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Abstract. We characterize numbers having finite B-expansions where 8 belongs to
a certain class of Pisot numbers: when the B-expansion of 1 is equal to a,4, ... a,,
where a;,=a,= ---=a,=1 and when .the pB-expansion of 1 is equal to
thty... ty(tpe)” where == -21,>t, =1

1. Introduction
Representations of real numbers with an arbitrary base B> 1, called B-expansions,
were introduced by Rényi [R]. They arise from the orbits of a piecewise-monotone
transformation of the unit interval: Ty :x—>Bx (mod 1). Such transformations were
extensively studied in ergodic theory (see [P] and the bibliography in [B1]).
Properties of B-expansions are strongly related to symbolic dynamics [B1]. The
closure of the set of infinite sequences, appearing as B-expansions, is called the
B-shift. It is a symbolic dynamical system, that is, a closed shift-invariant subset of
2N, where the alphabet o is the set of all possible digits {0, 1,...,[8]}. A symbolic
dynamical system is said to be of finite type if the set of its finite factors is defined
by the interdiction of a finite set of words. It is said to be sofic if the set of its finite
factors is recognized by a finite automaton. The B-shift has finite type if and only
if T%1=0 for some k, and it is sofic if and only if the orbit { Ts1} is finite (see [B1]).
In this paper we study the set of numbers x =0 having finite B-expansions, which
we denote by Fin (8). It is a subset of Per (8), the set of numbers having eventually
periodic B-expansions. For a standard system of numeration, when B is an integer
greater than one, one has Per (8)=Q(B)NR, and Fin (8)=Z[B']NR..
Eventually periodic B-expansions were investigated by Bertrand [Be] and Schmidt
[S]. An algebraic integer is called a Pisot number if all its Galois conjugates have
modulus less than one, and a Salem number if all its conjugates are less or equal
than one in modulus and at least one conjugate has modulus one. It is proved in
[Be, S] that if B is a Pisot number, then Per (8) = Q(8) N R.. Conversely, Schmidt
proved [S] that if QN [0, 1]< Per (B), then B is a Pisot, or a Salem number. It is
still unknown whether all rationals have eventually periodic B-expansions if 8 is a
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Salem number. Boyd [Bo] has shown that if 8 is a Salem number of degree four,
then the B-expansion of 1 is eventually periodic.

One of the authors proved in [Frl] that addition (and multiplication by a fixed
integer) in base B—where B is a Pisot number—is a function computable by a finite
automaton. In this paper we find two classes of Pisot numbers for which the sum
of two finite B-expansions is again a finite B-expansion. Examples show that this
is false for some Pisot numbers.

We first prove that if Z. < Fin (8) then B is a Pisot number or a Salem number,
and if Z[B']N R, < Fin (B) then B is a Pisot number (Lemma 1). It is also possible
to show that Z[B']NR,=Z.[B7'] if and only if B is a Perron eigenvalue of a
primitive companion matrix (Lemma 2).

The main results of the paper are the following two theorems which give sufficient
(but certainly not necessary) conditions for the inclusion Z,[8~']NR. < Fin (8).

Let B be the positive root of the polynomial M(X)=
X"—a, X" -, X" ?~---—a,, a;€Z, and a,=a,=---=a,,>0. Then 8 is a
Pisot number, the B-shift is a system of finite type, and Fin (8)=Z[B8 'INR,
(Theorem 2). The corresponding systems of numeration were considered in [Fra, PT].

Let B>1 be a real number such that the B-expansion of 1 is equal to
tity ..ty (type)”, with y=t,=+--=1,>1,,,>0. Then B is a Pisot number, and
Z.[B ']< Fin (8) (Theorem 3).

The numbers 8 in Theorem 2 and in Theorem 3 have a common feature: in fact,
B belongs to one of these two classes if and only if the orbit of 1 under the
B-transformation is non-increasing.

As a corollary we obtain the following result: for every Pisot number 8 of degree
2, Z.[p™"]< Fin (B).

At the end we give a quantitative version of the results above (Proposition 2) for
application to substitution dynamical systems. Let { be the substitution of the
alphabet {1, 2, ..., m}:

g(1)=1.k..12,§(2)=1 .k..13,...,§(m—l)=1’;.. 1 m,{(m)=1.k..1.
1 2 -] "
This substitution generates a minimal, uniquely ergodic measure-preserving system
(‘substitution dynamical system’, see [Q]). In [So2] one of the authors proved that
if B is a Pisot number of degree m such that the B-expansion of 1 is equal to
kik;...k,, and if Z[B"']NR, < Fin (B), then the substitution dynamical system
has purely discrete spectrum. The class of numbers in Theorem 2 fits this scheme.

The properties of periodic and finite expansions are related to the theory of tilings
(see [T]). Theorem 2 was used by Praggastis [Pr] to construct Markov partitions
for some toral automorphisms.

Some of the results presented here can be found in [Fr2] and in [Sel].

2. Representation of numbers
Let B> 1 be a real number. A representation in base 3 (or a B-representation) of a
real number x =0 is an infinite sequence (X;)y==—, X; =0, such that

x=x8%+x_ B+ +x;B+xo+x BT +x_,87 0+ -
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for a certain integer k=0. It is denoted by

X=Xk g s XX KX s
A particular B-representation—called the B-expansion—can be computed by the
‘greedy algorithm’:

Denote by [y] and {y} the integer part and the fractional part of a number y.
There exists k € Z such that B*=x < g**'. Let x, =[x/B*], and r, ={x/8"}. Then
for k>i=-o0, put x;,=[Br.,], and r,={Br.,}. We get an expansion x=
B +x B+ If k<0 (x<1), we put xp=x_,=:'-=X4,=0. If an
expansion ends in infinitely many zeros, it is said to be finite, and the ending zeros
are omitted.

The digits x; obtained by this algorithm are integers from the set &£ ={0, ..., 8 —1}
if B is an integer, or the set & ={0, ...,[B1} if B is not an integer. We will sometimes
omit the splitting point between the integer part and the fractional part of the
B-expansion; then the infinite sequence is just an element of AN,

For numbers x < 1, the expansion defined above coincides with the B-expansion
of Rényi [R], which can be defined by means of the B-transformation of the unit
interval

Tpx=pBx(mod 1), x€[0,1].
In fact, for x € [0, 1[, we have x, =[8T5 'x]. However, for x =1 the two algorithms
differ: our expansion is just 1= 1., while the Rényi expansion is
d(1,B)=.t;t,..., t=[BTF 1],
(the point is usually omitted).

Let D, be the set of B-expansions of numbers of [0, 1[, and let d: [0, 1]> Dp U
{d(1, B)} be the function mapping x # 1 onto its B-expansion, and 1 onto d(1, B).
Clearly, if x=X....X.X_;... is a B-expansion, then x/B*"'= .x...xx_;...
belongs to Dj.

Recall some results concerning the set Dg. The set &" is endowed with the
lexicographical order (notation <,,), the product topology, and the (one-sided) shift
o. The set Dy is shift-invariant. The B-shift S is the closure of D, it is a subshift
of N (see [Be] and [B1]). We have d ° Tz =o o d on [0, 1[. Recall that the B-shift
S, is a system of finite type if and only if d(1, 8) is finite [P] (such numbers were
called simple B-numbers by Parry). The B-shift S is a sofic system if and only if
d(1, B) is eventually periodic (Bertrand, see [B1]).

We recall the characterization of the set D [P]. By x* will be denoted the
sequence xxx. ...

THEOREM 1. Let B be a real number greater than one, and let d(1, B)=1,t,... Let s
be an infinite sequence of positive integers.
(i) If d(1, B) is infinite, the condition
Vp=0, 0"(s) <ixd(1,B)
is necessary and sufficient for s to belong to Dj.
(ii) Ifd(1, B) is finite, d(1, B) =1, ... t,_1t,, then s€ Dy if and only if
Vp=0, 07(s) <wxd*(1,B)=(t; ... tny(tn—1))".
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3. Finite expansions
Let Per (B) be the set of all numbers x = 0 having eventually periodic 8-expansions.
It is clear that Per (8) N[0, 1[ is the set of points whose orbits under T are finite.

Let Q(8) denote the smallest ficld containing the field of rational numbers Q and
B>1. 1t is proved in [Be, S] that if 8 is a Pisot number, then Per (8) = Q(B8)NR..
Conversely, Schmidt proved [S] that if QN [0, 1[ = Per (B8), then B is a Pisot, or a
Salem number.

Now, let Fin (B) stand for the set of x =0 having finite B-expansions. Note that
Fin (B) N[0, 1[ consists of those points whose orbits under Ty end up at zero.

For A>0, Let Z[A] denote the ring of polynomials in A with integral coefficients,
Z.[A] the cone of polynomials with non-negative coefficients, and set (Z[A]).=
ZIAINR,.

If B>1 is an integer, then Fin (8)=(Z[B'])... We will address the problems:
for which B all integers have finite B-expansions? when Fin (8) = (Z[87'])..? More
specifically, consider the following conditions on 8:

(F)) Z.<Fin(B);
(F,) Z.[B']=Fin(B);
(F5) (Z[B™'])+<Fin (B).
Note that condition (F,) implies that 8 is an algebraic integer (consider the

B-expansion of x =[B]+1). If B is an algebraic integer, then Fin (8) = Z[ 8, B =
Z[B™'], so (F,) actually means that Fin (8) =(Z[B87'])+.

Lemma 1. (a) If Z,<Fin(B), then B is a Pisot number or a Salem number; (b)
condition (F;) implies that B is a Pisot number.

Proof. (a) is proved similar to [S, 2.4] and even easier since we deal with finite
expansions. We present the proof for convenience of the reader.

Suppose that B has a Galois conjugate 7, |y|>1. Let n =max (|8]™", |y|™"), and
C=2[B]ln(1—7)7". It is easy to see that one can find m € Z,. so that [B™—y™|>C.
Then take x =[B™]+ 1€ Z, . If x has a finite B-expansion, it must be of the following
form:

x=B"+e B teB i+ FaB N

Since xeZ, all Galois conjugates of B satisfy the same equation, and x=
y"+e, 7 '+ g,y 2+ - -+ gy " Subtracting these two representations of x and
using that |g;|<[B], we come to a contradiction.

(b) It remains to exclude the case of Salem numbers. As mentioned above,
Z. < Fin (B) implies that 8 is an algebraic integer, and so 8 € Z[B']. Thus, B —[B] €
Fin (8), and so B is a root of a polynomial

Xm—lg X" '~k X" 2~ —k,, keZ..
It follows that B has no positive Galois conjugates. On the other hand, it is known

that every Salem number « is reciprocal (see [Sa, p. 26]), and hence has a conjugate
a~'>0. Thus 8 is a Pisot number. O
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We do not know whether conditions (F,) and (F,) are equivalent. The relation
between (F,) and (F;) can be understood with the help of the following lemma.

LEMMA 2. Let A > 0. The following are equivalent:
(a) (Z[A "D =Z. 027"
(b) A is a Perron eigenvalue of a primitive companion matrix.

It is possible that this result is known. By a recent result of Handelman [H],
condition (b) is equivalent to A being a Perron number with no positive conjugates.
Proof of Lemma 2. (a)=>(b). If A <1, then (a) is impossible since then Z.[A7'IN
10, 1[ =@, while A~ =[A""]€(Z[A7']).. Let A=1. Then (a) implies that

1“1{_1_—-6]&_]‘!'(:2*_24" - '+Ck:‘._k, C,‘EZ_'., Ck>0, kZl.
Then A is a Perron eigenvalue of the companion matrix A of the polynomial
p(X)=X*~(c;+1)X* "=, X*?~- - - — ¢. One can check that A¥ is strictly posi-
tive, so A is primitive.

(b)=>(a). Suppose that A is the Perron eigenvalue of a primitive companion matrix

0 0 == O ag

1 0 T 0 Agp—1
M= |0 1 - 0 a.].

0 G <. 1 a

Let x € (Z[A7']),. Using the ‘recurrence relation’
Ar=a a2+ ra T rel,
one can express x as an integral linear combination of k consecutive powers of A.
More precisely, there exist s€ Z, and Be Z* such that
x=A"A=B A=A A7 1]
(‘- denotes the usual scalar product in R*). Since A is the left Perron eigenvector
for M, one has

x=A""'A-M'B. (1)
By the Perron-Frobenius theory (see [Se]),
A-B xA°
limA - 'MB=——R-= R>
:‘12 B AR R AR 0,

where R is a strictly positive right eigenvector for M. Hence M'B=[d;]%,>0 for
I sufficiently large, and by virtue of (1),

k
x=Y dA™""eZ A7) O
i=1
CoroLLARY. The following are equivalent:
(i) B satisfies condition (F3);
(ii) B satisfies condition (F,) and B is a simple B-number (d(1, B) is finite).
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Proof. If B satisfies condition (F;) then 8 —[8]e Fin (B8), o(d(1,8))=4(B8—-[B])
hence d(1, B8) is finite. Conversely, if d(1, B)=a,4a,... a,, then B is the positive
root of the polynomial x*—a,x*™'—---—a,, which has a primitive companion
matrix because a, =[8]= 1. Thus by Lemma 2, (Z[8']). = Z.[87'], and conditions
(F,) and (F;) are identical. [J

The following examples show that there are Pisot numbers such that d(1, 8) is
finite but Z, « Fin (B).
Example 1. Let B be the dominant root of the polynomial X*—3X?+2X —2. Then
B is a Pisot number, d(1, 8) =2102, and the B-expansion of 6 is 6 =20.210(00112)*.

Example 2. Let B be the positive root of the polynomial X*—2X>—X —1. Then B8
is a unitary Pisot number, d(1, 8)=2011, and the B-expansion of 3 is 3=
10.111(00012)“.

4. Systems of finite type

TueorReM 2. Let B be the positive root of the polynomial M(X)=
X"—a X" '—a X" ?—---—a,, a;€Z, and a;=a,=---=a,>0. Then B is a
Pisot number, d(1, B) = a,a," * *a,,, and Fin (B8)=(Z[B " '])+.

The special case of the Theorem when M(X)=X?—X—1,and B=(1+5)/2is

the golden ratio, is known and seems to belong to folklore. Note also that the case
of M(X)=X?-nX —1 is implicitly contained in [S, 3.4].
Proof. Since the sequence a,a,. .. a,, is lexicographically greater than its shifts, one
has from [P] that d(1, B) = a,a, ... a,,. From [Br, Th. 2] it follows that 8 is a Pisot
number with the minimal polynomial M(X). Using Lemma 2 and dividing by 8*
if necessary, we see that one needs to prove only that Z.[8']N[0, 1[ < Fin (B).
Let x€ Z,[B”'], 0=x<1. Then x has a B-representation which ends in infinitely
many zeros. Of course, it does not have to be the B-expansion of x. Let us say that
a sequence is B-admissible if it corresponds to a B-expansion of some number. We
are going to apply an algorithm which modifies a finite 8-representation of x, aiming
at a B-admissible sequence.

First we formulate the algorithm, and then prove that the process stops after
finitely many passes. The following notations will be used: if w=w,w,... is a
sequence, then s P, w denotes the sequence 5,5, ... Sg—(Sx + W) (Ske1 T W,) ... The
factor s;. .. 5., of s will be denoted by s[i; i+ k].

It follows from Theorem 1 that a sequence s = 5,5, ...5.0" is B-admissible if and
only if for all k holds

s[k+1,k+m]<,.a,...a,.
ALGorrTHM. Applied to a sequence s=s,5,...50" s,€Z,, such that x=
YisisBT <L
Step 1. If there is a factor s[k+1, k+ m]=a,a,... a, (termwise), let

s'=s @ 1(—a,) - - -(—an).

Repeat this as long as possible, then go to Step 2.
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Step 2. Find the least k such that
slk+1, k+m]> e a1a; . .. Q. (2)

If there is no such k, the sequence s is B-admissible, and the process stops (since
Step 1 has been performed before, equality in (2) is impossible). Observe that k=1,
since 1>x> 5,87 '=s5,<[B]l=aq,.

It follows from (2) that there exists /= k+1 such that

S[k"‘], l—l]=a|az... Qp—1, 87 Q-
Since we have already performed all possible operations in Step 1, I=<k+m—1. Let

3’=S@[1(—al} w2 (-tz,..)]qa[(—l)c:1 S

More explicitly, we have

( s, fori=k—1,and i=l+m+1;
si+1, fori=k;
0, fork+1=i=I-1;
si=4 (3)
S,-—a;_k—l, for I-=I;
S,--ai_._k+a;_,, forl+1=i=k+m
 sitaiy, fork+m+l=i=sl+m.

Go to Step 1.

It is clear that in both steps of the Algorithm s’ is non-negative. The fact that s’
is a representation of x in base B follows from the equation B'=
a,B" '+ a,B*+ - - +a,,B "™ Thus is remains to check that the process stops after
finitely many passes of the algorithm.

Observe that after each operation in Step 1, the sum of all digits decreases:
Yisi=Y,;s—(a;+- - -+a,—1). It follows that the operation in Step 1 can be applied
only finitely many times.

Let us analyze what is going on in Step 2. First we note that the operation in
Step 2 does not change the sum of the digits: }; s; =Y, s;. Let I be the index in Step
2. The quantity

-1

Adm,s=Y sB~,
i=1

will be called the B-admissible part of x with respect to s. Note that [ is the maximal
index such that the sequence s,5,...5_,0" is B-admissible. We have to consider
two cases.

Case 1. The sequence sis5...s;_,0” is B-admissible.

-1

Adm,s'= ¥ siB ' =Adm,s+B ¥ —aB '~ —q_ B8 "' =Adm, s+
i=1

Case 2. The sequence sis5...57-,0“ is not B-admissible.
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Then from (3) and the choice of k and I in Step 2 it follows that sTk—m+1, k]=
a,...a,-,a,, and the operation in Step 1 will be applied in the next pass of the
algorithm.

Conclusion of the proof. Let s” =5, and let s’ be the representations of x obtained
by repeated application of the Algorithm. If the process stops at s, then it is
B-admissible, and we get a finite 8-expansion of x because s{"’ =0 for i sufficiently
large. Suppose that the process goes on indefinitely. Since the sum of the digits
remains unchanged in Step 2 and decreases in each operation of Step 1, the operation
in Step 1 can be applied only finitely many times. Choose K so that for j> K, only
the operation in Step 2 was applied. Then for j> K we always find ourselves in

Case 1. Let I, be the index ! for the sequence s',

I, =max {r:s{”s¥”...s,0* is B-admissible}.
We have for j > K,
x=Adm, sY*" = Adm, sV + 874
Therefore, J;-> 0 as j>c0. Looking at (3) we see that s{/*" =5 for i<l —2m, so
there exists the limiting sequence § such that §; = s{ for all j sufficiently large. Since
Y. s¥=Y,s =S, we conclude that
x=lim ¥ s¥B7'=% 587
joo i=1 i=1

and also ¥; §;=S. But §;€ Z., so there exists K, such that §;=0 for i> K. Let j,
be such that s’ = §; for i=K,, j=j,. Then we have

Kl oo

x=1 5= LSBT, =,
i= i=1

whence s = §, j= j,, for all i. But this means that s/*" =5, so no operation was

applied. This is a contradiction. We have shown that the process stops, and the

proof of Theorem 2 is now complete. il

5. Sofic systems

THEOREM 3. Let B> 1 be a real number such that d(1, B) = tity.. . tm(tnsir)”, With
ty=t,= -+ =t,>1t,,,>0. Then B is a Pisot number, and Z.[B~']< Fin (B).
Proof. From the equality d(1, 8)=1t,t,... l,(t,.+1)* one deduces that B is a real
root of the polynomial

MX)=X""—(,+ DX+ (=) X"+t (g — ) X + (1 — L)

From a result of Perron (see [Br, I11]) one has that B is a Pisot number and that M
is the minimal polynomial for B.
Let xe Z.[B']. As in the proof of Theorem 2, one can assume that x <1. Then
x has a B-representation x =Y/, 5,87, 5;€ Z,. We shall use an algorithm which
[+ o]

reduces a finite B-representation to a finite B-expansion. Set t=d(1, B)= (%)=,
keeping in mind that t,=1,., fori=m+1.
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ALGORITHM. Applied to a sequence s =s5,5;...5,0% s, € Z,, such that x =¥, 5B .
Find the least k such that

S[k"‘ 1’ CO[ > lex d(ls )8) =L

If not found, the sequence s is B-admissible, and the process stops. Otherwise, let
I=k+1 be such that

S[k+l, 1_1]=f1...11_k_;, > bk
Put
s'=s G;? [1(=t)(-2)...] @ [(-Dtty...],

or more explicitly,

[ fori=k—1,and i=l+m+1;
s5;+1, for i=k;

si=¢0, fork+1l=i=l—1;
Si—thox—1, fori=I,
S5 — bt tig, forl+1=i=]+m.

\

Set s:=s’, and go to the beginning of the Algorithm.

From the choice of k and I, and the monotonic property of the f it follows that
s' is a non-negative sequence. This sequence is a B-representation of x because
t=d(1, B). Finally, since t; = t,,+, for i=m+1, we have

o oo [=+}
Z S;= Z S,'_(I_‘k)tm+15 Z S,:_]..
i=1 i=] i=1
Therefore s! terminates with infinitely many zeros, and the sum of all digits has
decreased. So the process starting with 5@ =, ¥ = (s")', stops at sM N=Y.s,
which provides a finite B-expansion of x. O
As a corollary of Theorem 2 and Theorem 3 one has the following

ProrosiTiON 1. For every Pisot number B of degree 2, Z.[B '1=Fin (B).
Proof of Proposition 1 comes from the following characterization of Pisot numbers
of degree 2.

LEMMA 3. The only Pisot numbers of degree 2 are the dominant roots of the following
polynomials in Z[ X]
X?—aX-b witha=b=1;
X?—aX-bwitha=3 and —a+2=<b=-1.

Proof. Let P(X) = X?—aX — b, with b # 0, and a # 0 (else its root cannot be a Perron
number). Since one of the roots is positive, the discriminant A> 0, and let x, =
(a++vA)/2 and x,=(a—VA)/2.

First, we note that x, is a Perron number if and only if a >0, thus if a = 1. Second,
x, is a Pisot number if and only if —2+a<A<a+2.

We have VA< a+2 if and only if b<a.



722 C. Frougny and B. Solomyak

Next, —2+a<+vA if a<2. If a=3, then —2+a<+A if and only if 2—a=<¥b.
O

Proof of Proposition 1. The case a=b=1 has been discussed in Theorem 2.
The second case gives d(1,B)=(a—1)(a+b—1)", which has been treated in
Theorem 3. (]

Finally, we give a ‘quantitative version’ of the results above, which is needed for
the application to substitution dynamical systems. Condition (F,) may be restated
as follows: finite B-expansions can be added producing a finite B-expansion.
Condition (F;) means that subtraction is also allowed within finite expansions. One
may ask if there is a bound on the increase of the length of the expansion in these
operations. The answer is ‘yes’ if the base is a Pisot number. Let Finy (8) be the
set of numbers x such that in the B-expansion x_, =0 for k> N.

ProPoOSITION 2. Let B be a Pisot number. There exists L= L(B) having the following
property. Let x, y e Finy (B), x>y. If x+ y € Fin (B) then x+y e Finn., (B), and if
x—yeFin (B) then x—y € Finyn.. (B).

This property can be deduced from a result of the first author [Frl] which says
that, if B8 is a Pisot number, then addition (and subtraction) in base B8 is computable
by a finite 2-automaton with bounded delay, that is a finite 2-automaton such that
the distance between the two heads keeps bounded. We give here a direct proof,
which is a simple modification of the Schmidt’s argument in [S, p. 271].

Proof of Proposition 2. Let z=x+y. Dividing x and y by B if necessary, we can
assume that z € J0, 1[. The hypotheses of the Proposition imply that

N
z=Y AB~", where A €Z, |A]|=2[B].

i=1

Let z=¢,¢,... gy be the B-expansion. Consider
N
o= (s o) g =73

Let m be the degree of B, and let 8,, Bs,..., Bn denote the conjugate roots of
B =p,. Clearly, p'™ e Z[B]< Z[B '], so one can write

p™M=3 B, nel

i=]1

We claim that |r;|= C(B8), where the constant C(8) does not depend on N. Let

p}N}= Z thj-!', j=.152,-'-=m' (4)

i=]1

Note that B8 satisfies the equation:

m N
X '=Y (A—-e)XN
i=1 i=1

This implies that

m

. N
piV'=Y rB;'= ¥ (A—e)B]'”, 1sj=m
1 i=1

i
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Therefore, for j=2,
|o$™)| = [max (A;)+max (&)](1—7) " =3[B11-n)"",

where n=maxj32|,81[{1. On the other hand, |p{™|= Tg'z<1. Since the matrix
[B;*1,x=m is nonsingular, it follows from (4) that |r,|= C(B), i=1,..., m. The claim
is proved. Consider the finite set G={t=Y,., dB ", d.€Z, |d|=<C(B)}, and
let L= L(B) be the maximal length of B-expansions for numbers t€ G Fin (8).
This L is the desired one, since p™’ e GNFin(B), and has the B-expansion

1y, & R
P =ENi1EN+2 - - EM- O
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