Automata and numeration systems

Christiane Frougny
LIAFA, Paris

Journée P-Automatique



Symbolic dynamical systems

A a finite alphabet. A symbolic dynamical system (or subshift) is a
closed shift invariant subset of AN,

A subshift S of AN is of finite type if it is defined by the
interdiction of a finite set of factors.

A subshift S of AN is sofic if L(S) C A*, the language of S, is
rational, or, equivalently if S is recognised by a finite Biichi
automaton.

A subshift S of AN is coded if there exists a prefix code Y C A*
such that L(S) = F(Y™).



Symbolic dynamical systems and the lexicographic order

Ais a totally ordered alphabet. u = wujup---,v=viva--- in AY,
U<jox Vifup - ug_1=vi- Vi1 and ug < vg.

v in AN, Vl) = VAV2 " Vp. V[g] = €.

Shift: o : AN — AN,



Symbolic dynamical systems and the lexicographic order

Ais a totally ordered alphabet. u = wujup---,v=viva--- in AY,
U<jox Vifup - ug_1=vi- Vi1 and ug < vg.

v in AN, V[n] = VIV2 " "+ Va. Vo] = €.
Shift: o : AN — AN,

S, ={uc AV |Vk >0, o"(u) <jex v},
D, = {ue AV | Yk >0, o*(u) <jex v},
Yy ={vjga€ A" |Vn>0,Va€ A, a<jex Vnr1}-

A word v = vivy--- in AY is said to be a lexicographically shift
maximal word (Ismax-word for short) if for every k > 0,

o4 (v) jex V.

Proposition

If v in AN is an Ismax-word, then S, is a subshift coded by Y,.



Let S, be the (infinite) automaton:
> states are the vj,) for all nin N
> transitions are v|, Yt Vint1) and v, 2 vjo for
every a < Vpii.

All states are final and vq) is initial.

S, recognises Pref(Y?), which is equal to F(Y.). As a Biichi
automaton, S, recognises S, .

Let D, be the automaton obtained from S, by taking vjq; as
unique final state. As a Biichi automaton, D, recognises D, .



Proposition
Let v be an Ismax-word in AV,
1. The following conditions are equivalent
» the subshift S, is sofic
» the set D, is recognised by a finite Biichi automaton
> v is eventually periodic.
2. The subshift S, is of finite type if, and only if, v is purely
periodic.

Similar results hold true for a lexicographically shift minimal word
and the subshift defined accordingly.



Exampler w = (321)~.
Infinite automaton for D,,

0,1,2

0,1



Symbolic dynamical systems and the alternate order
U=y, v=vivo--- in AN, u < v if
up gy = v v and (=1)K(ux — vi) < 0.
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Symbolic dynamical systems and the alternate order

U=ujlp---,V=Vivp--- in ANy < vif
up gy = v v and (=1)K(ux — vi) < 0.
A word v = vivp--- in AN is said to be an alternately shift

maximal word (asmax-word for short)

if vi = min A and for every k > 0, o¥(v) <. v.
S = fue AV | Vk >0, o*(u) < v}

D) = {ue AV | Vk >0, o(u) < v}

Proposition
Let v be an asmax-word in AY.
1. The following conditions are equivalent

> the subshift S&) is sofic
> the set D‘(,a) is recognised by a finite Blichi automaton
» v is eventually periodic.

2. The subshift 5\(,3) is of finite type if, and only if, v is purely
periodic.

Similarly for an alternately shift minimal word.



Representation in real base «, o] > 1

Definition (Hejda, Masakova and Pelantova 2012)

Let a« € R, |a| > 1, finite alphabet A C R and J bounded interval
containing 0. Let D : J — A such that T(x) = ax — D(x) maps J
to J. The a-representation is a mapping dy yp : J — AV s t.

da,y.p(X) = x1x0- -+ with x; = D(Tj_l(x)).

x =iz xa

Proposition
X andy in J, da,J,D(X) = X1X2 " and dOé’J’D(y) =yiyo---.

» Ifa > 1 and D is non-decreasing then
X<y <= x1x2° - <jexY1Y2 ' -
» Ifa < —1 and D is non-increasing then

X<y <= X1Xo- - <apy1y2 - .



[-expansions, 5 > 1
Rényi 1957
J=10,1), A={0,1,...,[8] — 1}
D :[0,1) — Awith D(x) = | 8x]
T :[0,1) — [0,1) with T(x) = x — D(x)

Greedy algorithm
rn=x;j:=1,

for j>1 do
X = 81l = B =X
ji=j+1
The greedy expansion gg(x) = xix2--- is the maximal

representation of x (for the lexicographic order).

x <y <= gg(x) <iex 88(¥)-

If s is the greedy [-expansion of some x € [0,1) it is said to be
[-admissible. The set of 3-admissible sequences is Dg, and the
[3-shift Sg is the closure of Dg.



The greedy algorithm applied to 1 gives an expansion which plays
an important role. Set dg(1) = (€,)n>1 and define

d5(1) = ds(1) if dg(1) is infinite
AT (e eme1(em —1))% ifdg(1) = er - em_1em is finite.
d3(1) is called the quasi-greedy S-expansion of 1.

Theorem (Parry 1960)
Let s = (s,)n>1 be a sequence in AN. Then

» s € Dg if, and only if,

Yk >0, 0% Sjex 7¥(5) <jex df(1)
» s & Sg if, and only if,

Vk 20, 0¥ Sjor 0%(5) Sjex dj(1)

» s is the greedy [3-expansion of 1 for some (unique) > 1 if,
and only if,
Vk>1, 0¥ < ak(s) <Jex S.



Remark: The quasi-greedy S-expansion of 1 is a Ismax-word.

Theorem (Ito and Takahashi 1974, Bertrand-Mathis 1986,
Blanchard 1989)

The B-shift Sg is a coded symbolic dynamical system which is
1. sofic if, and only if, dg(l) is eventually periodic,
2. of finite type if, and only if, dj;(1) is purely periodic, i.e.,
dg(1) is finite.

Numbers § such that dg(1) is eventually periodic (resp. finite) are
called Parry numbers (resp. simple Parry numbers).



Example The golden mean shift: ds(1) = 11 and dj(1) = (10)~.
11 is forbidden. System of finite type. Local automaton.

0
‘\j-/‘
0

Example The [-shift for 5 = 3+2—‘/§: dg(1) = dj(1) = 21“. Sofic
system not of finite type. Non-local automaton.

0,1 1




There is an important case where the -expansion of 1 is
eventually periodic.

A Pisot number is an algebraic integer > 1 such that all its Galois
conjugates have modulus < 1. The natural integers and the golden
mean are Pisot numbers.

Theorem (Schmidt 1980)

If 5 is a Pisot number, then every number of Q(8) N[0,1] has an
eventually periodic [3-expansion.

For some Pisot numbers, for instance the golden mean, every
element of Z(3) N R4 has a finite S-expansion.



Lazy [-expansions

Lazy algorithm
rpi=x;j:=1;

for j>1 do
xj = max(0, [Bri-1 — 351); 1 1= Brio1 —
j=j+1
The lazy expansion /g(x) = x1x2 - - -, where
xie A={0,1,...,[f] — 1}, is the minimal representation of x

(for the lexicographic order).

X<y < Eﬁ(X) <Jex Eg(y).



Let s = (sp)n>1 be in AY. Denote by 5, := | 3] — s, the
complement of s,, and by extension 5 := (3;),>1-

s =gp(x) = 5255(%—X).

Theorem (Erdés, Jo6 and Komornik 1990, Dajani and
Kraaikamp 2002)

Let s = (s,)n>1 be a sequence in AN. Then

> s is the lazy [3-expansion of some x € [0,1) if and only if
Vk >0, 09 <jex 0%(3) <iex d5(1)
> s js the lazy 3-expansion of 1 for some (8 > 1 if and only if

Vk>1, 0¥ < 0k(3) <jex s.

The (greedy) (-shift and the lazy S-shift have the same structure.



Example The lazy golden mean shift: 00 is forbidden. System of
finite type. Local automaton.

1

0

— —@®



Univoque numbers

B > 1 is said to be univoque if there exists a unique sequence of
integers (sp)n>1, with 0 <'s, < 3, such that 1 =3, -, 5,87".

Definition (Allouche 1983)
» A sequence s = (s,)n>1 in {0, 1}V is self-bracketed if for every
k>1
5 <lex Jk(s) <lex S
» If all the inequalities above are strict, the sequence s is said to

be strictly self-bracketed. If one of the inequalities is an
equality, then s is said to be periodic self-bracketed.

Theorem (Erdés, Jod, Komornik 1990)

A sequence in {0, 1} is the unique j3-expansion of 1 for a univoque
number 3 in (1,2) if and only if it is strictly self-bracketed.



Theorem (Komornik and Loreti 1998)

There exists a smallest univoque real number k € (1,2).

k =~ 1.787231, and d,(1) = (tn)n>1, where (t,)n>1 = 11010011...

is obtained by shifting the Thue-Morse sequence.

Theorem (Allouche and Cosnard 2000)
The Komornik-Loreti constant « is transcendental.

Theorem (Allouche, F. and Hare 2007)
There exists a smallest univoque Pisot number, of degree 14.



(—f3)-expansions, 3 > 1

Ito and Sadahiro 2009
J=[-37. 7). A={0,1,.... 18]}

D:J — Awith D(x) = |—px + %J

T :J— Jwith T(x) = —8x — D(x)

For every x € J denote d_g(x) the (—/3)-expansion of x. Then
d_g(x) = (x)i=1 if and only if x; = [-BT' ;M (x) + #17], and
x =y xi(=6)7".

X<y < d_B(X) <alt d_ﬁ(y).



A word (x;j)i>1 is (—/)-admissible if there exists a real number
x € J such that d—/B(X) = (X,'),';l.

The (—f)-shift S_g is the closure of the set of (—/3)-admissible
words.

Define the sequence d* , (/5+1) as follows:

> if d_g(— B+1) = did, - is not a periodic sequence with odd
period,

1 1

*_B(m) = d_B(ﬁ T 1) =0did>---

» otherwise if d_g(—%) =(dy--- d2p+1)w,

1

“algy) = (00 dap(dapir — 1))



Theorem (Ito and Sadahiro 2009)

Let s = (s,)n>1 be a sequence in AN. Then
» s is (—f)-admissible if and only if

__B
B+1

1
Satt 05(5) <are ¥ 5(——).

Vk >0, d_g( TS

> s is an element of the (—f3)-shift if and only if

1
Vk > 0, d—B(_% =alt Uk(s) =alt d*_g(m)



Remark: d_ﬂ(—%) is an asmin-word and diﬁ(ﬁ) is an
asmax-word.

Theorem (Ito and Sadahiro 2009, F. and Lai 2009)
The (—pB)-shift S_g is a symbolic dynamical system which is

1. sofic if, and only if, d_/g(—%) is eventually periodic,

2. of finite type if, and only if, d_ﬁ(—%) is purely periodic.



Theorem (F. and Lai 2009)

If 5 is a Pisot number, then every number of Q(8) N [0,1] has an
eventually periodic (—f3)-expansion.



Example Let ¢ = 15/5 Then d_,(—-£7) = 10 the (—¢)-shift is
a sofic system which is not of finite type.
Finite automata for the ¢-shift (left) and for the (—y)-shift (right)

1

0
Q?o Q¢o



Example Let ¢ = 15/5 Then d_,(—-£7) = 10 the (—¢)-shift is
a sofic system which is not of finite type.
Finite automata for the ¢-shift (left) and for the (—y)-shift (right)

0

0

Example B = 3+2‘/§. d_g(—%) = (21)“ and the (—3)-shift is of
finite type: the set of minimal forbidden factors is {20}.

Finite automata for the [-shift (left) and for the (—/5)-shift (right)
0,1 0,1

G

0



Entropy

The topological entropy of a subshift S is

h(S) = lim 2 log(Ba(S))

n—oo n

where B,(S) is the number of factors of S of length n.

When S is sofic, the entropy of S is equal to the logarithm of the
spectral radius of the adjacency matrix of the finite automaton
recognising L(S).

Theorem (Takahashi 1980, F. and Lai 2009)

The entropy of the (B-shift and of the (—()-shift are equal to log (3.



Theorem (Steiner 2013)
A sequence s = (s,)n>1 in AV is the (—[3)-expansion of—% (for
some unique [3) if, and only if,
1. Yk =2, s =g 0k(s),
2. s <, u=10011100100100111---, where u = »*(1) with
(1) = 100 and (0) = 1,
3. s ¢ {51 c Sk, 51 5k—1(5k — 1)0}w \ (51 s Sk)w for all k > 1
with (s1 -+« sk)“ < U,
4. s ¢ {s1-- 540, s1---sk_1(sxk + 1)} for all k > 1 with
(51 e 5k—1(5k + 1))“ <l U.



Maximal and minimal (—/3)-expansions

Hejda, Masakova and Pelantova 2012

Proposition

s is the maximal (—/3)-expansion (for the alternate order) of x if,
18]

and only if, 5 is the minimal (—3)-expansion of — 477 — x.
Remark
The Ito-Sadahiro transformation does not give the maximal

(—B)-expansion (for the alternate order).

Example ¢ the golden mean. Let x = —%.

The minimal (—¢)-expansion of x is 1(001110)“.
The Ito-Sadahiro (—¢)-expansion of x is (100)“.
The maximal (—¢)-expansion of x is (111000)“.

1(001110)% < (100)% < (111000)*.



There is no transformation of the form T(x) = —f8x — D(x) which
generates for every x the maximal or the minimal (—f3)-expansion
of x.

Theorem
Let $>1,8¢N, A={0,...,|3]}, B={-bB+al|abeA}
Let w: B* —> A* such that m(—bf + a) = ba.

Let | =[4, 22l

1. » There exists a transformation Tg : | — | which generates G(x)
the maximal [3%-expansion of x on B;
» m(G(x)) is the maximal (—f3)-expansion of x on A (for the
alternate order).

2. » There exists a transformation Ty : | — | which generates L(x)
the minimal B?-expansion of x on B;
» w(L(x)) is the minimal (—3)-expansion of x on A (for the
alternate order).



Digit-set conversion and normalisation

Real base «, |a| > 1, A finite alphabet allowing representation of
elements of an interval J.

C an arbitrary finite alphabet of digits.

A digit-set conversion in base « on C is a partial function

Xa,C : CN — AN such that

Xao,c((c))iz1) = (ai)iz1 <= Z ca~ = Z o

i>1 i>1

The normalisation v, ¢ on C is a digit-set conversion where the
result (a;)j>1 is a-admissible.

Addition on A is a digit-set conversion (A + A)N — AN



g>1 A={0,...,|8]}
Theorem (F. 1992, Berend and F. 1994, F. and Sakarovitch
1999)
The following are equivalent:
1. normalisation vg ¢ is computable by a finite letter-to-letter
transducer on any alphabet C;
2. vg g is computable by a finite letter-to-letter transducer on
B=A{0,....[8], 18] + 1}

3. B is a Pisot number.

Example Take /3 the root > 1 of X* —2X3 —2X2 — 2. Then
dg(1) = 2202 and §3 is a simple Parry number, but it is not a Pisot
number, since there is another root a =~ —1.134186. One can show
that normalisation on A = {0, 1,2} is not computable by a finite
transducer.



Proposition
If 5> 1 is a Pisot number, then normalisation in base (—[3) on
any alphabet C is realisable by a finite transducer.

Proposition
If B is a Pisot number, then conversion from base (—f) to base 3
is realizable by a finite transducer. The result is $-admissible.

These transducers are neither left nor right sequential when 3 is
not an integer.



On-line computations

An on-line algorithm is such that, after a certain delay of latency
during which the data are read without writing, a digit of the
output is produced for each digit of the input.

Processing most significant digit first. Suitable for real numbers.
Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.
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1. In real base £43, 5 > 1, addition is on-line computable on
{0,..., 3]} (the result is not admissible).

2. If B is a Pisot number, the on-line transducer is finite.



On-line computations

An on-line algorithm is such that, after a certain delay of latency
during which the data are read without writing, a digit of the
output is produced for each digit of the input.

Processing most significant digit first. Suitable for real numbers.
Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

1. In real base +43, § > 1, addition is on-line computable on
{0,..., 3]} (the result is not admissible).

2. If B is a Pisot number, the on-line transducer is finite.

1. Conversion from base 3 to base (—/3) is computable by an
on-line algorithm (the result is not admissible).

2. If B is a Pisot number, the on-line transducer is finite.



Conclusions

Base 8 and base (—/3) are

» quite similar for the nature of the shift, the eventual
periodicity of the rationals, and addition,

» quite different for the maximal and minimal representations.



