# Non-standard number representation: computer arithmetic, symbolic dynamics and quasicrystals

Christiane Frougny

LIAFA and University Paris 8 http://www.liafa.jussieu.fr/~cf/

Journées Montoises d'Informatique Théorique Liège, 8 – 11 Septembre 2004

#### Numeration system

# Positional numeration system

a real number or a basis  $U = (u_n)_{n \ge 0}$  where  $u_n$  is an integer or number of modulus > 1 Base  $\beta$ : an integer, or a real, or a complex

Digits: integer, or real, or complex numbers

Part I: Computer arithmetic

### Standard numeration

Base  $\beta > 1$  integer

Canonical alphabet  $A = \{0, ..., \beta - 1\}$  $\beta$ -representation of N integer  $\geqslant 0$ : word  $d_k \cdots d_0 = \langle N \rangle_{\beta}$  of  $A^*$  such that

$$N = \sum_{i=0}^{\kappa} d_i \beta^i$$

Unique if  $d_k \neq 0$  (called canonical)

 $\beta$ -representation of x in [0,1]: infinite word  $(x_i)_{i\geqslant 1}$  of  $A^{\mathbb{N}}$  such that

$$x = \sum_{i \ge 1} x_i \beta^{-i}$$

Unique if does not end in  $(\beta - 1)^{\omega}$  (canonical).

Notation

$$\langle x \rangle_{\beta} = \boldsymbol{\cdot} x_1 x_2 \cdots$$

#### Addition of integers

Addition of integers in base 2 (from right to left)



Addition base 2 is right subsequential.

#### Digit-set conversion

C alphabet of positive or negative digits containing  $A = \{0, ..., \beta - 1\}$ 

Numerical value  $\pi_{\beta}: C^* \to \mathbb{Z}$  such that  $\pi_{\beta}(c_k \cdots c_0) = \sum_{i=0}^k c_i \beta^i$ .

Conversion on  $C: \chi_{\beta}: C^* \to A^*$  such that

 $\pi_{\beta}(c_k\cdots c_0)=\pi_{\beta}(a_n\cdots a_0).$ 

Addition = conversion on  $\{0, ..., 2(\beta - 1)\}$ 

Subtraction = conversion on

 $\{-(\beta-1),\ldots,(\beta-1)\}$ 

Multiplication by a fixed integer m > 0 =

conversion on  $\{0, \ldots, m(\beta - 1)\}$ 

Conversion on  $C^*$  is right subsequential for any C.

Division by a fixed integer is left subsequential

Addition base  $\beta$  on  $\{0,\ldots,\beta-1\}$  is not left sequential.

Base 2 on  $\{0, 1\}$ 

$$01^n 0^\omega + 0^n 10^\omega = 10^\omega$$

$$01^n 0^\omega + 0^\omega = 01^n 0^\omega$$

Multiplication is not computable by a finite automaton.

## Redondant representations

 $\mathbb{Z}$ , n positions. Base  $\beta$  integer, digits  $B = \{m, \dots, M\}, m < M$  in

$$I = \left[ m \frac{\beta^n - 1}{\beta - 1}, M \frac{\beta^n - 1}{\beta - 1} \right].$$

If  $|B| < \beta$ , some integers in I have no representation in base  $\beta$  with n positions.

If  $|B| = \beta$  every integer in I has a unique representation.

non necessarily unique. If  $|B| > \beta$ , every integer in I has a representation,

When  $|B| > \beta$ , there is redondancy.

## Avizienis representations

Base  $\beta$  integer, digits in  $B = \{\bar{a}, \dots, a\}$ .

Redondancy:  $|B| \ge \beta + 1$  i.e.  $2a \ge \beta$ .

as  $d_k$  iff  $a \leq \beta - 1$ . Sign:  $N = \pi_{\beta}(d_k \cdots d_0)$  with  $d_k \neq 0$  has same sign

Choice  $\beta/2 < a \leq \beta - 1$ 

Example  $\beta = 10, a = 6, B = \{\bar{6}, \dots, 6\}$ 

Redondancy :  $46 =_{10} 5\bar{4}$ .

Addition with no carry propagation:

|                |                |          |    | + |   |
|----------------|----------------|----------|----|---|---|
| $\vdash$       |                | $\vdash$ | 0  | 0 | 0 |
| ဃ၊             | 31<br>57<br>31 | 0        | 7  | 5 | 2 |
| ೮              | පැ             | 0        | 5  | 0 | တ |
| $\overline{2}$ | ဃ၊             | $\vdash$ | 3  | 1 | 4 |
| 2              |                |          | 12 |   |   |

#### Rewriting rules

Idem for negative digits.

between 2a and a (resp. -2a and -a). Works for  $\beta \geqslant 3$  and  $\beta/2 < a \leqslant \beta - 1$ . Rewrite

2-local. Addition in constant time in parallel. Addition is

$$\beta=2,\,B=\{\bar{1},0,1\}$$
 ([Chow and Robertson]).

Rewriting rules

For digit 1 one uses a window

Idem for negative digits.

 $a = \beta/2$ . Similar algorithm for addition in even base  $\beta$  with

Addition in constant time in parallel. Addition is 3-local.

# Carry-Save representations

in  $B = \{0, 1, 2\}$ Redondant representations in base 2 with digits

can be done in constant time in parallel. a representation over  $A = \{0, 1\}$  with result on BAddition in base 2 of a representation over B and

Used for internal additions in multipliers.

# Booth canonical representations

Base 2,  $A = \{0, 1\}, B = \{1, 0, 1\}.$ 

Find a representation on B with the minimum number of non-zero digits.

with  $n \ge 2$ , is transformed into  $10^{n-1}\overline{1}$ . Right-to-left recoding: every factor of form  $01^n$ ,

The Booth recoding is a right subsequential function from  $A^*$  to  $B^*$ .



# Applications of the Booth normal form

- multiplication
- internal representation for division: base 4 with digits in  $\{\bar{3},\ldots,3\}$
- computations on elliptic curves.

#### On-line computability

to right. To pipe-line additions/subtractions, be done Most Sigificant Digit First, i.e. from left multiplications and divisions, computations are to

and Trivedi, 77] input digit there is one output digit. [Ercegovac and, after a certain delay  $\delta$  of latency, for one Additional requirement: deterministic processing

$$\varphi: A^{\mathbb{N}} \longrightarrow B^{\mathbb{N}}$$

$$(a_j)_{j\geqslant 1} \mapsto (b_j)_{j\geqslant 1}$$

 $\varphi$  is on-line computable with delay  $\delta$  if there exists  $\delta$  such that, for each  $j \ge 1$  there exists

$$\Phi_j:A^{j+\delta}\to B$$

such that

$$b_j = \Phi_j(a_1 \cdots a_{j+\delta})$$

elements of A.  $A^{j+\delta}$  is the set of sequences of length  $j+\delta$  of

An on-line computable function is continuous [J.-M. Muller]

### On-line finite automata

On-line finite automaton = particular

- (sub)-sequential automaton: • transient part: during a time  $\delta$  (delay) the automaton reads without writing
- letter-to-letter • synchronous part: then the transitions are

## base 3 on $B = \{2, ..., 2\}$ On-line finite automaton with delay 1 for addition



$$p \xrightarrow{x/y} q \Leftrightarrow 3p + x = 3y + q$$
$$\omega(q) = q$$

 $\beta/2 \leqslant a \leqslant \beta - 1.$ computable by an on-line finite automaton in integer base  $\beta$  on  $B = \{\bar{a}, \dots, a\}$ , with Every affine function with rational coefficients is

Conversely, let  $D = \{\bar{d}, ..., d\}$  with  $d \ge a$ ,  $I = [-a/(\beta - 1), a/(\beta - 1)],$   $J = [-d/(\beta - 1), d/(\beta - 1)].$ 

$$egin{array}{ccccc} D^{13} & \longrightarrow & & & & & & & \\ \pi_{eta} & & & & & & & & & \\ J & \longrightarrow & & & & & & & \\ J & \longrightarrow & & & & & & I \end{array}$$

each interval where  $\chi_{\mathbb{R}}$  is continuous,  $\chi_{\mathbb{R}}$  is affine automaton. If  $\chi_{\mathbb{R}}$  is piecewise continuous, then, in such that  $\chi$  is computed by an on-line finite with rational coefficients. [J.-M. Muller]

### On-line multiplication

[Trivedi and Ercegovac 1977]

algorithm with delay  $\delta$ , where  $\delta$  is the smallest  $\beta/2 \leqslant a \leqslant \beta - 1$ , is computable by an on-line Multiplication of two numbers represented in positive integer such that integer base  $\beta > 1$  with digits in  $S = \{-a, ..., a\}$ ,

$$\frac{\beta}{2} + \frac{2a^2}{\beta^{\delta}(\beta - 1)} \leqslant a + \frac{1}{2}.$$

If 
$$\beta = 2$$
 and  $a = 1$ ,  $\delta = 2$ .  
If  $\beta = 3$  and  $a = 2$ ,  $\delta = 2$ .  
If  $\beta = 2a \geqslant 4$  then  $\delta = 2$ .

If 
$$\beta \geqslant 4$$
 and if  $a \geqslant \lfloor \beta/2 \rfloor + 1$ ,  $\delta = 1$ .

# Complex base, integer digits

Base  $\beta = i\sqrt{b}$ , with b integer  $\geqslant 2$ , digits  $A = \{0, \dots, b-1\}$  Knuth

Every complex number has a representation.

If  $b = c^2$ , every Gaussian integer has a unique representation  $d_k \cdots d_0 \cdot d_{-1}$ .

Example  $\beta = 2i$ ,  $A = \{0, ..., 3\}$ , z = 4 + i is represented by 10310.2.

On A addition in base  $\beta = i\sqrt{b}$  is right subsequential.

realizable by an on-line finite automaton. is computable in constant time in parallel, and On  $B = {\bar{a}, ..., a}$  with  $b/2 \le a \le b-1$ , addition

Muller, Frougny, Surarerks Multiplication is on-line computable. [Nielsen and

Base  $\beta = -b + i$ , with b integer  $\geq 1$ , digits  $A = \{0, \dots, b^2\}$  [Case b = 1 Penney]

Every complex number has a representation.

Every Gaussian integer has a unique representation  $d_k \cdots d_0 \in A^*$ .

On A addition in base  $\beta = -b + i$  is right subsequential. [Safer]

automaton. [Herreros, Nielsen and Muller, parallel, and realizable by an on-line finite base -1+i is computable in constant time in Case  $\beta = -1 + i$ ,  $A = \{0, 1\}$ .  $\beta^4 = -4$ . On Frougny, Surarerks  $B = \{\bar{a}, \dots, a\}$ , with a = 1, 2 or 3, addition in

## Real basis, integer digits

real numbers, summable.  $U = (u_n)_{n \ge 0}$  a decreasing sequence of positive

A a finite alphabet of integers

A real number x can be represented as

$$x = \sum_{n \geqslant 0} d_n u_n$$

algorithm [Muller]. with  $d_n \in A$  under certain conditions by a greedy

Remark: if  $x = \sum_{n \ge 0} d_n \log(1 + 2^{-n})$  then Example  $u_n = \log(1 + 2^{-n})$ , and  $A = \{0, 1\}$ .

$$e^x = \prod_{n \ge 0} \log(1 + 2^{-n})^{d_n}$$

of elementary functions. Application CORDIC algorithms for computation

# Double base representation

Finite redundant representations of the form

$$N = \sum_{i,j} d_{i,j} 2^i 3^j$$

with  $d_{i,j} \in \{0,1\}$ . [Dimitrov, Jullien and Miller]  $N = \sum_{i,j} d_{i,j} 2^i 3^j$ 

signal processing. Application Modular exponentiation, and digital

Part II: Symbolic dynamics

# Beta-numeration (Rényi, Parry)

$$\beta > 1, x > 0$$

Beta-expansion of x:

$$\beta^k \leqslant x < \beta^{k+1}$$

$$x_k = |x/eta^k|$$
 and  $x_k$ 

 $x_k = \lfloor x/\beta^k \rfloor$  and  $r_k = \{x/\beta^k\}$ .

For 
$$i < k$$
, let  $x_i = \lfloor \beta r_{i+1} \rfloor$ , and  $r_i = \{\beta r_{i+1}\}$ .

$$\langle x \rangle_{\beta} = x_k x_{k-1} \dots x_1 x_0 \cdot x_{-1} x_{-2} \dots$$

 $A_{\beta} = \{0, \ldots, \lfloor \beta \rfloor \}$  if  $\beta$  is not an integer.  $x_i \in A_\beta$  where  $A_\beta = \{0, \dots, \beta - 1\}$  if  $\beta$  integer or

If the sequence  $(x_i)$  ends in  $0^{\omega}$ , it is said finite.

#### $\beta$ -expansion of 1

 $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor.$ Let  $T_{\beta}(x) = \beta x \mod 1$  and  $d_{\beta}(1) = (t_i)_{i \ge 1}$ , where

Redondancy A number may have several  $\beta$ -representations.

Example  $\varphi = (1 + \sqrt{5})/2$ ,  $A_{\varphi} = \{0, 1\}$   $d_{\varphi}(1) = 11$ .

 $x = 3 - \sqrt{5}$ ,  $\langle x \rangle_{\varphi} = 10010^{\omega}$ .

The factor 11 is forbidden in  $\langle x \rangle_{\varphi}$ .

Other  $\varphi$ -representations de x  $01110^{\omega}$ ,  $100(01)^{\omega}$ ,  $011(01)^{\omega}$ , ...

#### Beta-shift

 $\sigma$  shift on  $A_{\beta}^{\mathbb{N}}$ :  $\sigma((x_i)_{i \geqslant 1}) = (x_{i+1})_{i \geqslant 1}$ .

 $D_{\beta} = \{\langle x \rangle_{\beta} \mid x \in [0, 1[\} \text{ is a shift-invariant subset of } A_{\beta}^{\mathbb{N}}.$ 

 $\beta$ -shift  $S_{\beta} = \text{topological closure of } D_{\beta}$ .

# Symbolic dynamical systems

 $S\subseteq A^{\mathbb{N}}$  symbolic dynamical system = closed shift-invariant subset

F(S) = set of finite factors of SX(S) set of minimal forbidden words.

S is of finite type if X(S) is finite. Equivalent to F(S) recognizable by a local finite automaton.

finite automaton. automaton. Equivalent to F(S) recognizable by a S is sofic if X(S) is recognizable by a finite

such that  $F(S) = F(Y^*)$ . Equivalent to  $S = Y^{\omega}$ . S is coded if there exists a prefix code  $Y \subset A^*$ 

# $S_{\beta}$ is coded. [Blanchard and Hansel]

If  $d_{\beta}(1) = (t_i)_{i \geqslant 1}$  is infinite,  $Y = \{t_1 \cdots t_{n-1} a \mid 0 \leqslant a < t_n, \ n \geqslant 1\}$ If  $d_{\beta}(1) = t_1 \cdots t_m$ ,  $Y = \{t_1 \cdots t_{n-1} a \mid 0 \leqslant a < t_n, \ 1 \leqslant n \leqslant m\}$ .

 $S_{\beta}$  is coded by Y.

#### Entropy

Topological entropy of  $S_{\beta}$ 

$$h(S_{\beta}) = \lim_{n \to \infty} \frac{1}{n} \log B(n)$$

where  $B(n) = \text{number of words of } S_{\beta} \text{ of length } n$ .

Entropy of  $\beta$ -shift  $S_{\beta}$  is  $\log \beta$ .

#### Characterisation

 $S_{eta}$  is of finite type iff  $d_{eta}(1)$  is finite. [Ito and Takahashi]

Example 
$$\varphi = (1 + \sqrt{5})/2$$
,  $d_{\varphi}(1) = 11$ .  $\{11\} = \text{minimal forbidden words.}$ 



Local automaton for  $F(S_{\varphi})$ 

 $S_{\beta}$  is sofic iff  $d_{\beta}(1)$  is finite. [Bertrand]

Example  $\gamma = (3 + \sqrt{5})/2$ , then  $d_{\gamma}(1) = 21^{\omega}$ . Minimal forbidden words =  $21^*2$ .



Automaton for  $F(S_{\gamma})$ 

#### Numbers

conjugate is < 1 in modulus Pisot number algebraic integer such that every

conjugate is  $\leq 1$  in modulus, and the equality is Salem number algebraic integer such that every attained.

Perron number algebraic integer  $\beta$  such that every conjugate is  $< \beta$  in modulus.

Example Integers, the golden ratio,  $\gamma = (3 + \sqrt{5})/2$  are Pisot numbers.

thus  $S_{\beta}$  is sofic. [A. Bertrand] If  $\beta$  is Pisot then  $d_{\beta}(1)$  is eventually periodic and

If  $d_{\beta}(1)$  is eventually periodic,  $\beta$  is called a Parry number

If  $d_{\beta}(1)$  is finite,  $\beta$  is called a simple Parry number.

If  $S_{\beta}$  is sofic then  $\beta$  is Perron.

matrix of the finite automaton recognizing  $F(S_{\beta})$ .  $\beta$  is the dominant eigenvalue of the adjacency

periodic. [D. Boyd] If  $\beta$  is Salem of degree 4 then  $d_{\beta}(1)$  is eventually

Open problem for Salem of degree  $\geq 6$ .

Open problem: Characterize  $\beta$  such that the  $\beta$ -shift is sofic or of finite type.

and Njini]. Results for degree 3 [Bassino] and 4 [Akiyama

are on-line computable. Digit-set conversion and multiplication in base  $\beta$ 

If  $\beta$  is Pisot then digit-set conversion is computable by an on-line finite automaton.

### U-representations

 $U = (u_n)_{n \geqslant 0}$  a strictly increasing sequence of integers with  $u_0 = 1$ .

integers  $(d_i)_{k \ge i \ge 0}$  such that  $N = \sum_{i=0}^k d_i u_i$ . *U*-representation of  $N \ge 0$  is a finite sequence of

$$(N)_U = d_k \cdots d_0$$

Normal or greedy U-representation of N:

q(m,p) and r(m,p) =quotient and remainder of the Euclidean division of m by p.

$$u_k \leqslant N < u_{k+1}$$
.  
 $d_k = q(N, u_k)$  and  $r_k = r(N, u_k)$ ,  
 $d_i = q(r_{i+1}, u_i)$  and  $r_i = r(r_{i+1}, u_i)$ .  
 $N = d_k u_k + \cdots + d_0 u_0$ . Normal *U*-representation

numbers Example  $U = \{1, 2, 3, 5, 8, ...\}$  set of Fibonacci

of  $N = \langle N \rangle_U = d_k \cdots d_0$ 

of all the non-negative integers. G(U) = set of greedy or normal U-representations

recognizable by a finite automaton. polynomial of a Pisot number then G(U) is characteristic polynomial is exactly the minimal If U is linearly recurrent such that its

Everything works "well".

### U-recognizability

 $S \subset \mathbb{N}$  is said to be *U*-recognizable if the set  $\{ < n >_U | n \in S \}$  is recognizable by a finite automaton.

Generalization of Cobham theorem

progressions. (Bès) of integers that are both U-recognizable and characteristic polynomial equal to the minimal polynomial of  $\beta$  and  $\gamma$  respectively. The only sets numbers. U and Y two linear sequences with  $\beta$  and  $\gamma$  two multiplicatively independent Pisot Y-recognizable are unions of arithmetic

#### Conversely

set which is U-recognizable is Y-recognizable (Frougny) If  $\beta$  and  $\gamma$  are multiplicatively dependent, then a

### Other generalizations

rational language L: n is represented by the Extension for the representation of real numbers. (n+1)-th word of the ordered language L. Lecomte, Rigo Abstract numeration system associated with a

application to coding by finite type constraints Open problem: computation of the entropy. Multi-dimensional numeration systems: [Frougny, Vuillon].

Representation in rational base: [Akiyama, Frougny, Sakarovitch].

### Related domains

Substitutions: Berthé, Siegel, Canterini, Arnoux, Ito, Durand, Dumont

Dynamical properties: Liardet, Barat, Tichy, Grabner, Sidorov

Tilings: Akiyama

Logic: Bruyère, Hansel, Bès

Part III: Quasicrystals

## Crystals and quasicrystals

arranged periodically. Crystals: solids in dimension 2 or 3, with atoms

Symmetry of order n.

n must satisfy

$$\rho = 2\cos\frac{2\pi}{n} \in \mathbb{Z}$$

hence n = 1, 2, 3, 4, 6.

order 5 symmetry Shechtman and al. 1984 Quasi-periodicity. Quasicrystal Alloy aluminium-manganese with

## Geometrical modelization

point of  $\Lambda$ . that every ball of radius r contains at most a  $\Lambda \subset \mathbb{R}^d$  is uniformly discrete if exists r>0 such

every ball of radius R contains at least a point of A is relatively dense if exists R > 0 such that

If both conditions are satisfied,  $\Lambda$  is said to be a Delaunay set.

# Model set (Y. Meyer 1970, 1972)

## Cut and projection scheme

$$\mathbb{R}^d \quad \stackrel{\pi_1}{\longleftarrow} \mathbb{R}^d \times G \stackrel{\pi_2}{\longrightarrow} \quad G$$

 $\supset$ 

 $\mathbb{R}^d$  physical space G loc. compact abelian group (internal space)

that  $(\mathbb{R}^d \times G)/D$  is compact D lattice i.e. discret sub-group of  $\mathbb{R}^d \times G$  such

 $\pi_1|_D$  1-to-1

 $\pi_2(D)$  dense in G.

 $\Omega \subset G$  of non-empty interior such that projection scheme and a relatively compact set  $\Lambda \subset \mathbb{R}^d$  is a model set if there exist a cut and

$$\Lambda = \{ \pi_1(x, g) \mid (x, g) \in D, \ \pi_2(x, g) \in \Omega \}$$

Example The Fibonacci chain:  $\tau = \frac{1+\sqrt{5}}{2}$ .

$$\mathbb{R} \quad \stackrel{\pi_1}{\longleftarrow} \mathbb{R} \times \mathbb{R} \stackrel{\pi_2}{\longrightarrow} \mathbb{R}$$

$$\cap$$

$$\mathbb{Z}^2$$

 $\pi_1|_{\mathbb{Z}^2} \sim \mathbb{Z}[\tau] = \{a+b\tau \mid a,b \in \mathbb{Z}\}$  Fibonacci chain

$$\mathcal{F} = \{x = a + b\tau \mid x' = a - \frac{b}{\tau} \in \Omega = [0, 1)\}$$
$$= \{..., -\tau^3, -\tau, 0, \tau^2, \tau^3 + 1, \tau^4, ...\}$$

Tiling of  $\mathbb R$  with 2 tiles L and S

$$L \mapsto LLS$$

$$S \mapsto LS$$

with 
$$|L| = \tau^2$$
 and  $|S| = \tau$ 

$$S \mid L$$

$$LS \mid LLS$$

$$LLSLS$$
 |  $LLSLLSLS$ 

#### Meyer set

 $\Lambda \subset \mathbb{R}^d$  is a Meyer set if it is Delaunay and if there exists a finite set F such that

$$\Lambda - \Lambda \subset \Lambda + F$$

Model set  $\Rightarrow$  Meyer set.

set F and a model set  $M_0$  such that  $\Lambda \subset M_0 + F$ Conversely if  $\Lambda$  is a Meyer set, there exist a finite

number such that  $\beta \Lambda \subset \Lambda$  then  $\beta$  is a Pisot or a Salem number. If  $\Lambda \subset \mathbb{R}^d$  is a Meyer set and if  $\beta > 1$  is a real

that  $\beta \Lambda \subset \Lambda$ . number  $\beta$ , there exists a Meyer set  $\Lambda \subset \mathbb{R}^d$  such Conversely for each d and for each Pisot or Salem

#### Beta-integers

## The set of beta-integers

$$\mathbb{Z}_{\beta} = \{x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_k \cdots x_0\}$$
$$= \mathbb{Z}_{\beta}^+ \cup (-\mathbb{Z}_{\beta}^+)$$

Then

$$\beta \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} , \ \mathbb{Z}_{\beta} = -\mathbb{Z}_{\beta}$$

[Burdìk, Frougny, Gazeau]. If  $\beta$  is a Pisot number then  $\mathbb{Z}_{\beta}$  is a Meyer set.

Ambrož, Bernat, Masakovà and Pelantovà. that  $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$ , see Bassino and Frougny, Open problem Characterize the finite set F such

### Example Fibonacci

$$\mathbb{Z}_{\tau} = \mathbb{Z}_{\tau}^{+} \cup (-\mathbb{Z}_{\tau}^{+})$$

$$= \{0, 1, \tau, \tau^{2}, \tau^{2} + 1, \ldots\}$$

$$\cup \{-1, -\tau, -\tau^{2}, -\tau^{2} - 1, \ldots\}$$

generated by the Fibonacci substitution



 $\mathbb{Z}_{\tau}$  is a Meyer set which is not a model set.

## Cyclotomic Pisot numbers

If n is not crystallographic,  $\rho = 2\cos\frac{\pi}{n}$  is an algebraic integer of degree  $\leq \lfloor n-1 \rfloor/2$ .

Cyclotomic Pisot number  $\beta$  such that

$$\mathbb{Z}[\rho] = \mathbb{Z}[\beta]$$

order n, with  $\zeta = \exp(2i\pi/n)$ .  $\mathbb{Z}[\beta] + \mathbb{Z}[\beta]\zeta$  is a ring invariant under rotation of

### Real quasicrystals

- n = 5 or n = 10:  $\beta = \rho = \frac{1 + \sqrt{5}}{2} = 2 \cos \frac{\pi}{5}$ ,  $M_{\beta}(X) = X^2 X 1$
- n = 8:  $\beta = 1 + \rho = 1 + \sqrt{2} = 1 + 2\cos\frac{\pi}{4}$ ,
- $M_{\beta}(X) = X^2 2X 1$
- n = 12:  $\beta = 2 + \rho = 2 + \sqrt{3} = 2 + 2\cos\frac{\pi}{6}$ ,

## $M_{eta}(X) = X^2 - 4X + 1.$

## Quadratic Pisot units

Other cyclotomic Pisot units.

• 
$$n = 7$$
 or  $n = 14$ :  $\beta = 1 + \rho = 1 + 2\cos\frac{\pi}{7}$ ,  
 $M_{\beta}(X) = X^3 - 2X^2 - X + 1$   
•  $n = 9$  or  $n = 18$ :  $\beta = 1 + \rho = 1 + 2\cos\frac{\pi}{9}$ ,  
 $M_{\beta}(X) = X^3 - 3X^2 + 1$ .

See also D. Boyd for higher degree. numbers of degree  $\leq 4$  given by Bell and Hare. Complete classification of cyclotomic Pisot

#### Beta-lattices

 $\beta$  is a cyclotomic Pisot number with order n symmetry, and  $\zeta = \exp(2i\pi/n)$ . For  $1 \leq q \leq n-1$ ,  $\beta$ -lattice

$$\Gamma_q = \mathbb{Z}_\beta + \mathbb{Z}_\beta \zeta^q$$

are based on integers Beta-lattices are based on beta-integers as lattices

Beta-lattices = good frames for quasiperiodic point-sets and tilings.

[Elkharrat, Gazeau, Frougny, Verger-Gaugry]

$$\Lambda_q = \bigcup_{j=0}^{n-1} \Gamma_q \zeta^j \text{ and } \mathbb{Z}_{\beta}[\zeta] = \sum_{j=0}^{n-1} \mathbb{Z}_{\beta} \zeta^j$$

 $\mathbb{Z}_{\beta}[\zeta]$  and  $\Lambda_q$  for  $1 \leqslant q \leqslant n-1$  are Meyer sets.

# The $\tau$ -lattice $\Gamma_1(\tau) = \mathbb{Z}_{\tau} + e^{\frac{i\pi}{5}} \mathbb{Z}_{\tau}$

| • . | •   | _ | •   |     | . • • | _   | _   | •   | _ | • | •   |
|-----|-----|---|-----|-----|-------|-----|-----|-----|---|---|-----|
| •   | •   | • | •   | • ` | •     | •   | •   | • • | • |   | • • |
| •   | •   | _ | •   | _   | •     | •   | •   | )   | _ | • | _   |
| _   | _   | • |     | • • | •     | •   | •   | •   | • |   | •   |
| •   | • • |   | •   |     | . •   | •   |     | •   |   | • | •   |
| • • | •   | • |     | • " | •     | J   | •   | •   | • |   | •   |
|     | •   | • | •   | •   | •     | • • | •   | •   |   | • |     |
| •   | ,   | • | •   | •   | •     | •   | •   | •   | • |   | •   |
| •   | •   | • |     | •   | •     |     | •   | • • |   | • | • • |
| • ' | •   | • | •   | •   | •     | •   | •   | •   | • | • | •   |
|     | . • | • | •   | • • | •     | • • | •   |     | • | • |     |
| •   | • • |   | •   |     | •     | _   | _ • | •   | • | • | •   |
| •   | •   | • | 4   | • ` | -     | •   | •   | •   | • |   | • • |
| •   | •   | • | • • | -   | •     | •   | •   | •   | _ | • | _   |
| _   | _   | • |     | •   | •     | •   | •   | •   | • |   | •   |
| •   | • • | • | •   | •   | •     | •   |     | • • |   | • | •   |
| • • | •   | • | •   | •   | _     | -   | •   | •   | • |   | •   |
| •   |     | • |     |     | •     | • • | •   | •   | • | • | •   |
| •   | , , | • | •   |     | • `   | •   | •   | •   | • | • | •   |
| •   | •   | • |     | •   |       | •   | •   | • • | • | • | • • |
| • ` | •   | • | •   |     | •     |     | •   | •   | • | • | •   |
| •   | . • | • | •   | • • | •     | •   | •   |     | • | _ | _   |
| •   | •   |   | •   |     | •     | •   |     | •   | • | • | •   |
| • • | •   | • | _   | •   | •     | . • | •   | •   | • | _ | •   |
| •   | •   |   | •   |     | •     | •   | •   | •   |   | • | •   |
| •   | ,   | • | •   | •   | •     | •   | •   |     | • |   |     |
| •   | ,   | • | •   | •   | •     | •   | •   | • • |   | • | • • |
| • • | •   | • | •   | • , | •     | •   | •   | •   | • |   | •   |
| •   | • • | • | •   | `   | •     |     | •   | •   | • | • | •   |
| •   | •   | • | •   |     | •     | •   | • • | •   | • |   | _   |
| •   | ,   | • | •   | •   | •     | • • | •   | •   | • | • | • • |
| •   | •   |   | •   |     | •     | _   | _   | •   | • | • | •   |
| •   | . • | • |     | •   | •     | •   | •   | . • | • |   |     |
| •   | ,   |   | •   |     | •     | •   |     | ,   |   | • | •   |
| •   | •   | • | •   | • • | •     | . • | •   | •   | • | _ | •   |
| •   | •   |   | •   |     | •     | •   |     | •   |   | • | •   |
|     |     |   |     |     |       |     |     |     |   |   |     |
|     |     |   |     |     |       |     |     |     |   |   |     |



Embedding of the 2D decagonal model set into

