pp 57-64.
- [Br] A. Brauer. On algebraic equations with all but one root in the interior of the unit circle. Math. Nachr. 4 (1951), 250-257.
- [Fra] A. S. Fraenkel. Systems of numeration. Amer. Math. Monthly 92(2) (1985), 105-114.
- [Fr1] Ch. Frougny. Representations of numbers and finite automata. Math. Systems Theory 25 (1992). 37-60.
- [Fr2] Ch. Frougny. How to write integers in non-integer base. LATIN 92, Sao Paulo. Springer Lecture Notes in Computer Science 583 (1992), 154-164.
- [H] D. Handelman. Spectral radii of primitive integral companion matrices. Contemp. Math. (1992).
- [P] W. Parry. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungary 11 (1960), 401-416.
- [PT] A. Pethö & R. Tichy. On digit expansions with respect to linear recurrences. J. Number Theory 33 (1989), 243-256.
- [Pr] B. Praggastis. University of Washington. PhD Thesis (1992).
- [Q] M. Queffélec. Substitution dynamical systems—spectral analysis. Springer Lecture Notes in Mathematics 1294 (1987).
- [R] A. Rényi. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungary 8 (1957), 477-493.
- [S] K. Schmidt. On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269-278.
- [Sa] R. Salem. Algebraic Numbers and Fourier Analysis. D. C. Heath & Co.: Boston, 1963.
- [Se] E. Seneta. Non-negative Matrices. An Introduction to Theory and Applications. G. Allen & Unwin, London, 1973.
- [So1] B. Solomyak. Finite β -expansions and spectra of substitutions. Preprint, 1991.
- [So2] B. Solomyak. Substitutions, adic transformations, and beta-expansions. Contemp. Math. (1992).
- [T] W. Thurston. Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes, Boulder, 1989.