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PART I

Signed 2-expansions



Expansions in base 2

Every integer N > 0 has an expansion in base 2

N =
K

∑

j=0

dj2
j = dK · · · d1d0.

with dj ∈ {0, 1}, which is unique up to leading zeros.

Using negative digits, there is redundancy and the number of
non-zero digits can often be reduced:

7 = 4 + 2 + 1 = 111. = 1001̄. = 8 − 1 (1̄ = −1)
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Redundancy automaton base 2



Expansions of minimal weight in base 2

Problem: Find an expansion of N of minimal weight
∑K

j=0
|dj |.

(cf. Hamming weight: number of non-zero digits dj , equal to this
weight if dj ∈ {−1, 0, 1}).

Heuberger (2004): dK · · · d1d0 ∈ {1̄, 0, 1}∗ is a signed 2-expansion
of minimal weight if and only if it contains none of the factors

11(01)∗1, 1(01̄)∗1̄, 1̄1̄(01̄)∗1̄, 1̄(01)∗1.

and the opposites.
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Signed 2-expansions of minimal weight



Canonical expansions of minimal weight in base 2

Booth (1951), Reitwiesner (1960), . . .
Non-Adjacent Form (NAF)
Every integer N has a unique expansion N =

∑K
j=0

dj2
j with

dj ∈ {−1, 0, 1} such that dj−1 = dj+1 = 0 if dj 6= 0. The weight of
this expansion is minimal among all expansions of N in base 2.

Right-to-left recoding: every factor of form 01n, with n > 2, is
transformed into 10n−11̄.
The Booth recoding is a right subsequential function
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Applications of the NAF

◮ multiplication

◮ internal representation for dividers: base 4 with digits in
{2̄, . . . , 2}

◮ computations on elliptic curves and cryptography



Transformation for the NAF

Ergodic properties of the dynamical system associated with the
NAF [Dajani, Kraaikamp, Liardet 2006]
Transformation giving the NAF

T : [−2/3, 2/3) → [−2/3, 2/3)

x 7→ 2x − ⌊(3x + 1)/2⌋

The digit xj is xj = ⌊(3T j−1(x) + 1)/2⌋.

The expected number of non-zero digits in a NAF of length n is
n/3, Arno and Wheeler (1993).



PART II

Beta-shift



Beta-numeration (Rényi, Parry)

Base β > 1, x ∈ [0, 1]
β-expansion of x : greedy algorithm
r0 := x
xn := ⌊βrn−1⌋; rn := βrn−1 − xn.
Then x =

∑

n>1
xnβ

−n, with xn ∈ Aβ = {0, 1, . . . , ⌈β⌉ − 1}
dβ(x) = x1x2 · · · is the greedy β-expansion of x .
It is the greatest representation in the lexicographic order.
If β is an integer, it is the standard β-ary numeration.

If the sequence (xn) ends in 0ω, it is said finite.

Redondancy A number may have several β-representations.
Example ϕ = (1 +

√
5)/2, Aϕ = {0, 1}, dϕ(1) = 11.

x = 3 −
√

5, dϕ(x) = 10010ω .
The factor 11 is forbidden in dϕ(x).
Other ϕ-representations of x :
01110ω , 100(01)ω , 011(01)ω , . . .



β-transformation

Tβ : [0, 1] → [0, 1)

x 7→ βx (mod 1)

dβ(x) = x1x2 · · · with xn = ⌊βT n−1

β (x)⌋.

Tβ has a unique invariant measure µβ which is absolutely
continuous with respect to the Lebesgue measure on [0, 1].
µβ is ergodic and is the unique measure of maximal entropy (Rényi
1957).



β-shift

σ shift on AN

β : σ((xi )i>1) = (xi+1)i>1.

Dβ= {dβ(x) | x ∈ [0, 1[ } is a shift-invariant subset of AN

β .
β-shift Sβ = topological closure of Dβ.

Example

◮ β = 2 and Aβ = {0, 1} then Sβ is the full 2-shift = {0, 1}N

◮ ϕ = (1 +
√

5)/2 and Aϕ = {0, 1} then Sϕ is the golden mean
shift = {s ∈ {0, 1}N with no factor 11}.



dβ(1) = (tn)n>1 greedy β-expansion of 1

d∗
β(1) :=

{

dβ(1) if dβ(1) is infinite

(t1 · · · tm−1(tm − 1))∞ if dβ(1) = t1 · · · tm−1tm is finite.

Theorem (Parry 1960)

s = (sn)n>1 with sn ∈ N.

◮ s is the greedy β-expansion of some x ∈ [0, 1) if and only if

∀k > 0, σk(s) <lex d∗
β(1)

◮ s is the greedy β-expansion of 1 for some β > 1 if and only if

∀k > 1, σk(s) <lex s

Remark The nature of the β-shift is entirely determined by dβ(1)
the greedy β-expansion of 1.



Entropy of the β-shift

Topological entropy of Sβ

h(Sβ) = lim
n→∞

1

n
log B(n) = log β

where B(n) = number of words of Sβ of length n.



Symbolic dynamical systems

S ⊆ AN symbolic dynamical system = closed shift-invariant subset
F (S) ⊆ A∗ = set of finite factors (admissible blocks) of S .
X (S) ⊆ A∗ set of minimal forbidden words.
The symbolic dynamical system S is completely defined by the set
of its factors F (S).

◮ S is of finite type if X (S) is finite. Equivalent to F (S)
recognizable by a local finite automaton.

◮ S is sofic if X (S) is recognizable by a finite automaton.
Equivalent to F (S) recognizable by a finite automaton.

◮ S is coded if there exists a prefix code Y ⊂ A∗ such that
F (S) = F (Y ∗). Equivalent to S = Y ω.

◮ S is specified if ∃k : ∀u, v ∈ F (S),∃w ∈ F (S), |w | = k, such
that uwv ∈ F (S)

◮ S is synchronizing if ∃w ∈ F (S) such that if uw ∈ F (S) and
wv ∈ F (S), then uwv ∈ F (S).



First properties of the β-shift
Sβ is coded [Blanchard and Hansel 1986]
If dβ(1) = (ti )i>1 is infinite, set
Y = {t1 · · · tn−1a | 0 6 a < tn, n > 1}
If dβ(1) = t1 · · · tm, set
Y = {t1 · · · tn−1a | 0 6 a < tn, 1 6 n 6 m}.
Sβ is coded by Y .

Sβ is of finite type iff dβ(1) is finite [Ito and Takahashi 1974]
Example ϕ = (1 +

√
5)/2, dϕ(1) = 11.

{11} = minimal forbidden words.
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Sβ is sofic iff dβ(1) is eventually periodic [Bertrand 1977]
Example γ = (3 +

√
5)/2, then dγ(1) = 21ω . Minimal forbidden

words = 21∗2.
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Automaton for F (Sγ)

This automaton is not local.



The β-shift and the Chomsky hierarchy

Languages recognizable by finite state automaton (

Context-free languages (

Context-sensitive languages (

Recursive languages (

Recursively enumerable languages.

Context-sensitive languages are recognizable by a linear bounded
automaton. A linear bounded automaton is a Turing machine
which uses only a finite portion of the tape, whose length is a
linear function of the length of the initial input.

Recursive languages are recognizable by a Turing machine which
halts on every input.

Recursively enumerable languages are recognizable by a Turing
machine.



Results of K. Johnson 1999

◮ F (Sβ) is context-free iff it is recognizable by a finite
automaton

◮ F (Sβ) is context-sensitive iff dβ(1) is generated by a linear
bounded automaton

◮ F (Sβ) is recursive iff dβ(1) is generated by a TM which halts
on every input iff dβ(1) is generated by a TM

◮ There exist non-recursive Sβ:
d2(β) is generated by a TM ⇐⇒ dβ(1) is generated by a TM

Generated by a TM: on input 0n the machine computes the first n
digits of dβ(1).



Context-sensitive β-shift

Proposition (K. Johson)

Every β-shift generated by a constant length morphism is
context-sensitive.



The Thue-Morse morphism

0 → 01 1 → 10

has a fixed point (kn)n>0 = 01101001 · · · which is 2-automatic in
the sense of Mendès France.
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2-automaton generating the Thue-Morse sequence

kn is the output corresponding to the path with input 〈n〉2.
Let κ such that dκ(1) = 1101001 · · · the shifted Thue-Morse
sequence. Then Sκ is a context-sensitive shift.
κ is the Komornik-Loreti constant; it is the smallest univoque
number (1 has only one writing in base κ).



Algebraic integers

Pisot number algebraic integer such that every conjugate is < 1 in
modulus.
Salem number algebraic integer such that every conjugate is 6 1 in
modulus, and the equality is attained.
Perron number algebraic integer β such that every conjugate is
< β in modulus.
Example Integers, the golden ratio, (3 +

√
5)/2 are Pisot numbers.

If dβ(1) is eventually periodic, β is called a Parry number.
If dβ(1) is finite, β is called a simple Parry number.
If β is Pisot then dβ(1) is eventually periodic and thus Sβ is sofic
[A. Bertrand 1986].
If Sβ is sofic then β is Perron [Lind 1984].
If β is Salem of degree 4 then dβ(1) is eventually periodic [Boyd
1989].
Open problem for Salem of degree > 6.



Blanchard classification 1989

Class 1: dβ(1) is finite ⇐⇒ Sβ is finite
Class 2: dβ(1) is infinite eventually periodic ⇐⇒ Sβ is sofic
Class 3: dβ(1) does not contain arbitrarily large strings of 0’s and
dβ(1) is not eventually periodic ⇐⇒ Sβ is specified [A. Bertrand
1986]
Class 4: dβ(1) does not contain some admissible words but
contains arbitrarily large strings of 0’s ⇐⇒ Sβ is synchronizing
[A. Bertrand 1986]
Class 5: dβ(1) contains all the admissible words



Transcendental numbers in Class 3

The Komornik-Loreti constant κ, such that

dκ(1) = 1101001 · · ·

is the shifted Thue-Morse sequence,

◮ is transcendental [Allouche and Cosnard 2000]

◮ is (2, κ)-automatic

◮ belongs to Class 3.



β is self-Sturmian if dβ(1) is Sturmian, i.e. the number of factors
of length n in dβ(1) is equal to n + 1.

Theorem (Chi and Kwon 2004)

Every self-Sturmian number is transcendental and in Class 3.

Example The Fibonacci word f = 01001010010010 · · · is the fixed
point of the morphism

0 → 01 1 → 0

The word 1f = 101001010010010 · · · is the fixed point of the
morphism

1 → 10 0 → 100

It is Sturmian, but not automatic.
β such that dβ(1) = 101001010010010 · · · is transcendental.



Transcendental numbers in Class 4

β is self-lacunary if exist δ > 0 and a sequence u = (un)n>1 of
positive integers with

u1 = 1 and
un+1

un

> 1 + δ for n > 1

such that

1 =
∑

n>1

1

βun

Theorem (Adamczewski and Bugeaud 2007)

Every self-lacunary number is transcendental and in Class 4.

Define (ak)k>1 as ak = 1 if k ∈ u and 0 otherwise, and let
dβ(1) = a1a2 · · · Then β is transcendental and in Class 4.



Gaps in dβ(1), β algebraic
β is not a simple Parry number. dβ(1) = t1t2 · · · Assume there
exists a sequence of positive integers (rn)n>1 and an increasing
sequence of positive integers (sn)n>1 such that

tsn+1 = tsn+2 = · · · = tsn+rn = 0

Problem Estimation of the gaps in dβ(1), β algebraic number, i.e.
asymptotic behaviour of rn/sn.
If b is leading coefficient of the minimal polynomial of β, and
β1 = β, β2, . . . , βd are the roots, the Mahler measure of β is

M(β) = |b|
i=d
∏

i=1

max{|βi |, 1}

Theorem (Verger-Gaugry 2006)

Let β > 1 be an algebraic number. Then

lim supn→∞
rn
sn

6
M(β)

log β
− 1



PART III

Signed beta-expansions
(with Wolfgang Steiner 2007)



Redundancy automaton base β

Let β > 1 be a real number, c > ⌊β⌋ a fixed integer, and

Zβ(c) =
{

z1 · · · zn

∣

∣ n > 1, |zj | 6 c ,

n
∑

j=1

zjβ
−j = 0

}

.

If β is a Pisot number, then for every c > ⌊β⌋ the set Zβ(c) is
recognized by a finite automaton. [Frougny 1992]

Proposition

If β is a Pisot number, then the set

{

(x1 · · · xn, y1 · · · yn) ∈ A∗
β × A∗

β

∣

∣ n > 1,

n
∑

j=1

xjβ
−j =

n
∑

j=1

yjβ
−j

}

is recognizable by a finite automaton.



β-expansions of minimal weight

Weight of x = x1 · · · xn is
∑n

j=1
|xj |.

x = x1 · · · xn ∈ A∗
β is β-heavy if it is not minimal in weight, i.e.,

if there exists y = yℓ · · · yr ∈ A∗
β with

r
∑

j=ℓ

yjβ
−j =

n
∑

j=1

xjβ
−j and

r
∑

j=ℓ

|yj | <

n
∑

j=1

|xj |.

If x1 · · · xn−1 and x2 · · · xn are not β-heavy, x is strictly β-heavy.



Condition (D)

(D):
β > 1 and P(β) = 0 for some polynomial

P(X ) = X d − b1X
d−1 − · · · − bd ∈ Z[X ] with b1 >

∑d
j=2

|bj |

Proposition

If β satisfies (D), then β is a Pisot number.

Proposition (Akiyama, Rao, Steiner 2004)

Let β satisfy (D), and x1 · · · xn ∈ Z∗ such that |.x1 · · · xn| < 1.
Then there exists a word y0 · · · ym ∈ {−⌊β⌋, . . . , ⌊β⌋}∗ such that
y0.y1 · · · ym = .x1 · · · xn and

∑m
j=0

|yj | 6
∑n

j=1
|xj |.

Theorem
If β satisfies (D), then the set of signed β-expansions of minimal
weight is recognized by a finite automaton, which is computable.



β = 1+
√

5
2

Greedy β-expansions are not minimal in weight

0101001. = 101̄1001. = 10001̄01. = 100001̄0.

Theorem
If β = 1+

√
5

2
, then the set of strictly β-heavy words is

1(0100)∗1 ∪ 1(0100)∗0101 ∪ 1(001̄0)∗1̄ ∪ 1(001̄0)∗01̄ ∪
1̄(01̄00)∗1̄ ∪ 1̄(01̄00)∗01̄01̄ ∪ 1̄(0010)∗1 ∪ 1̄(0010)∗01.

If · · · ǫ−1ǫ0ǫ1 · · · does not contain any of these factors, then
· · · ǫ−1ǫ0.ǫ1 · · · is a signed β-expansion of minimal weight.



Redundancy automaton β = 1+
√

5
2

0

−1 1−1/β 1/β

−β β−1/β2
1/β2

1̄|1̄, 0|0, 1|1

1̄|0, 0|1 0|1̄, 1|0

1|0, 0|1̄ 0|1, 1̄|0

1̄|1̄, 0|0, 1|1 1̄|1̄, 0|0, 1|1

1|0, 0|1̄ 0|1, 1̄|0

1|1̄

1|0, 0|1̄ 0|1, 1̄|0

1|1̄ 1̄|1

0|1, 1̄|0 1|0, 0|1̄

1̄|1̄, 0|0, 1|1 1̄|1̄, 0|0, 1|1

1|0, 0|1̄

0|1, 1̄|0

1̄|1̄, 0|0, 1|1 1̄|1̄, 0|0, 1|1

1̄|1

s
a|b→ s ′ : s ′ = βs + a − b

If s0 = 0, sj−1

xj |yj→ sj , 1 6 j 6 n, then sj = x1 · · · xj . − y1 · · · yj .,
and .x1 · · · xn = .y1 · · · yn if and only if sn = 0.



The strictly β-heavy words are the inputs of the following transducer.
The outputs are corresponding lighter words (if the path is completed
by dashed arrows such that it runs from (0, 0) to (0,−1)).
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0|0
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0|1
1|0

0|1̄

0|1̄

0|1

0|1

(s, δ)
a|b→ (s ′, δ′) : s ′ = βs + a − b, δ′ = δ + |b| − |a|



The strictly β-heavy words are the inputs of the following transducer.
The outputs are corresponding lighter words (if the path is completed
by dashed arrows such that it runs from (0, 0) to (0,−1)).

0, 0−1, 1

−1/β, 0

0, −1

−1, 0 −1/β,−1

−1, −1

−1/β,−2

1, 1

1/β, 0

0, −1

1, 01/β,−1

1, −1

1/β,−2
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1|0

0|1̄

0|1̄

0|1
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011. = 100.

(s, δ)
a|b→ (s ′, δ′) : s ′ = βs + a − b, δ′ = δ + |b| − |a|



The strictly β-heavy words are the inputs of the following transducer.
The outputs are corresponding lighter words (if the path is completed
by dashed arrows such that it runs from (0, 0) to (0,−1)).

0, 0−1, 1

−1/β, 0

0, −1

−1, 0 −1/β,−1

−1, −1

−1/β,−2

1, 1

1/β, 0

0, −1

1, 01/β,−1

1, −1

1/β,−2

1|0

1|0

0|0

1|0

0|0

0|1̄

1|0

1̄|0

1̄|0

1̄|0

0|0

1̄|0

0|0

1̄|0

0|1
1|0

0|1̄

0|1̄

0|1

0|1

01(0100)∗1. = 10(0001̄)∗0.

(s, δ)
a|b→ (s ′, δ′) : s ′ = βs + a − b, δ′ = δ + |b| − |a|



Theorem
For β = 1+

√
5

2
, the signed β-expansions of minimal weight are

given by the following automaton, where all states are terminal.
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Transformation providing some signed β-expansion of

minimal weight, β = 1+
√

5
2

T : [−β/2, β/2) → [−β/2, β/2), T (x) = βx − ⌊x + 1/2⌋

−β/2

−1/2

1/2

β/2
0

Proposition

If x ∈ [β/2, β/2) and xj = ⌊T j−1(x) + 1/2⌋, then x = .x1x2 · · · is
a signed β-expansion of minimal weight avoiding the factors 11,
101, 11̄, 101̄, 1001̄ and their opposites.



Remark. Heuberger (2004) excluded (for the Fibonacci numeration
system) the factor 1001 instead of 1001̄. This can be achieved by

T (x) = βx −
⌊

β2+1

2β
x + 1

2

⌋

on
[ −β2

β2+1
, β2

β2+1

)

, β2

β2+1
= .(1000)ω .



Markov chain of digits

Let T (x) = βx − ⌊x + 1/2⌋, and I000, I001, I01, I1 as follows

[ )[ )[ )[ )[ )[ )[ )
I1 I01 I001 I000 I001 I01 I1

−
β
2

− 1

2
− 1

2β
− 1

2β2
1

2β2
1

2β
1

2
β
2

− 1

2β2

The sequence of random variables (Xk)k>0 defined by

Pr[X0 = j0, . . . ,Xk = jk ]

= λ({x ∈ [−β/2, β/2) : x ∈ Ij0 ,T (x) ∈ Ij1 , . . . ,T
k(x) ∈ Ijk})/β

= λ(Ij0 ∩ T−1(Ij1) ∩ · · · ∩ T−k(Ijk ))/β

(where λ denotes the Lebesgue measure) is a Markov chain since

T (I000) = I000 ∪ I001 = T (I1), T (I001) = I01, T (I01) = I1

and T (x) is linear on each Ij .



[ )[ )[ )[ )[ )[ )[ )
I1 I01 I001 I000 I001 I01 I1

− β
2

− 1

2
− 1

2β
− 1

2β2
1

2β2
1

2β
1

2
β
2

− 1

2β2

The matrix of transition probabilities is

(Pr[Xk = j | Xk−1 = i ])i ,j∈{000,001,01,1} =









1/β 1/β2 0 0
0 0 1 0
0 0 0 1

2/β2 1/β3 0 0









the stationary distribution vector is (2/5, 1/5, 1/5, 1/5). Therefore

Pr[Xk = 1] = λ({x ∈ [−β/2, β/2) : T k(x) ∈ I1}) → 1/5,

i.e., the expected number of non-zero digits in a signed
β-expansion of minimal weight of length n is n/5 + O(1).
(cf. greedy β-expansions n/(β2 + 1), base 2 minimal expansions n/3)



Branching transformation providing all signed β-expansions

of minimal weight, β = 1+
√

5
2

T : [− 2β
β2+1

, 2β
β2+1

) → [− 2β
β2+1

, 2β
β2+1

), T j(x) = βx − xj with

xj =































1 if 2

β2+1
< T j−1(x) < 2β

β2+1

0 or 1 if β
β2+1

< T j−1(x) < 2

β2+1

0 if −β
β2+1

< T j−1(x) < β
β2+1

−1 or 0 if −2

β2+1
< T j−1(x) < −β

β2+1

−1 if −2β
β2+1

< T j−1(x) < −2

β2+1

−2β

β2+1

−2

β2+1

−β

β2+1

β

β2+1

2

β2+1

2β

β2+1

0



Tribonacci number β3 = β2 + β + 1
The strictly β-heavy words are the inputs of this automaton.

0, 0 −1, 1

1 − β, 0

−1/β,−1

−1, −1

1 − β,−2

−1/β, −3

1/β3, −1

1/β2, −1 1/β − 1, −2

1/β2 − 1, −2−1 − 1/β2, −2

1/β3 − 1/β, −2

1/β3, −3 −1/β2, −3

0, −2

0, 0 1, 1

β − 1, 0

1/β,−1

1, −1

β − 1, −2

1/β, −3

−1/β3, −1

−1/β2, −1 1 − 1/β,−2

1 − 1/β2,−21 + 1/β2, −2

1/β − 1/β3, −2

−1/β3, −3 1/β2, −3

1̄|0 1|0

1|0

1|0

0|0

0|1̄

1|0

0|1̄

1|0

0|0

1̄|0

0|0

0|1̄

1̄|0

1|0

0|0

1|1̄
0|0

1|0

1|1̄

0|0

1|0 1̄|0

1̄|0

1̄|0

0|0

0|1

1̄|0

0|1

1̄|0

0|0

1|0

0|0

0|1

1|0

1̄|0

0|0

1̄|1
0|0

1̄|0

1̄|1

0|0

0|1

0|1̄

0|0

0|0

0|1̄

0|1

0|0

0|0



The signed β-expansions of minimal weight are given by the
following automaton where all states are terminal.

0

1 1̄ 1

0

1̄

0

0

0

1

0

0

1̄

01

0

1

1̄

1̄11̄

0

1

0

0

0

1̄

0

0

1

0 1̄

0

1̄

1

0

0



Particular signed β-expansions of minimal weight,

β3 = β2 + β + 1

T :
[ −β2

β2 + 1
,

β2

β2 + 1

)

→
[ −β2

β2 + 1
,

β2

β2 + 1

)

x 7→ βx −
⌊β2 + 1

2β
x +

1

2

⌋

Proposition

If x ∈
[ −β2

β2+1
, β2

β2+1

)

and xj = ⌊β2+1

2β
T j−1(x) + 1/2⌋, then

x = .x1x2 · · · is a signed β-expansion of minimal weight avoiding
the factors 11, 11̄, 101̄ and their opposites.

One can show that the expected number of non-zero digits in a
signed β-expansion of minimal weight of length n is asymptotically
nβ3/(β5 + 1) (with β3/(β5 + 1) = .(0011010100)ω ≈ 0.28219).


