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7.0. Introduction

This chapter deals with positional numeration systems. Numbers are seen as
finite or infinite words over an alphabet of digits. A numeration system is defined
by a couple composed of a base or a sequence of numbers, and of an alphabet
of digits. In this chapter we study the representation of natural numbers, of
real numbers and of complex numbers. We will present several generalizations
of the usual notion of numeration system, which lead to interesting problems.
Properties of words representing numbers are well studied in number theory:
the concepts of period, digit frequency, normality give way to important results.
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2 Numeration systems 7.1

Cantor sets can be defined by digital expansions.

In computer arithmetic, it is recognized that algorithmic possibilities depend
on the representation of numbers. For instance, addition of two integers repre-
sented in the usual binary system, with digits 0 and 1, takes a time proportional
to the size of the data. But if these numbers are represented with signed digits
0, 1, and —1, then addition can be realized in parallel in a time independent of
the size of the data.

Since numbers are words, finite state automata are relevant tools to describe
sets of number representations, and also to characterize the complexity of arith-
metic operations. For instance, addition in the usual binary system is a function
computable by a finite automaton, but multiplication is not.

Usual numeration systems, such that the binary and the decimal ones, are
described in the first section. In fact, these systems are a particular case of all
the various generalizations that will be presented in the next sections.

The second section is devoted to the study of the so-called beta-expansions,
introduced by Rényi, see Notes. It consists in taking for base a real number
G > 1. When § is actually an integer, we get the standard representation. When
[ 1s not an integer, a number may have several different J-representations. A
particular f-representation, playing an important role, is obtained by a greedy
algorithm, and 1s called the fS-expansion; it is the greatest in the lexicographic
order. The set of S-expansions of numbers of [0, 1] is shift-invariant, and its
closure, called the (-shift, is a symbolic dynamical system. We give several
results on these topics. We do not cover the whole field, which is very lively and
still growing. It has interesting connections with number theory and symbolic
dynamics.

In the third section we consider the representation of integers with respect
to a sequence of integers, which can be seen as a generalization of the notion
of base. The most popular example 1s the one of Fibonacci numbers. Every
positive integer can be represented in such a system with digits 0 and 1. This
field is closely related to the theory of beta-expansions.

The last section is devoted to complex numbers. Representing complex num-
bers as strings of digits allows to handle them without separating real and imag-
inary part. We show that every complex number has a representation in base
—n £ 14, where n is an integer > 1, with digits in {0,...,n?}. This numeration
system enjoys properties similar to those of the standard S-ary system.

For notations concerning automata and words the reader may want to con-
sult Chapter 1.

7.1. Standard representation of numbers

In this section we will study standard numeration systems, where the base 1s
a natural number. We will represent first the natural numbers, and then the
nonnegative real numbers. The notation introduced in this section will be used
in the other sections.
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7.1. Standard representation of numbers 3

7.1.1. Representation of integers

Let 7 > 2 be an integer called the base. The (usual) S-ary representation of an
integer N > 0 is a finite word dy, - - - dg over the digit alphabet A = {0,...,8—1},

and such that .
N=> dp.
=0

Such a representation is unique, with the condition that di # 0. This represen-
tation is called normal, and is denoted by

(N)p =di---do

most significant digit first.
The set of all the representations of the positive integers is equal to A*.

Let us consider the addition of two integers represented in the F-ary system.
Let dj ---dg and ¢ ---¢p be two (-ary representations of respectively N and
M. Tt is not a restriction to suppose that the two representations have the
same length, since the shortest one can be padded to the left by enough zeroes.
Let us form a new word ay - - -ag, with a; = d; + ¢; for 0 < i < k. Obviously,
Zf:o a;#* = N + M, but the a;’s belong to the set {0,...,2(8 —1)}. So the
word ay -+ -ag has to be transformed into an equivalent one (i.e. having the
same numerical value) belonging to A*.

More generally, let C' be a finite alphabet of integers, which can be positive
or negative. The numerical value in base § on C* is the function

mp:C" — I

which maps a word w = ¢, ---¢g of C'* onto Z?:o ¢;i3*. The normalization on
C* is the partial function

ve : CF — AF
that maps a word w = ¢, - - - ¢g of C” such that N = 75(w) is nonnegative onto
its normal representation (N)z. Our aim is to prove that the normalization is
computable by a finite transducer. We first prove a lemma.

LeMMA 7.1.1. Let C' be an alphabet containing A. There exists a right sub-
sequential transducer that maps a word w of C* such that N = wg(w) > 0 onto
a word v belonging to A* and such that ng(v) = N.

Proof. Let m = max{|c—a| | ¢ € C,a € A}, and let v = m/(3 — 1). First
observe that, for s € Z and ¢ € C, by the Euclidean division there exist unique
a € A and s € Z such that s + ¢ = 3s’ + a. Furthermore, if |s| < v, then

s < (sl +lc—al)/B < (v+m)/B =1~
Consider the subsequential finite transducer (A,w) over C* x A*  where
A= (Q, E,0) is defined as follows. The set @ = {s € Z | |s| < v} is the set of

possible carries, the set of edges is

E:{sﬂsﬂs—l—c:ﬁs'—l—a}.

Version April 18, 2001



4 Numeration systems 7.1

Figure 7.1. Right subsequential transducer realizing the conversion in
base 2 from {1,0, 1} onto {0, 1}

Observe that the edges are “letter-to-letter”. The terminal function is defined
by w(s) = (s)s for s € @ such that 75(s) > 0.

Now let w = ¢, ---¢g € C* and N = Z?:o et Setting sy = 0, there is a
unique path

co/ao c1/ay cafaz Cno1/an_1 cnlan

Sg —> S1 —> Sy —> - — Sp —> Sn+1-
By construction N = ag + a1 8 + - -+ @ 8" + 5,413 L, hence the word v =
W(8n41)an - - -ap has the same numerical value in base § as w.

Remark that v i1s equal to the normal representation of N if and only if it
does not begin with zeroes. m

ExXAaMPLE 7.1.2. Figure 7.1 gives the right subsequential transducer realizing
the conversion in base 2 from the alphabet {—1,0,1} onto {0,1}. The signed
digit (—1) is denoted by 1.

The two following results are a direct consequence of Lemma 7.1.1.

ProrosiTiON 7.1.3. In base 3, for every alphabet C' of positive integers con-
taining A, the normalization restricted to the domain C* \ 0C* is a right sub-
sequential function.

Removing the zeroes at the beginning of a word can be realized by a left
sequential transducer, so the following property holds true for any alphabet.

ProrosiTION 7.1.4. In base 3, for every alphabet C containing A, the nor-
malization on C* is computable by a finite transducer.

COROLLARY 7.1.5. In base 3, addition and subtraction (with possibly zeroes
ahead) are right subsequential functions.

Proof. Take in Lemma 7.1.1 C' = {0,...,2(8 — 1)} for addition, and C' =
{=(B—=1),...,8— 1} for subtraction. n
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7.1. Standard representation of numbers 5

One proves easily that multiplication by a fixed integer 1s a right subsequen-
tial function, and that division by a fixed integer is a left subsequential function,
see the Problems Section. On the other hand, the following result shows that
the power of functions computable by finite transducers is quite reduced.

ProrosiTION 7.1.6. In base 8, multiplication is not computable by a finite
transducer.

Proof. It is enough to show that the squaring function ¥ : A* — A* which
maps (N)s onto (N?)g is not computable by a finite transducer. Take for
instance 3 = 2, and consider (2" —1)3 = 1™. Then ¢(17) = (2%" —2n+1 4+ 1), =
17=10"1. Thus the image by % of the set {1” | n > 1} which is recognizable by
a finite automaton, is the set {1"=10"1 | n > 1} which is not recognizable, thus
1 cannot be computed by a finite transducer. [

7.1.2. Representation of real numbers

Let 8 > 2 be an integer and set A = {0,..., 38— 1}. A B-ary representation of
a nonnegative real number # is an infinite sequence (l‘z)zgk of AN such that

i<k

This representation is unique, and said to be normal if 1t does not end by
(8= 1)¥, and if z; # 0 when x > 1. Tt is traditionally denoted by

<x>ﬁ =Xk Xy L_1L_9"""

If £ < 1, then there exists some i > 0 such that x < 1/3°. We then put
Z_1, ..., £_jy1 = 0. The set of f-ary expansions of numbers > 1 is equal to
(AN 0)(AN\ A*(B — 1)¥), the one of numbers of [0,1] is AN\ A*(8 — 1)¥. The
set AV is the set of all B-ary representations (not necessarily normal).

The word xy, - - - g 18 the integer part of x and the infinite word x_12_5-- - is
the fractional part of . Note that the natural numbers are exactly those having
a zero fractional part (compare with the representation of complex numbers in
7.4.1).

If (x)5 = @ - 2o T_1x_o---, then /B! < 1, and by shifting we obtain
that

<36/5k+1>[j — B BT 1T -

thus from now on we consider only numbers from the interval [0,1]. When
x € [0,1], we will change our notation for indices and denote (x)s = (2;)i>1.

Let C' be a finite alphabet of integers, which can be positive or negative.
The numerical value in base 3 on CV is the function

F@ZCN—>R
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6 Numeration systems 7.2

which maps a word w = (Ci)i21 of CN onto Zi>1 czﬂ_i. The normalization on
C" is the partial function

ve : CN — AN
that maps a word w = (¢;)i>1 such that # = m5(w) belongs to [0, 1] onto its
B-ary expansion (z)g € AN\ A*(3 - 1)~.

ProrosITION 7.1.7. For every alphabet C' containing A, the normalization on
C" is computable by a finite transducer.

Proof. First we construct a finite transducer B where edges are the reverse
of the edges of the transducer A defined in the proof of Lemma 7.1.1. Let
B=(Q, F,0,Q) with set of edges

F=0%1s L8 ecpy.

Every state is terminal.
Let

c1/ay ca/as cs/as enfan

Sg —> 81 —> S —> - —> 8p
be a path in B starting in sp = 0. Then

C1 Cn ay

NN T R

Since A is sequential, the automaton 53 is unambiguous, that is, given an input
word (¢;)i>1 € CY there is a unique infinite path in B starting in 0 and labelled
by (¢i,ai)i>1 in (C x A)N, and such that Y ;5 ¢;3" = 3.5, @;3", because for
each n, |s,| < 7. N N

To end the proof it remains to show that the function which, given a word in
AN transforms it into an equivalent word not ending by (8—1)¥, is computable
by a finite transducer, and this is clear from the fact that AN x (AN\ A*(3—1)¥)
is a rational subset of AN x AN (see Chapter 1). ]

CoROLLARY 7.1.8. Addition/subtraction, multiplication/division by a fixed
integer of real numbers in base 3 are computable by a finite transducer.

ExaMpPLE 7.1.9. Figure 7.2 gives the finite transducer realizing non normal-
ized addition (meaning that the result can end by the improper suffix 1) of
real numbers on the interval [0, 1] in base 2.

7.2. Beta-expansions

We now consider numeration systems where the base is a real number 5 >
1. Representations of real numbers in such systems were introduced by Rényi
under the name of G-expansions. They arise from the orbits of a piecewise-
monotone transformation of the unit interval T3 : # — fx (mod 1), see below.
Such transformations were extensively studied in ergodic theory and symbolic
dynamics.
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7.2. Beta-expansions 7

0/0, 1/1 1/0, 2/1

() ()
o3 o

2/0

Figure 7.2. Finite transducer realizing non normalized addition of real
numbers in base 2

7.2.1. Definitions

Let the base 8 > 1 be a real number. Let & be a real number in the interval
[0,1]. A representation in base [ (or a -representation) of x is an infinite word

(#;)i>1 such that
x = Z z; 870

i>1
A particular SB-representation — called the (3-expansion — can be computed
by the “greedy algorithm” : denote by |y| and {y} the integer part and the
fractional part of a number y. Set rp = z and let for ¢ > 1, z; = [Fri_1],

r; = {fri1}. Then v =3 .o, x5t

The S-expansion of # will be denoted by dg ().

An equivalent definition is obtained by using the F-transformation of the
unit interval which is the mapping

Ts : 2+ Bz (mod 1).

Then dg(x) = (x;)i>1 if and only if 2; = [ﬁTé_l(x)J

Let # be any real number greater than 1. There exists & € N such that
BF <z < B Hence 0 < x/p%*! < 1, thus it is enough to represent numbers
from the interval [0, 1], since by shifting we will get the representation of any
positive real number.

ExAMPLE 7.2.1. Let f=(1+ \/5)/2 be the golden ratio. For z = 3 — /5 we
have dg(x) = 10010%.

If 3 is not an integer, the digits =; obtained by the greedy algorithm are
elements of the alphabet A = {0,---,| 8]}, called the canonical alphabet.

When 8 is an integer, the B-expansion of a number z of [0, 1] is exactly
the standard S-ary expansion, i.e. dg(z) = (x)s, and the digits #; belong to
{0,---, 3—1}. However, for & = 1 there is a difference: (1)3 = 1-but dg(1) = -5.
As we shall see later, the S-expansion of 1 plays a key role in this theory.

Another characterization of a -expansion is the following one.
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8 Numeration systems 7.2

LEMMA 7.2.2. An infinite sequence of nonnegative integers (l‘z’)izl is the (-
expansion of a real number x of [0, 1] (resp. of 1) if and only if for every i > 1
(resp. i > 2), #;37" + 2 fT 4 < gL

Proof. Let 0 < x < 1 and let dg(z) = (x;)i>1. By construction, for ¢ > 1,
ri1 = x; /3 + xi_l/ﬁz + .-+ < 1, thus the result follows. n

A real number may have several S-representations. However, the g-expan-
sion, obtained by the greedy algorithm, is characterized by the following prop-
erty.

PROPOSITION 7.2.3. The -expansion of a real number x of [0, 1] is the greatest
of all the (-representations of & with respect to the lexicographic order.

Proof. Let dg(x) = (2;)i>1 and let (s;)i>1 be another [-representation of
x. Suppose that (z;)i>1 < (si)i>1, then there exists k& > 1 such that z, <
sp and @1 ®p_1 = s1---Sp_1. From > .o, 57 = > sk 5;37" one gets
D ikl i > ﬁ_k—i—ZDkH 5;3~%, which is impossible since by Lemma 7.2.2

Zi2k+1 l‘iﬁ_i < ﬁ_k. ]

EXAMPLE 7.2.1 (continued). Let § be the golden ratio. The F-expansion of
=3 — /5 is equal to 10010%. Different B-representations of = are 01110%, or
100(01)¢ for instance.

As in the usual numeration systems, the order between real numbers is given
by the lexicographic order on f-expansions.

PROPOSITION 7.2.4. Let « and y be two real numbers from [0,1]. Then z < y
if and only if dg(x) < dg(y).

Proof. Let dg(x) = (#;);>1 and let dg(y) = (vi)i>1, and suppose that ds(x) <
ds(y). There exists k > 1such that xy < yp and @ -+ 2x_1 = y1 - - yr—1. Hence
e <y g1 BT (e — )BT a1 BT g BT < y
since 418 % + 2 4087F "2 4 ... < 37%. The converse is immediate. n

If a representation ends in infinitely many zeros, like v0“, the ending zeros
are omitted and the representation is said to be finite. Remark that the j-
expansion of & € [0,1] is finite if and only if Té(a:) = 0 for some i, and it is
eventually periodic if and only if the set {Té(l‘) | i > 1} is finite. Numbers 8
such that dg(1) is eventually periodic are called f-numbers and those such that
ds(1) is finite are called simple f-numbers.

REMARK 7.2.5. The g-expansion of 1 1s never purely periodic.

Indeed, suppose that dg(l) is purely periodic, dg(1l) = (a1 ---an)¥, with n
minimal, ¢; € A. Then 1 = a1~ 4+ - 4+ a, 87" + 77, which means that
ai - -ap_1(an + 1) is a G-representation of 1, and aq - --an—1(an, + 1) > dg(1),
which is impossible.
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7.2. Beta-expansions 9

EXAMPLE 7.2.6. 1. Let 8 be the golden ratio (14 +/5)/2. The expansion of 1
is finite, equal to dg(1) = 11.

2. Let 3 = (34 +/5)/2. The expansion of 1 is eventually periodic, equal to
ds(1) = 21

3. Let # = 3/2. Then dg(1) = 101000001 ---. We shall see later that it is

aperiodic.

7.2.2. The g-shift

Recall that the set AV is endowed with the lexicographic order, the product
topology, and the (one-sided) shift o, defined by o((#;)i>1) = (#i41)i>1. Denote
by Dg the set of S-expansions of numbers of [0, 1[. It is a shift-invariant subset
of AN, The B-shift Sp is the closure of Dg and it is a subshift of AV When 3
is an integer, S is the full F-shift AN,

The greedy algorithm computing the F-expansion can be rephrased as fol-
lows.

LEMMA 7.2.7. The identity
dgoTs =0codg
holds on the interval [0, 1].
Proof. Let z € [0,1], and let dg(x) = (#;)i>1. Then Ts(z) = 2221 z; 57", and

the result follows. n

In the case where the (-expansion of 1 is finite, there is a special repre-
sentation playing an important role. Let us introduce the following notation.
Let dg(1) = (ti)i>1 and set d;(l) = dg(1) if dg(1) is infinite and d;(l) =
(tl . 'tm—l(tm — 1))w if d@(l) = tl . ~tm_1tm 1s finite.

When [ is an integer, f-representations ending by the infinite word d;(l)
are the “improper” representations.

ExaMpLe 7.2.8. Let 8 =2, then dg(1) = 2 and dj(1) = 1*.
For § = (14/5)/2, dg(1) = 11 and d3(1) = (10)~.

The set Dg is characterized by the expansion of 1, as shown by the following
result below. Notice that the sets of finite factors of D and of Ss are the same,

and that dj(1) is the supremum of Sg, but that, in case dg(1) is finite, dg(1) is
not an element of Sg.

THEOREM 7.2.9. Let § > 1 be a real number, and let s be an infinite sequence
of nonnegative integers. The sequence s belongs to Dg if and only if for all
p>0

o (s) < dj(1)

and s belongs to Sg if and only if for all p > 0

ol (s) < dz(1).
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10 Numeration systems 7.2

Proof. First suppose that s = (s;);>1 belongs to Dg, then there exists z in [0, 1]
such that s = dg(x). By Lemma 7.2.7, for every p > 0, o? o dg(z) = dp oTp(x).
Since T (z) < 1 and dg is a strictly increasing function (Proposition 7.2.4),
o7 o dy(2) = o (5) < dy(1).
In the case where dg(1) = t1 ---t,, is finite, suppose there exists a p > 0 such
that o (s) > d;(l). Since o7 (s) < dg(1), we get spy1 =11, ..., Spym—1 = tm—1,
Sptm = tm — 1. Iterating this process, we see that of(s) = d ( ), which does
not belong to Dg, a contradiction.

Conversely, let d5(1) = (d;);>1 and suppose that for allp > 0, o7 (s) < d3(1).
By induction, let us show that for all » > 1, for all i > 0,

Sp+1 Sp+r di+1 di+7‘
4+t 4+t .
g g g g

8p+1"'5p+7‘<di+1"'di+7‘:>

This is obviously satisfied for r = 1.

Suppose that spy1 - Spyry1 < dig1 - digrgr.

First assume that sp11 = dipq, then spio- - spprp1 < digo--digry1. By
induction hypothesis,

Spyr41 _ digo diprt1

Spt2
Brt 32 +ot Brt

32
and the result follows.

Next, suppose that s,11 < diyq. Since for all p > 0, oP(s) < d;(l) then
Spy2 - Spyry1 < dy - --d,, thus

Spti Spyrg1 _ dig1— 1 dy d, dit1
Tty < + o <
B grtt = B B2 5T+1 B

since di /3% +---+d, /3t < 1/3.
Thus for all p > 0, for all ¢ > 0,

Z 5p+7‘6_r S Z di+7‘6—r .

r>1 r>1

In particular for i = 1, ", o sp4r 877 Zr>1 dry1877 < 1 if B is not an
integer, and the result follovvs by Lemma 7.2.2.

If § is an integer then d(1) = (8 — 1)*. If for all p > 0, o7 (s) < dj(1),
then every letter of s is smaller than or equal to § — 1 and s does not end by
(8 — 1)¥, therefore s belongs to Djg.

For the S-shift, we have the following situation. A sequence s belongs to D_@
if and only if for each n > 1 there exists a word v(") of Dg such that sq - - s, is
a prefix of v{"). Hence, s belongs to Sp if and only if for every p > 0, for every
n>1,00 (s 5,0¥) < d;(l), or equivalently if o?(s) < d;(l). n

From this result follows the following characterization : a sequence is the
F-expansion of 1 for a certain number 7 if and only if it is greater than all its
shifted sequences.
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7.2. Beta-expansions 11

COROLLARY 7.2.10. Let s = (s;);>1 be a sequence of nonnegative integers
with s1 > 1 and for i > 2, s; < s1, and which is different from 10“. Then there
exists a unique real number § > 0 such that ) .., 5;3~% = 1. Furthermore, s is
the B-expansion of 1 if and only if for every n > 1, 6™ (s) < s.

Proof. Let f be the formal series defined by f(z) = > ;5 siz*, and denote by
p its radius of convergence. Since 0 < s; < s1, we get p > 1/(s1 + 1). Since
for 0 < z < p the function f is continuous and increasing, and since f(0) = 0
and f(z) > 1 for z sufficient close to p, it follows that the equation f(z) =1
has a unique solution. If B > 1 exists such that f(1/8) = 1, we get that
s1/8 < f(1/83) < s1/(8 — 1), thus 5 must be between s; and s; + 1. On the
other hand, f(1/(s1 + 1)) <s1/s1 =1. If 51 > 2, f(1/s1) > 1. If sy = 1 and if
the s;’s are eventually 0, then f(1/s1) > 1, otherwise lim,_,; f(z) = 4o0. Thus
in any case there exists a real 5 € [s1,s; + 1] such that f(1/3) = 1.

Now we make the following hypothesis (H) : for all n > 1, 0™ (s) < s. Suppose

that the g-expansion of 1is dg(l) =t # s. Since s is a J-representation of 1,
s < t. Hence, for each n > 1, 6”(s) < s < dg(1). If dg(l) is infinite, by
Theorem 7.2.9, s belongs to Dg, a contradiction.
If dg(1) is finite, say dg(1) = t1 -t either s < dj(1), and as above we get
that s is in Dg, or d;(l) < s < dg(1). In fact, s cannot be purely periodic
because of hypothesis (H), thus it is different from d;(l). Thus s is necessarily
of the form (t; - tp_1(tm — 1))ty -1, for some k > 1. So sgmy1 = t1, ...,
Skmtm = tm, and 6*™(s) > s because s,, = t,, — 1, contradicting hypothesis
(H). Hence the f-expansion of 1 is s.

Conversely, suppose that s = dg(1) for some 8 > 1. From Theorem 7.2.9,
for every n > 1, 6" (s) < d;(l). If dg(1) is infinite, dg(1) = d;(l). If ds(1) is
finite, d(1) < dg(1). n

Let us recall some definitions on symbolic dynamical systems or subshifts
(see Chapter 1 Section 7). Let S C AN be a subshift, and let 1(S) = AT\ F(S)
be the set of factors avoided by S. Denote by X(S) the set of words of I(S)
which have no proper factor in 7(S). The subshift S is of finite type iff the set
X (S) is finite. The subshift S is sofic iff X(S) is a rational set. Tt is equivalent
to say that F'(S) is recognized by a finite automaton. The subshift S is said
to be coded if there exists a prefix code Y C A* such that F(S) = F(Y™), or
equivalently if S is the closure of Y¥.

To the @-shift a prefix code ¥ = Yj is associated as follows. It is the set
of words which, for each length, are strictly smaller than the prefix of dg(1) of
same length, more precisely: if dg(1) = ({;);>1 is infinite, set Y = {1 ---t,_1a |
0 <a<t,, n>1} with the convention that if n = 1, t; -+ 4,1 = e. If
da(l) =11ty let Y ={t1 - th_1a |0 <a<ty, 1 <n<m}

ProprosiTiON 7.2.11. The 3-shift Ss is coded by the code Y.

Proof. First if dg(1) = (¢;);>1 is infinite, let us show that Dg = Y“. Let s € Dg.
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12 Numeration systems 7.2

By Theorem 7.2.9, s < dg(1), thus can be written as s = ¢ - -t5,_100,01,
with a,, < t,, and vi < dg(l). Iterating this process, we see that s €
Y«. Conversely, let s = wgus--- € Y¥ with u; = t1---{p,_1an,, an, < ln,.
Then s < dg(1). For each p > 0, oF(s) begins with a word of the form
tiptiptt  tjpr—1 B With bjr <, 4, thus 0¥ (s) < 07r = (dp(1)) < da(1).

Next, if dg(1) = t1 - - -1y, is finite, we claim that Y = Sg. First, let s € Sp.
By Theorem 7.2.9, s < d;(l), thus s =11 - -y, —1an,v1, with ny <m, a,, < t,,
and v; < d;(l). Iterating the process we get s € Sg. Conversely, let s € Y¢,
s =ugug - with u; =41 - -4y, _1an,, n; < m. As above, one gets that, for each
p >0, 0P (s) < dy(l). n

We now compute the topological entropy of the F-shift

h(Sp) = —log(pr(s,))

(see 77 for definitions and notations). In the case where the f-shift is sofic, by
Theorem ?7 the entropy h(Ss) can be shown to be equal to log 3. We show
below that the same result holds true for any kind of §-shift.

ProrosITION 7.2.12. The topological entropy of the 3-shift is equal to log j.

Proof. For n > 1, the number of words of length n of Y is clearly equal to %,,
thus the generating series of Y is equal to

fr(z) = Ztnz".
n>1

By Corollary 7.2.10, 371 is the unique positive solution of fy (z) = 1. Since Y is
a code, by Lemma ?? py« = #~!. It is thus enough to show that py. = PF(S4)-
Let p, be the number of factors of length n of the elements of S and let

TFr(ss) = an2"~
n>0
Let ¢, be the number of words of length n of Y*, and let

n>0

Since any word of Y* is in F'(Sg), we have ¢, < p,. On the other hand, let
w be a word of length n in F(S3). By Proposition 7.2.11, w can be uniquely

written as w = u;ly -+ -1;, where u; € Y* |u;| = n — 4, and 0 < i < n. Thus
Pn = ¢ + -+ ¢p. Hence the series fF(Sﬂ) and fy. have the same radius of
convergence, and the result is proved. [

We now show that the nature of the subshift as a symbolic dynamical system
is entirely determined by the S-expansion of 1.
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7.2. Beta-expansions 13

THEOREM 7.2.13. The §-shift Ss is sofic if and only if dg(l) is eventually
periodic.

Proof. Suppose that dg(1) is infinite eventually periodic

dg(1) =t tn(Eng1 - tN4p)”

with N and p minimal. We use the classical construction of minimal finite
automata by right congruent classes (see Chapter 1). Let F(Dg) be the set of
finite factors of Dj. We construct an automaton Ag with N + p states qq, ...,
qN4p, Where q;, i > 2, represents the right class [t1 ---#;_1]p(p,) and ¢; stands
for [e]p(p,y. For each i, 1 <4 < N 4 p, there is an edge labelled ¢; from ¢; to
¢i+1. There is an edge labelled 1y, from gy4p to gy, For 1 <@ < N 4 p,
there are edges labelled by 0, 1, ..., ¢;—1 from ¢; to ¢;. Let g1 be the only initial
state, and all states be terminal. That F(Dg) is precisely the set recognized
by the automaton Ag follows from Theorem 7.2.9. Remark that, when the j-
expansion of 1 happens to be finite, say dg(1) = t1 - - - ¢, the same construction
applies with N = m, p = 0 and all edges from ¢, (labelled by 0, 1, ..., ¢, — 1)
leading to q;.

Suppose now that dg(1) = (;)i>1 is not eventually periodic nor finite. There
exists an infinite sequence of indexes i; < i5 < 3 < --- such that the sequences
ti ti,+1ti,42 - - - be all different for all £ > 1. Thus for all pairs (¢;,4,), j,£ > 1,
there exists p > 0 such that, for instance, ;4 < #;,4p and &;, -4, 4p_1 =
ti, - ti,4p—1 = w (with the convention that, when p = 0, w = ¢). We have
that ¢, - - 'tij—IWtij+p € F(D@), t1-- ~t”_1wt”+p € F(D@), - ~t”_1wtij+p €
F(Dg), but ty ---t;,_ywt;,4p does not belong to I'(Dg). Hence t;---t;; and
t1 - - -1;, are not right congruent modulo F'(Dg). The number of right congruence
classes is thus infinite, and F(Dg) is not recognizable by a finite automaton.

]

EXAMPLE 7.2.14. For = (34/5)/2, ds(1) = 21, and the B-shift is sofic.

We have a similar result when the [-expansion of 1 is finite.

THEOREM 7.2.15. The §-shift Sg is of finite type if and only if dg(1) Is finite.

Proof. Let us suppose that dg(1) =t - -t,, is finite and let

Z= |J wed lu>ti- -t} U{u€A™ [uty -t}
2<i<m—1

Clearly Z C At \ F(Ss). The set X(Ss) of words forbidden in Sz which are
minimal for the factor order is a subset of Z. Since Z is finite, X(S5p) is finite,
and thus Ss is of finite type.

Conversely, suppose that the §-shift is of finite type. It is thus sofic, and
by Theorem 7.2.13, dg(1l) is eventually periodic. Suppose that dg(1) is not
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14 Numeration systems 7.2

finite, dg(1) = t1 - -tn(tng1 - - tngp)? with N > 1 and p > 1 minimal, and
tN_|_1 o 'tN-I—p 7£ 0P. Let

ZI{t1~~~tj_1(tj—|—hj)|2§j§N, lgh] Stl—t]’}
Ut tn(tvgn o tvgp) v v (g + hvgg)

Clearly Z C AT\ F(S5).

Case 1. Suppose there exists 1 < j <psuch that t; > tyy; and t; =tn4a, ...,
tji—1 = tntj—1. For k> 0 fixed, let w) = ¢, - tn(tng1 - tngp)iti -t € Z.
We have t1 -ty (tng1 - ~tN+p)ktN+1 -tyyj—1 € F(Sg). On the other hand,
forn> 2ty tn({ngr - ~tN+p)k is strictly smaller in the lexicographic order
than the prefix of dg(1) of same length (the inequality is strict, since the ¢;’s
are not all equal for 1 < ¢ < N 4 p), thus ¢t - tn(Eng1 - ~tN+p)k ti---t; €
F(Sp). Hence any strict factor of w®) is in F(Sp). Therefore for any k > 0,
w®) e X(Sg), and X(Sp) is thus infinite: the F-shift is not of finite type.
Case 2. No such j exists, then dg(1) = (¢1---tn)*, which is impossible by
Remark 7.2.5. L]

EXAMPLE 7.2.16. For 8 = (1 4+ +/5)/2, the @-shift is of finite type, it is the

golden mean shift described in Example 77.

7.2.3. Classes of numbers

Recall that an algebraic integer is a root of a monic polynomial with integral
coefficients. An algebraic integer 8 > 1 is called a Pisot number if all its Galois
conjugates have modulus less than one. It is a Salem number if all its conjugates
have modulus < 1 and at least one conjugate has modulus one. It is a Perron
number if all 1ts conjugates have modulus less than 5.

EXAMPLE 7.2.17. 1. Every integer is a Pisot number. The golden ratio (1 +
V/5)/2 and its square (3 4 /5)/2 are Pisot numbers, with minimal polynomial
respectively X? — X —1 and X? —3X + 1.

2. A rational number which is not an integer 1s never an algebraic integer.

3. (54 /5)/2 is a Perron number which is neither Pisot nor Salem.

The most important result linking G-shifts and numbers 1s the following one.

THEOREM 7.2.18. If § is a Pisot number then the (-shift S is sofic.

This result 1s a consequence of a more general result on [-expansions of
numbers of the field Q(3) when 3 is a Pisot number. Tt is a partial generalization
of the well known fact that, when £ is an integer, numbers having an eventually
periodic f-expansion are the rational numbers of [0, 1] (see Problems Section).

PROPOSITION 7.2.19. If 3 is a Pisot number then every number of Q(8)N[0, 1]
has an eventually periodic 3-expansion.
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7.2. Beta-expansions 15

Proof. Let P(X) = X% —a; X% 1 —... —ay be the minimal polynomial of
G = 1 and denote by 8s, ..., G4 the conjugates of 5. Let « be arbitrarily fixed
in Q(B)N[0,1]. Tt can be expressed as

d—1
r=q"> pif
i=0

with ¢ and p; in Z, ¢ > 0 as small as possible in order to have uniqueness.
Let (xx)r>1 be the f-expansion of z, and denote by

rp = 1) = 1 (2) = l’“ﬁ“ + l’g;z o= =Y wfF) = T () < L.
k=1

For 2 < j <d, let
' ' d—1 ) n
) = @) = 3 Y el = Y ).
i=0 k=1

Let n = maxa<;<q|f;| < 1 since § is a Pisot number. Since 2, < [3]| we get

d—1 n—1
D1 < g7 il + 181 Do
=0 k=0

and, since < 1, max;<;<qsup, |r£1j)| < +00.
We need a technical result. Set R,, = (rﬁll), cee rﬁld)) and let B be the matrix
B = (8" )i<ij<d-

LEMMA 7.2.20. Letzx = ¢! Zldz_ol pi3'. For every n > 0, there exists a unique
d-uple Z, = (ZT(LI), cee zr(Ld)) in Z¢ such that R, = ¢~ 'Z,B.

Proof. By induction on n. First, r; = rgl) = fx — xq, thus
251) (d)

d-1
L= q_l(zpzﬂiﬂ —qry) = q—l(7 4 Zﬁl_d)
i=0

using the fact that f¢ = a; %" + -+ 4 ag, a; € Z. Now, ro41 = rﬁll_gl =
Brn — xn41, hence

(2) (4) (1) ()

o=l (1), A o _ —1/%n+41 Znt1
Tl = ¢ (%t toot oo T %) = ¢ +oet
+ ( 3 -1 +) ( 3 34 )
since 27(11) — qxpy1 € Z.
Thus
d—1 ) n
ro=r =" (g7 it =Y w ) =y 2R
i=0 k=1 k=1
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16 Numeration systems 7.2

Since the latter equation has integral coefficients and is satisfied by g, it is also
satisfied by each conjugate 3;, 2 < j < d,

d—1 n
rgj)zﬁy(qq Zpi@'—Zl’kﬁfk):q_lzzék)@_k' n
i=0 k=1 k=1
We resume the proof of Proposition 7.2.19. Let V,, = ¢R,. The (Vi)n>1

have bounded norm, since maxi<;<qsup, |7°£Lj)| < 400. As the matrix B is
invertible, for every n > 1,

Zal] = 1I(2D, -+, 2D)]] = max 2] < +o0
1<j<d

so there exist p and m > 1 such that 7,4, = Z,,, hence 7,4, = 1, and the
F-expansion of x is eventually periodic. [

On the other hand, there is a gap between Pisot and Perron numbers as
shown be the following result.

PropPosITION 7.2.21. If S is sofic then 8 is a Perron number.

Proof. With the automaton Ag defined in the proof of Theorem 7.2.13 one
assoclates a matrix M = My by taking for M[i, j] the number of edges from
state ¢; to state ¢;, that is, if dg(1) =41 - - tn(tng1 - Engp)?,

Mli 1] =t
Mli,i+ 1] =1fori# N+p
MIN+p, N+1]=1

and other entries are equal to 0.

Claim 1. The matrix M is primitive: MY1P > 0, since MN*P[i, j] is equal to
the number of paths of length N 4 p from ¢; to ¢; in the strongly connected
automaton Ag.

Claim 2. The characteristic polynomial of M 1is equal to

N+p ) N )
I IED QALEE T GELEED G YN G
i=1 i=1

and [ is one of its roots: it can be checked by a straightforward computation.
When dg(1) = t1 - - -1, is finite, the matrix associated with the automaton is
simpler, it is the companion matrix of the polynomial K(X) = X™ —¢; X™~1 —
<+« —ty,, which is primitive, since M"™ > 0.
Since 7 > 1 is an eigenvalue of a primitive matrix, by the theorem of Perron-
Frobenius, 3 is strictly greater in modulus than its algebraic conjugates. [

Thus when £ is a non-integral rational number (for instance 3/2), the g-shift
Sp cannot be sofic.
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7.3. U-representations 17

EXAMPLE 7.2.22. There are Perron numbers which are neither Pisot nor Sa-
lem numbers and such that the §-shift is of finite type: for instance the root
B~ 3.616 of X* —3X3 —2X? — 3 satisfies dg(1) = 3203, and 3 has a conjugate
v~ —1.096.

REMARK 7.2.23. If 7 is a Perron number with a real conjugate > 1, then dg(1)
cannot be eventually periodic.

In fact, suppose that dg(1) =t1---tn(tn41 - -tnsp)®, and that 8 has a conju-
gate ¥ > 1. Since 3 is a zero of the polynomial K(X) of Z[X], v is also a zero
of this polynomial. Thus d-(1) = dg(1), and by Corollary 7.2.10, v = 5.

For instance the quadratic Perron number 8 = (5 ++/5)/2 has a real conjugate
> 1, and thus S3 is not sofic.

7.3. U-representations

We now consider another generalization of the notion of numeration system,
which only allow to represent the natural numbers. The base is replaced by an
infinite sequence of integers. The basic example is the well-known Fibonacci
numeration system.

7.3.1. Definitions

Let U = (Un)nzo be a strictly increasing sequence of integers with ug = 1. A
representation in the system U — or a U-representation — of a nonnegative
integer NV is a finite sequence of integers (di)kZiZO such that

k
=0

Such a representation will be written d - - - do, most significant digit first.

Among all possible U-representations of a given nonnegative integer N one
is distinguished and called the normal U-representation of N : it is sometimes
called the greedy representation, since it can be obtained by the following greedy
algorithm : given integers m and p let us denote by ¢(m,p) and r(m,p) the
quotient and the remainder of the Euclidean division of m by p. Let k& > 0 such
that uy < N < upyq and let dy = ¢(N, ug) and v, = #(N, ug), and, for i = k—1,
ooy 0, di = q(rig1, u5) and r; = v(ri41, w;). Then N = dyug + -+ -+ doug. The
normal U-representation of N is denoted by (N)y.

By convention the normal representation of 0 is the empty word £. Under
the hypothesis that the ratio w,41/u, is bounded by a constant as n tends
to infinity, the integers of the normal U-representation of any integer N are
bounded and contained in a canonical finite alphabet A associated with U.

ExAMPLE 7.3.1. Let U = {2" | n > 0}. The normal U-representation of an
integer is nothing else than its 2-ary standard expansion.
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18 Numeration systems 7.3

EXAMPLE 7.3.2. Let F' = (F),)n>0 be the sequence of Fibonacci numbers (see
Example ??). The canonical alphabet is equal to A = {0,1}. The normal
F-representation of the number 15 is 100010, another representation is 11010.

An equivalent definition of the notion of normal U-representation is the
following one.

LEMMA 7.3.3. The word di, - - - dy, where each d;, for k > ¢ > 0, is a nonnega-
tive integer and di # 0, is the normal U-representation of some integer if and
only if for each i, diu; + - - - + douo < Uiy1.

Proof. If d, - - - dy is obtained by the greedy algorithm, r; 41 = d;ju; 4+ - -+ doug <
u;+1 by construction. n

As for F-expansions, the U-representation obtained by the greedy algorithm
is the greatest one for some order we define now. Let v and w be two words.
We say that v < w if |v] < |w| or if [v] = |w| and there exist letters a < b such
that v = wav’ and w = wbw’. This order is sometimes called “radix order” or
“genealogic order” | or even “lexicographic order” in the literature, although the
definition is slightly different from the usual definition of lexicographic order on
finite words (see Chapter 1).

ProPOSITION 7.3.4. The normal U-representation of an integer is the greatest
in the radix order of all the U-representations of that integer.

Proof. Let d = dg ---dy be the normal U-representation of N, and let w =
w; -+ -wp be another representation. Since up < N < upqq, & > j. If k> 7,
then d > w. If k = j, suppose d < w. Thus there exists ¢, k¥ > ¢ > 0
such that d; < w; and di---djp1 = wg - -wip1. Hence diu; + -+ - + doug =
wiu; + - -+ woug, but dju; + -+ douo < (wiy — Dug + di—1ui—1 + - -+ doug,
SO U + wi_qUj_1 + -+ woug < dj_qu;_1 + - -+ doug < u; since d is normal,
which 1s absurd. [

The order between natural numbers is given by their radix order between
their normal U-representations.

ProprosiTION 7.3.5. Let M and N be two nonnegative integers, then M < N
if and only if (M)y < (N)y.

Proof. Let v = vy ---vg = (M) with wy < M < ugqq, and w = wj---wp =
(N)r with u; < N < uj41, and suppose that v < w. Then k < j. If k < j,
Up1 < u;, and M < N. If & = j, there exists ¢ such that v; < w; and
Vg Vgl = Wk - - - Wiy1. Hence
M = vpup + - -+ voup
< wpug + A wip i+ (wi = D+ viouiog 4 - 4 vouo
< wpup + - F Wipi g1 +wivy <N

since v;_1u;_1 + - - -+ voug < u; by Lemma 7.3.3, thus M < N. n
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7.3. U-representations 19

7.3.2. The set of normal U-representations

The set of normal U-representations of all the nonnegative integers is denoted

by L(U).

EXAMPLE 7.3.2 (continued). Let F' be the sequence of Fibonacci numbers. The
set L(F') is the set of words without the factor 11, and not beginning with a 0,

L(F)=1{0,1}"\ {0, 1}*11{0, 1 }* Ue.
First the analogue of Theorem 7.2.9 is the following result.

PROPOSITION 7.3.6. The set L(U) is the set of words over A such that each
suffix of length n is less in the radix order than (u, — D)y.

Proof. Let v = v ---vg be in L(U), and 0 < n < k+ 1. By Lemma 7.3.3
Up—1Un—1+- - Fvoug < un—1, and by Proposition 7.3.5, vp,_1 - - - vg < (un— 1)y
The converse is immediate. [

An important case is when L(U) is recognizable by a finite automaton, as it
is the case for usual numeration systems. We first give a necessary condition.

Recall that a formal series with coefficients in IN is said to be N-rational if 1t
belongs to the smallest class containing polynomial with coefficients in N, and
closed under addition, multiplication and star operation, where F'* is the series
1+ F+F?+F'+...=1/(1 = F), F being a series such that F'(0) = 0. A
N-rational series is necessarily Z-rational, and thus can be written P(X)/Q(X),
with P(X) and Q(X) in Z[X], and Q(0) = 1. Therefore the sequence of coeffi-
cients of a N-rational series satisfies a linear recurrent relation with coefficients
in Z. It is classical that, if L is recognizable by a finite automaton, then the
series f1(X) =", 5 n X", where {,, denotes the number of words of length n
in L, is N-rational (see Berstel and Reutenauer 1988).

PROPOSITION 7.3.7. If the set L(U) is recognizable by a finite automaton,
then the series U(X) = > squnX" is N-rational, and thus the sequence U
satisfies a linear recurrence with integral coefficients.

Proof. Let £, be the number of words of length nin L(U). The series fr)(X) =
Zn>o£an 1s N-rational. We have u,, = £, + - - - + £y, because the number of
words of length < n in L(U) is equal to the number of naturals smaller than u,,,
whose normal representation has length n+4-1. Thus U(X) = frw)(X)/(1-X),
and it is N-rational. m

When the sequence U satisfies a linear recurrence with integral coefficients,
we say that U defines a linear numeration system.

To determine sufficient conditions on the sequence U for the set L(U) to be
recognizable by a finite automaton is a difficult question (see Problem 7.3.1). Tt
is strongly related to the theory of S-expansions where 3 is the dominant root of
the characteristic polynomial of the linear recurrence of U/. Nevertheless, there
is a case where the set L(U) and the factors of the -shift coincide. This means
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20 Numeration systems 7.3

that the dynamical systems generated by the S-expansions of real numbers and
by normal U-representations of integers are the same.

It is obvious that if a word of the form v0™ belongs to L(U) then v itself is
a word of L(U), but the converse is not true in general. We will say that a set
L C A is right-extendable if the following property holds

velL=v0el.

THEOREM 7.3.8. Let U = (uyn)n>o0 be astrictly increasing sequence of integers,
with ug = 1, and such that sup u,y1/u, < 400, and let A be the canonical
alphabet. There exists a real number 3 > 1 such that L(U) = F(Dg) if and
only if L(U) is right-extendable. In that case, if dj(1) = (d;)i>1, the sequence
U is determined by

Up = dittp_1 + -+ dpup + 1.

Proof. Clearly, if L(U) = F(Dg) for some § > 1, then L(U) is right-extendable.
Conversely, suppose that L(U) is right-extendable. For each n, denote
(un — 1)y = di™ o dl),

n

Since L(U) is right-extendable, for each k < n, d(lk) = ~dff)0"_k € L(U), and
thus d(lk) . ~dff) < d(ln) . ~d§€n). Therefore d(lk) . ~dff) = d(ln) . ~d§€n) because

d(lk) o ~dff) is the greatest word of length &£ in the radix order.

Let d,, = dﬁl”), then dpdpq1--- < dido---. Let d = (d;)i>1. If there exists m
such that d = ¢ (d) then d is periodic. Let m be the smallest such index. In
that case, put t1 = dy, ..., tji_1 = dm_1, tym = dpm + 1, t; = 0 for 2 > m. In
case d is not periodic, put t; = d; for every i. Then the sequence (Z;);>1 satisfies
tplng1 - < lity--- for all n > 2, and thus by Corollary 7.2.10 there exists a
unique 3 > 1 such that dg(1) = (¢;)i>1.

Let us show that L(U) = F(Dg). Recall that

Dg = {s|V¥p >0,07(s) < dj(1) = (di)iz1}
hence
FDg)={v=wvg--v|Vn, 0<n<kuv,_1--vo<di--dy={u,— 1)}
=L{U)
by Proposition 7.3.6.
Now, since by definition dy - - -d, = (u, — 1)ur, we get
Up = dittp_1 + -+ dpup + 1. L]

The numeration systems satisfying Theorem 7.3.8 will be called canonical
numeration systems associated with §, and denoted by Us. Note that if dg(1)
is eventually periodic, then L(Ugz) is recognizable by a finite automaton and Ug
satisfies a linear recurrent sequence.

EXAMPLE 7.3.2 (continued). The Fibonacci numeration system is the canoni-
cal numeration system associated with the golden ratio.
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7.3.3. Normalization in a canonical linear numeration system

We first give general definitions, valid for any linear numeration system defined
by a sequence U. The numerical value in the system U of a representation
w = di---dy is equal to my(w) = Zf:o d;u;. Let C be a finite alphabet of
integers. The normalization in the system U on C* is the partial function

ve : CF — AF

that maps a word w of C* such that my(w) is nonnegative onto the normal
U-representation of ny(w).

In the sequel, we assume that U/ = Ug is the canonical numeration system
associated with a number 5 which is a Pisot number. Thus U satisfies an
equation of the form

Up = A1tp—1 F Aotz + -+ Gulpn—m, @ €7Z, am #0, n>m.

In that case, the canonical alphabet A associated with U is A = {0,..., K}
where K < max(u;11/u;). The polynomial P(X) = X™ —a; X™"! — ... —a,,
will be called the characteristic polynomial of U.

We also make the hypothesis that P is exactly the minimal polynomial of 3
(in general, P is a multiple of the minimal polynomial).

Our aim is to prove the following result.

THEOREM 7.3.9. Let U = Uy be a canonical linear numeration system associ-
ated with a Pisot number 3, and such that the characteristic polynomial of U
is equal to the minimal polynomial of 3. Then, for every alphabet C of nonneg-
ative integers, the normalization on C'* is computable by a finite transducer.

The proof is in several steps. Let C' = {0, ... ¢}, C = {—e¢,...,c}, and let

k
Z(U,e) = {dy--do | di € C, Y dyu; = 0}

i=0

be the set of words on C having numerical value 0 in the system U. We first
prove a general result.

ProposITION 7.3.10. IfZ(U,¢) and L(U) are recognizable by a finite automa-
ton then v¢ is a function computable by a finite transducer.

Proof. Let f = fn -+ fo and g = g - - gg be two words of C*, with for instance
n > k. We denote by f© g the word of C* equal to fr -+ foq1(fe —gx) - (fo—
go). The graph of v¢ is equal to v¢ = {(f,9) € C* x A* | g€ L(U),fog €
Z(U,c)}.

Let R be the graph of & :

R = [(Vaee((a,),a))" U (Uaee (¢, a), —a))][Uapec((a, b), a = b)]”
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R is a rational subset of (C* x C7) x C*. Let us consider the set
R = RN ((C* x L(U)) x Z(U,¢)) C (C* x A*) x C*.

Then ¢ is the projection of R’ on C* x A*. As L(U) and Z (U, ¢) are rational by
assumption, (C* x L(U)) x Z(U, ¢) is a recognizable subset of (C* x A*) x C* as
a Cartesian product of rational sets (see Berstel 1979). Since R is rational, R/
is a rational subset of (C* x A™) x C*. So, v being the projection of R/, v¢ is a
rational subset of C* x A*, that is, v¢ 1s computable by a finite transducer. [

The core of the proof relies in the following result.
ProrosiTiON 7.3.11. Let U be a linear numeration system such that its char-

acteristic polynomial is equal to the minimal polynomial of a Pisot number (3.
Then Z (U, ¢) is recognizable by a finite automaton.

Proof. Set Z = Z(U,c) for short. We define on the set H of prefixes of 7 the
equivalence relation ¢ as follows (m is the degree of P)

fCgevn, 0<n<m—1, nmy(f0") = np(g0™)].

Let f ( g. Tt is clear that the sequences (7w (f07))n>0 and (7y (90™))n >0 satisfy
the same recurrence relation as U. Since they coincide on the first m values,
they are equal. Thus, for any h € C|

fhe Z e my(fo") + mp(h) =
& 1 (g0 + 7y (h) =
S ghez

0
0

which means that f and g are right congruent modulo Z. If f and g are not in
H, then f ~z g as well.

It remains to prove that ¢ has finite index. This will be achieved by showing
that there are only finitely many possible values of g (f0") for f € H and for
all 0 <n <m—1. Recall that, if 3 = 31, =2, ..., B are the roots of P, since
P is minimal they are all distinct, and there exist complex constants Ay > 0,
Az, ..., Ay such that for all n € N

i=1

I f=fofo,let m(f) = fuB* + -+ 18+ fo.
Claim 1. There exists i such that for all f € C

|mo (f) — Mms(f)] <.
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We have . .
mo(f) = Mms(f) =Y fiug— My L
7=0 7=0

k m k
=> KO AB) =MD
7=0 =1 j=0
k m
=2 L M)
7=0 i=2

Since S is a Pisot number, |5;| < 1 for 2 < i < m and

n 1
| (f) — Mims(f)] < CZ|/\i|1_ 1G] =
=2 t

Claim 2. There exists v such that for all f € H, |73(f)| < 7.
Since f € H there exists h € C' such that fh € Z. Thus

0 = 7 (FOIM1) 4 7 (h) < Auma(FOIRN) + \ymp(h) + 2
< Aimp ()M + A (e + 1) 810+ 2p gl

thus 75(f) > —c—1—2nA7". Similarly 75(f) < ¢+ 142nA7", hence |75(f)| <
cH 1+ =4,
Claim 3. There exists § such that for all f € H, forall0 <n <m —1

(07| < 6
We have
|7 (f0™)] < |mu (f0™) — Aimp(f0")| 4+ [Aimp (F0™)]
<n+Mims(f)]6”
<+ A8t
hence |my (f0™)] < 6 =5+ Ay8m L.

Thus there are only finitely many possible values of 7y (f07) for f € H and
for all 0 < n < m — 1, therefore ¢ has finite index, and Z(U, ¢) is rational. L]

Proofof the theorem. Since U is canonical for a Pisot number, L(U) is recog-
nizable by a finite automaton. The result follows from Proposition 7.3.10 and
Proposition 7.3.11. L]

COROLLARY 7.3.12. Under the same hypothesis as in Theorem 7.3.9, addi-
tion of integers represented in the canonical linear numeration system Up Is
computable by a finite transducer.

Proof. The canonical alphabet being A = {0,..., K}, take C = {0,...,2K} in
Theorem 7.3.9. L]
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Figure 7.3. Automaton recognizing the set of words on {—1,0, 1} having
value 0 in the Fibonacci numeration system

o 0/0
0/0,1/1 0/0

Figure 7.4. Normalization on {0, 1} in the Fibonacci numeration system

EXAMPLE 7.3.2 (continued). Let F be the sequence of Fibonacci numbers. The
characteristic polynomial of Fis X?—X —1, and it is the minimal polynomial of
the Pisot number 3 = (14 +/5)/2. Figure 7.3 gives the automaton recognizing
the set Z(F, 1) of words on the alphabet {—1,0,1} having numerical value 0 in
the Fibonacci numeration system.

Figure 7.4 shows a finite transducer realizing the normalization on {0,1} in
the Fibonacci numeration system. For simplicity, we assume that input and
output words have the same length.

The result stated in Theorem 7.3.9 can be extended to the case where U
1s not the canonical numeration system associated with a Pisot number 3, but
where the characteristic polynomial of U is still equal to the minimal polynomial
of 3. There is a partial converse to this result, see Notes.

7.4. Representation of complex numbers

The usual method of representing real numbers by their decimal or binary ex-
pansions can be generalized to complex numbers. Tt is possible (see the Problem
Section) to represent complex numbers with an integral base and complex digits,
but we present here results when the base is some complex number.
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7.4.1. Gaussian integers

In this section we focus on representing complex numbers using integral digits.
The set of Gaussian integers, denoted by Z[i], is the set {a+bi | a,b € Z}. The
base § will be chosen as a Gaussian integer. It is quite natural to extend prop-
erties satisfied by integral base for real numbers, namely the fact that integers
coincide with numbers having a zero fractional part. More precisely, given a
base 8 of modulus > 1 and an alphabet A of digits that are Gaussian integers,
we will say that (3, A) is an integral numeration system for the field of complex
numbers C if every Gaussian integer z has a unique integer representation of
the form d - - -dy such that z = Z?:o djﬁj, with d; € A. We shall see later
that, in that case, every complex number has a representation.

We first show preliminary results. A set A C Z[i]is a complete residue system
for Z[i] modulo 8 if every element of Z[i] is congruent modulo § to a unique
element of A. The norm of a Gaussian integer z = x + yi is N(z) = x? + y*.
The following result is well known in elementary number theory.

THEOREM 7.4.1 (Gauss). Let = a+ bi be a non-zero Gaussian integer, and
let N be the norm of 3. If a and b are coprime, then a complete residue system
for Z[i] modulo (3 is the set

{0,...,N —1}.

If ged(a, b) = A, a complete residue system for Z[i] modulo § is the set
{p+ig|p=0,1,.. (N/A)—=1,¢=0,1,...,A—1}.
We use it in the following circumstances.

PROPOSITION 7.4.2. Suppose that every Gaussian integer has an integer rep-
resentation in (3, A). Then this representation is unique if and only if A is a
complete residue system for 7Z[i] modulo 3, that contains 0.

Proof. Let us suppose that A is a complete residue system containing 0, and
let dy - - -dg and ¢, - - - ¢o be two representations of z in (3, A). One can suppose
do # co. Then cg —dy = B(dp ¥+ +dy — cpBP71 — - — 1), thus dy and
co are congruent modulo 3, and are elements of A, thus they are equal, which
is absurd.

Conversely, suppose that every (Gaussian integer z has a unique representa-
tion of the form dy, - - - do, with digits d; in A. Then z is congruent to dyp modulo
[, thus the digit set A must contain a complete residue system.

Now let ¢ and d be two digits of A that are congruent modulo 8. Then
¢ —d = fq with ¢ in Z[i]. Let g, - - -qo be the representation of q. Hence ¢ has
two representations, ¢ itself and ¢, - - - god. [

If we require the digits to be natural numbers, the base must be a Gaussian
integer = a+ bt with a and b coprime, and the choice is drastically restricted.
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THEOREM 7.4.3. Let § be a Gaussian integer of norm N, and let A = {0, ...,
N —1}. Then (8, A) is an integral numeration system for the complex numbers
if and only if 3 = —n £ i, for somen > 1.

Proof. First let 3 = a + bi, a and b coprime, and let A = {0,...,a% + b2 —1}.
Suppose that @ > 0. We shall show that the Gaussian integer z = (1 — a) + @b
has no representation. Suppose in the contrary that z has a representation
di---dy. Let y = z(1 — B) = a®> +b? — 2a+ 1. Since a > 0, y belongs to A.
But y = do + (dy — do)B + -+ -+ (ds — di—1)3* — diB**!. Thus y is congruent
to dg modulo 3, and so y = dy. It follows that dy —dp =0, ..., dp —dx_1 = 0,
dp =0,s0for 0 <7<k, dj=0 Thusy=0anda=1,06=0. But 3=11is
not the base of a numeration system.

If a = 0 and b = &1, then § = %7 is not a base either. If a = 0 and |b| > 2,
the digit set is {0,---,6% — 1}. If b > 0 then 7 has no integer representation,
since (i)s = 10 - (b —b). If b < 0, then —i has no integer representation (see
Exercise 7.4.2.)

Let now ¢ < 0 and b # =+1. Suppose that a Gaussian integer z has a
representation dy, - - - do. Then Imz = dy Imp3* +--- 4+ d; Img. Since Img = b is
a divisor of Im@* for all k, b divides Imz. Take z = i. Since b # +1, there is a
contradiction.

Let now 3 = —n +14, n > 1, and thus A = {0,...,n%}. It remains to prove
that any z € Z[i] has an integer representation in (3, A). Let z = « + iy, « and
y in Z. We have z = ¢+ df, with d = y and ¢ = & + ny. From the equality
B2 +2nB +n? +1=0, it is possible to write z as z = d33> + d28? + d1 3 + do
with d; € N.

Let z = di 3" + .-+ do, with d; € N, and k > 3, and let d = dy, - - -dg € IV,
Denote by S the sum-of-digits function

S:CxN*—N
(z,d) — S(z,d) =di+ -+ do.

In the following we will use the fact that n? +1 = 3%+ (2n — 1)8% + (n — 1)?8,
that is, (n? + 1) is equal to the word 1(2n — 1)(n — 1)?0, and that the sum
of digits of these two representations is the same and equal to n? + 1. By
the Euclidean division by n? + 1, dg = rg + qo(n? + 1) with 0 < 7o < n?, thus
2 =ro+(di+go(n—1)%) B+ (d2+q0(2n—1))5* 4+ (d3+q0) 8>+ dafp* +- - -+ di 5" =
d"V 4+ dVpE. Clearly S(z,d) = S(z,dW), where dV) = d{M .. .dl").

Let z; = d(ll) 44 dg)ﬁk_l, then S(z1,dM) < S(z,d), and the inequality
is strict if and only if 7o # 0. Repeating this process, we get z = fz1 + ro,
7= PBra+r, .., zjm1 = Pz +rjoq, withfor 0 <4< j—1,r € A and
S(z,d) > S(z1,dM)y > - > S(zj_1,d0=1).

Since the sequence (S(z;, d(j)))j of natural numbers is decreasing, there ex-
ists a p such that, for every m > 0, S(zp,d(p)) = S(zp+m,d(p+m)), thus g™
divides z, for every m, therefore z, = 0. So we get

(2)p =7p-1--"10.
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Let now 3 = —n —i. Using the result for the conjugate # = —n + 14, we have

(2)5 =rp-1--70

for every Gaussian integer z. Hence

(z)p =rp-1--"10
for every Gaussian integer z. m
From this result, one can deduce that every complex number is representable

in this system.

THEOREM 7.4.4. If3=-n+i n>1,and A ={0,...,n%}, every complex
number has a representation (not necessarily unique) in the numeration system

(8, 4).

Proof. Let z = x 4+ iy,  and y in R, be a fixed arbitrary complex number. For
k>0, let 8% = up 4 ivy. Then

(e +ay)(ur +Five) | prtigr TR+ sk

- o ST F T

where zug — yvr = pg + 7k, TUs + yur = qx + s, with pg and gx in Z, and
|ri| < 1, |sg| < 1. Let

_pr g i tisg
k: - Bk b) k: - Bk -
Since yr — 0 when & — oo, limg_, «, 2x = 2. Since pg +iqx 18 a Gaussian integer,
by Theorem 7.4.3.

(pr +iqn)p = diﬁk)) cdff).
Thus
= dilfzg)ﬁt(k)_k +od B
So ) "
d d%
d*) t(k)—k_|_..._|_d(k) <apl 4 F=L 4o 4 20
iy cls g oF

|
< el + lyel +n (m‘i‘W‘i‘"')

n? <
—— <ec
-1~

where ¢ 18 a positive constant not depending on k.

< [zl + lwl +

Since the representation of a Gaussian integer is unique, and since ZJ[i] is a
discrete lattice, ¢.e. 1s an additive subgroup such that any bounded part contains
only a finite number of elements, ¢(k) — k& has an upper bound. Let M be an
integer such that ¢(k) — k < M. Then we can write z; on the form

2k :ag‘l})ﬁM+...+a(()k)+a(_/€1)6—1+a(_k2)6—2+...
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Figure 7.5. Base —1 + i tile with fractal boundary

where agk) € Afor M > j. Let byy € A be an integer so that ag‘i) = by for

infinitely many k’s. Let Djs be the subset of those £’s such that ag\l}) = bps. Let
bar—1 € A be an integer so that ag\l})_l = bps_1 for infinitely many k’s in Dy,
and let Dpr_q be the set of those k’s. Repeating this process a set sequence

(D¢)e>nm such that Dy D Dy D -+ - and such that for all & € Dy, agk) =1b;
for each £ < j < M 1s constructed. Let k1 < ks < --- be an infinite sequence
such that k; € Dys_;41 for j > 1. Since

2y = by B by BT () M T ) M
we get zx, — > vemr b3 when j — co. Since limg o0 25 = 2, we have
(2)g =bar - bg-b_1b_s--- .

EXAMPLE 7.4.5. On Figure 7.5 is shown the set obtained by considering com-
plex numbers having a zero integer part and a fractional part of length less than
a fixed bound in their —1 + i-expansion. This set actually tiles the plane.

Let C' be a finite alphabet of Gaussian integers. The normalization on C* is
the function
ve : C* — A*
& :
ek rrco > Q50 ¢ )p

As for standard representations of integers (see Proposition 7.1.3), normalization
is a right subsequential function, and in particular addition is right subsequen-
tial.

PrOPOSITION 7.4.6. For any finite alphabet C' of Gaussian integers, the nor-

malization in base 3 = —n + i restricted to the set C* \ 0C* is a right subse-
quential function.
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Proof. Let m = max{|c—a| | ¢ € C,a € A}, and let y = m/(|3| — 1). First
observe that, if s € Z[i] and ¢ € C, there exist unique a € A and s’ € Z[]
such that s + ¢ = Bs’ + @, because A is a complete residue system mod 3.
Furthermore, if |s| < v, then |s'| < (|s| + |c — a])/|8] < (v + m)/|3] = 7.
Consider the subsequential finite transducer (A,w) over C* x A*  where
A = (Q, E,0) is defined as follows. The set of states is @ = {s € Z[i] | |s] < ~}.

Since Z[i] is a discrete lattice, @ is finite.

E:{sﬂsﬂs—l—c:ﬁs'—l—a}.

Observe that the edges are “letter-to-letter”. The terminal function is defined
by w(s) = (s)g. The transducer is subsequential because A is a complete residue
system.

Now let ¢ -+ -¢cg € C* and z = Zk cjﬁj. Setting sy = 0, there is a unique

7=0
path
cofao ci1fax cafas Ch—1/@k—1 cr/ak
Sg —» 81 —> S9 —> - — S — Skp41-
We get 2 = ag+a1 84+ ap ¥ + 5,410, and thus (2)p = w(skpt1)ar - - - ao.

7.4.2. Representability of the complex plane

In general, the question of deciding whether, given a base # and a set of digits
A, every complex number is representable, 1s difficult. A sufficient condition 1s
given by the following result.

THEOREM 7.4.7. Let 8 be a complex number of modulus greater than 1, and
let A be a finite set of complex numbers containing zero. If there exists a
bounded neighborhood V' of zero such that 3V C V + A, then every complex
number z has a representation of the form

2= 4
j<m
with m in 7 and digits d; in A.

Proof. Let z be in C. There exists an integer k& > 0 such that 3=%z € V| thus
it is enough to show that every element of V is representable. Let z be in V.
A sequence (Zj)jzo of elements of V' is constructed as follows. Let zp = 2. As
BV CV+ A if z; isin V, there exist d;j;q in A and z;4, in V such that

zj41 = Pz — djqa.
Hence the sequence (zj);>0 is such that
s=difT i 48
and since V' is bounded, by letting j tend to infinity,

= d;pi. .

320
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Problems

Section 7.1

7.1.1 Prove that addition in the standard F-ary system is not left subsequen-
tial.

7.1.2  Give a right subsequential transducer realizing the multiplication by a
fixed integer, and a left subsequential transducer realizing the division
by a fixed integer in the standard S-ary system.

7.1.3 Prove the well-known fact that a number is rational if and only if its
[F-expansion in the standard F-ary system is eventually periodic.

7.1.4 Show that any real number can be represented without a sign using
a negative base 3, where (§ is an integer < —2, and digit alphabet
{0,...,]8]|—1}. Integers have a unique integer representation. Addition
of integers is a right subsequential function.

7.1.5 Show that one can represent any real number without a sign using
base 3, and digit alphabet {1,0,1}. Integers have a unique integer
representation. Addition of integers is a right subsequential function.
Generalize this result to integral bases greater than 3.

Section 7.2

7.2.1 Show that the code Y defined in the proof of Proposition 7.2.11 1is finite
if and only if dg(1) is finite, resp. is recognizable by a finite automaton
if and only if dg(1) is eventually periodic.

7.2.2  If every rational number of [0, 1] has an eventually periodic f-expansion,
then  must be a Pisot or a Salem number. (See Schmidt 1980).

7.2.3 Normalization in base 3. (See Frougny 1992, Berend and Frougny

1994).

1. Let s = (si)i>1 and denote by ms(s) the real number >, ., 5677,
Let C be a finite alphabet of integers. The canonical alphabet is A =
{0,...,|3]}. The normalization function on C

ve : OV — AN

is the partial function which maps an infinite word s over (', such that
0 < ms(s) <1, onto the S-expansion of ms(s).

A transducer is said to be letter-to-letter if the edges are labelled by
couples of letters.

Let C'=10,..., ¢}, where ¢ is an integer > 1. Show that normalization
ve 1s a function computable by a finite letter-to-letter transducer if and
only if the set

Z(B,¢) ={s=(si)i>0 | ss €Z, |si| <o, Zszﬂ_i =0}

i>0
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Section

*7.3.1

Section

7.4.1

is recognizable by a finite automaton.

2. Prove that the following conditions are equivalent:

(i) normalization v : CN — AN is a function computable by a finite
letter-to-letter transducer on any alphabet C of nonnegative integers
(i) var : AN — AN where A’ = {0,..., 3] + 1}, is a function com-
putable by a finite letter-to-letter transducer

(iii) £ is a Pisot number.

7.3

(See Hollander 1998) Let U be a linear recurrent sequence of integers
such that limy,_eo (tn41/u,) = F for real 5 > 1.

1. Prove that if dg(1) is not finite nor eventually periodic then L(U) is
not recognizable by a finite automaton.

2. If dg(1) is eventually periodic, dg(1) =1 ---tn(tn41 - Engp)”, set

N+p ' N '
B(X) = XN = N XNl o XN N x N
i=1 i=1

Similarly, if dg(1) is finite, dg(1) = t1 - - -1, set
B(X)=X" =Y ;X7
i=1

Note that B(X) is dependent on the choice of N and p (or m). Any
such polynomial is called an extended beta polynomial for 3. Prove that
(1) If dg(1) is eventually periodic, then L(U) is recognizable by a finite
automaton if and only if U satisfies an extended beta polynomial for 3.
(i1) If dg(1) is finite, then
o if U satisfies an extended beta polynomial for 5 then L(U) is rec-
ognizable by a finite automaton

e if L(U) is recognizable by a finite automaton then U satisfies a
polynomial of the form (X™ —1)B(X) where B(X) is an extended
polynomial for 5 and m is the length of dg(1).

7.4

1. Show that every Gaussian integer can be uniquely represented using
base 3 and digit set A = {1,0,1}+4{1,0,1} = {0,1,—1,4,—i, 14,1 —
i,—1+41i,—1—14}. If each digit is written in the form

_0 7 _1 _1 :_0 . _ 0
O=g 1= 1=, =7, -t =7

Lbi=ll—i=f —l+i={ —1-i=}
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7.4.2

7.4.3

7.4.4

7.4.5

*7.4.6

Problems

then for any representation the top row represents the real part and
the bottom row is the imaginary part. Every complex number is repre-
sentable.

2. Show that every complex number can be represented using base 2
and the same digit set A, but that the representation of a Gaussian
integer is not unique.

Prove that every Gaussian integer has a unique representation of the
form dg - - - dp - d—_1 in base § = £bt, where b is an integer > 2, and the
digits d; are elements of A = {0,...,b% — 1}. Every complex number is
representable. (See Knuth 1988).

Show that every complex number can be represented using base 2 and
digit set A = {0,1,¢,¢% (3}, where ¢ = exp(2im/4). These representa-
tions are called polygonal representations. (See Duprat, Herreros, and

Kla 1993).

Let 8 be a complex number of modulus > 1, and let A be a finite
digit set containing 0. Let W be the set of fractional parts of complex
numbers, W= {35, d;B79 | d; € A}

1. Show that W is the only compact subset of C such that W = W4 A.
2. Show that if the set W 1s a neighborhood of zero, then every complex
number has a representation with digits in A.

Let 8 be a complex number of modulus > 1, and let A be a finite
digit set containing 0. An infinite sequence (d;);>1 of AN s a strictly
proper representation of a number z = Zj>1 djﬁ_j if it is the greatest
in the lexicographic order of all the representations of z with digits in
A. Tt is weakly proper if each finite truncation is strictly proper. Let
W = {Zj21djﬁ_j | d; € A}. Show that, if 3 is a complex Pisot
number, the set of weakly proper representations of elements of W is
recognizable by a finite automaton. (See Thurston 1989, Kenyon 1992,
Petronio 1994).

Representation of algebraic number fields. (See Gilbert 1981, 1994,
Kétai and Kovacs 1981).

Let 3 be an algebraic integer of modulus > 1, and let A be a finite set
of elements of Z[3] containing zero. We say that (5, A) is an integral
numeration system for the field Q(5) if every element of Z[3] has a
unique integer representation of the form dy - - - dp with d; in A.

1. Let P(X) = X™ 4 pp—1 X1+ ...+ pg be the minimal polynomial
of 3. The norm of 8 is N(f5) = |po|. Show that a complete residue
system of elements of Z[3] modulo g is the set {0,..., N(3) — 1}.

2. Suppose that every element of Z[3] has a representation in (3, A).
Prove that this representation is unique if and only if A is a complete
residue system for Z[3] modulo j, that contains zero.

3. Suppose that (8, A) is an integral numeration system. Show that
every element of the field (/) has a representation in (3, A).

4. Show that (3, A) is an integral numeration system if and only if 4 and
all its conjugates have moduli greater than 1 and there is no positive
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integer g for which
dq_lﬁq_l + -4 do =0 (HlOd 6(1 — 1)

with d; in A for 0 < j <gq.

5. Now suppose that § is a quadratic algebraic integer, and let A =
{0,...,|po] — 1}. Prove that (3, A) is an integral numeration system for
Q(p) if and only if pg > 2 and —1 < py < py.

Notes

Concerning the representation of numbers in classical or less classical numera-
tion systems, there is always something to learn in Knuth 1988. Representation
in integral base with signed digits was popularized in computer arithmetic by
Avizienis (1961) and can be found earlier in a work of Cauchy (1840).

We have not presented here p-adic numeration, nor the representation of
real numbers by their continued fraction expansions (see Chapter 2 for this last
topic).

The notion of beta-expansion is due to Rényi (1957). Its properties were
essentially set up by Parry (1960), in particular Theorem 7.2.9. Coded systems
were introduced by Blanchard and Hansel (1986). The result on the entropy
of the F-shift is due to Ito and Takahashi (1974). The links between the j-
expansion of 1 and the nature of the (-shift are exposed in Ito and Takahashi
1974 and in Bertrand-Mathis 1986. Connections with Pisot numbers are to be
found in Bertrand 1977 and Schmidt 1980. It is also known that normalization
in base [ is computable by a finite transducer on any alphabet if and only if
£ is a Pisot number, see Problem 7.2.3. If 8 is a Salem number of degree 4
then dg(1) is eventually periodic, see Boyd 1989. It is an open problem for
degree > 6. Perron numbers are introduced in Lind 1984. There is a survey
on the relations between beta-expansions and symbolic dynamics by Blanchard
(1989). In Solomyak 1994 and in Flatto, Lagarias, and Poonen 1994 is proved the
following property: if dg(1) is eventually periodic, then the algebraic conjugates
of 7 have modulus strictly less than the golden ratio. Beta-expansions also
appear in the mathematical description of quasicrystals, see Gazeau 1995.

The representation of integers with respect to a sequence U is introduced
in Fraenkel 1985. The fact that, if L(U) is recognizable by a finite automaton,
then the sequence U is linearly recurrent is due to Shallit (1994). We follow the
proof of Loraud (1995). The converse problem is treated by Hollander 1998,
see Problem 7.3.3. Canonical numeration systems associated with a number
come from Bertrand-Mathis (1989). Normalization in linear numeration systems
linked with Pisot numbers is studied in Frougny 1992, Frougny and Solomyak
1996, and with the use of congruential techniques, in Bruyére and Hansel 1997.
Moreover, if the sequence U has a characteristic polynomial which is the minimal
polynomial of a Perron number which is not Pisot, then normalization cannot
be computed by a finite transducer on every alphabet (Frougny and Solomyak
1996).
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34 Notes

A famous result on sets of natural numbers recognized by finite automata is
the theorem of Cobham (1969). Let k& be an integer > 2. A set X of positive
integers is said to be k-recognizable if the set of k-representations of numbers of
X is recognizable by a finite automaton. Two numbers & and ! are said to be
multiplicatively independent if there exist no positive integers p and ¢ such that
kP =19. Cobham’s Theorem then states: If X is a set of integers which is both
k-recognizable and [-recognizable in two multiplicatively independent bases &
and [, then X is eventually periodic. There is a multidimensional version of
Cobham’s Theorem due to Semenov (1977). Original proofs of these two results
are difficult, and several other proofs have been given, some of them using logic
(see Michaux and Villemaire 1996). There are many works on generalizations
of Cobham and Semenov theorems (see Fabre 1994, Bruyére and Hansel 1997,
Point and Bruyeére 1997, Fagnot 1997, Hansel 1998). In Durand 1998 there is
a version of the Cobham theorem in terms of substitutions. We give now one
result related to the concepts exposed in Section 7.3. Let U be an increasing
sequence of integers. A set X of positive integers is U-recognizable if the set of
normal U-representations of numbers of X is recognizable by a finite automaton.
Let # and ' be two multiplicatively independent Pisot numbers, and let U/ and
U’ be two linear numeration systems whose characteristic polynomial is the
minimal polynomial of # and @ respectively. For every n > 1,if X C N" is U-
and U'-recognizable then X is definable in (N, +) (Bés 2000). When n = 1, the
result says that X is eventually periodic.

Theorem 7.4.3 on bases of the form —n &+ ¢, n integer > 1 1s due to Kétai
and Szabd (1975). There is a more algorithmic proof, as well as results on the
sum-of-digits function for base § = —1471, in Grabner et al. 1998 Normalization
in complex base 1s studied in Safer 1998. Theorem 7.4.7 appeared in Thurston
1989, as well as the result on complex Pisot bases presented in Problem 7.4.5.
Representation of complex numbers in imaginary quadratic fields is studied in
Katai 1994. We have not discussed here beta-automatic sequences. Results
on these topics can be found in Allouche et al. 1997, particularly for the case
B=—1+i.

The numeration in complex base is strongly related to fractals and tilings.
Self-similar tilings of the plane in relation with complex Pisot bases are discussed
in Thurston 1989, Kenyon 1992 and Petronio 1994. In Gilbert 1986, the fractal
dimension of tiles obtained in some bases such as —n+1¢ 1s computed. A general
survey has been written by Bandt (1991).
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