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March 22, 2006

(1) Doppler Institute for Mathematical Physics and Applied Mathematics and
Department of Mathematics, FNSPE, Czech Technical University,

Trojanova 13, 120 00 Praha 2, Czech Republic
Ampy@linux.fjfi.cvut.cz, Masakova@km1.fjfi.cvut.cz,

Pelantova@km1.fjfi.cvut.cz

(2) LIAFA, UMR 7089 CNRS & Université Paris 7
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Abstract

A simple Parry number is a real number β > 1 such that the Rényi ex-
pansion of 1 is finite, of the form dβ(1) = t1 · · · tm. We study the palindromic
structure of infinite aperiodic words uβ that are the fixed point of a substitu-
tion associated with a simple Parry number β. It is shown that the word uβ

contains infinitely many palindromes if and only if t1 = t2 = · · · = tm−1 ≥ tm.
Numbers β satisfying this condition are the so-called confluent Pisot numbers.
If tm = 1 then uβ is an Arnoux-Rauzy word. We show that if β is a confluent
Pisot number then P(n + 1) + P(n) = C(n + 1) − C(n) + 2, where P(n) is the
number of palindromes and C(n) is the number of factors of length n in uβ. We
then give a complete description of the set of palindromes, its structure and
properties.

1 Introduction

Infinite aperiodic words over a finite alphabet are suitable models for one-dimensional
quasicrystals, i.e. non-crystallographic materials displaying long-range order, since
they define one-dimensional Delaunay sets with finite local complexity. The first



quasicrystal was discovered in 1984: it is a solid structure presenting a local symmetry
of order 5, i.e. a local invariance under rotation of π/5, and it is linked to the golden
ratio and to the Fibonacci substitution. The Fibonacci substitution, given by

0 7→ 01, 1 7→ 0,

defines a quasiperiodic selfsimilar tiling of the positive real line, and is a historical
model of a one-dimensional quasicrystal. The fixed point of the substitution is the
infinite word

010010101 · · ·
The description and the properties of this tiling use a number system in base the
golden ratio.

A more general theory has been elaborated with Pisot numbers1 for base, see
[8, 17]. Note that so far, all the quasicrystals discovered by physicists present local
symmetry of order 5 or 10, 8, and 12, and are modelized using quadratic Pisot units,
namely the golden ratio for order 5 or 10, 1 +

√
2 for order 8, and 2 +

√
3 for order

12.
For the description of physical properties of these materials it is important to

know the combinatorial properties of the infinite aperiodic words, such as the factor
complexity, which corresponds to the number of local configurations of atoms in
the material, or the palindromic structure of the aperiodic words, describing local
symmetry of the material. The palindromic structure of the infinite words has been
proven important for the description of the spectra of Schrödinger operators with
potentials adapted to aperiodic structures [27].

The most studied infinite aperiodic word is the Fibonacci word, which is the
paradigm of the notion of Sturmian words. Sturmian words are binary aperiodic words
with minimal factor complexity, i.e. C(n) = n+1 for n ∈ N = {0, 1, 2, . . .}. There exist
several equivalent definitions of Sturmian words see [11], or [30, Chapter 2]. From
our point of view the characterization of Sturmian words using palindromes [20] is
particularly interesting.

Sturmian words can be generalized in several different ways to words over m-letter
alphabet, namely to Arnoux-Rauzy words of order m, see [3, 11], or to infinite words
coding m-interval exchange [29, 34]. The Sturmian case is included for m = 2.

Arnoux-Rauzy words and words coding generic m-interval exchange have factor
complexity C(n) = (m− 1)n+ 1 for n ∈ N, [29]. For Arnoux-Rauzy words the palin-
dromic structure is also known [28, 19]: for every n the number P(n) of palindromes
of length n is equal to P(n) = 1 if n is even and to P(n) = m if n is odd. The palin-
dromic structure of infinite words coding m-interval exchange is more complicated.
The existence of palindromes of arbitrary length depends on the permutation which

1A Pisot number is an algebraic integer > 1 such that the other roots of its minimal polynomial
have a modulus less than 1. The golden ratio and the natural integers are Pisot numbers.
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exchanges the intervals. For m = 3 and the permutation π = (321) the result is given
in [19], for general m in [6].

As we have seen for the Fibonacci word, infinite aperiodic words can also be ob-
tained as the fixed point of a substitution canonically associated with a number system
where the base is an irrational number β, the so-called β-expansions introduced by
Rényi [35]. The words uβ are defined in the case that β is a Parry number, that is to
say when the Rényi expansion of 1 is eventually periodic or finite, see Section 2 for
definitions. These words provide a good model of one-dimensional quasicrystals [8].
The factor complexity of these words is at most linear, because they are fixed points
of primitive substitutions [33]. The exact values of the complexity function C(n) for
a large class of Parry numbers β can be found in [25] and some partial results about
other Parry numbers β are to be found in [26].

This paper is devoted to the description of the palindromic structure of the infinite
words uβ, when β is a simple Parry number, with the Rényi expansion of 1 being of
the form dβ(1) = t1 · · · tm. We first show that the word uβ contains infinitely many
palindromes if and only if t1 = t2 = · · · = tm−1 ≥ tm. Numbers β satisfying this
condition have been introduced and studied in [24] from the point of view of linear
numeration systems. Confluent linear numeration systems are exactly those for which
there is no propagation of the carry to the right in the process of normalization, which
consists of transforming a non-admissible representation on the canonical alphabet
of a number into the admissible β-expansion of that number. Such a number β is
known to be a Pisot number, and will be called a confluent Pisot number. We also
know from [25] that the infinite word uβ is an Arnoux-Rauzy sequence if and only if
it is a confluent Pisot number with the last coefficient tm being equal to 1; then β is
an algebraic unit.

In the sequel β is a confluent Pisot number. We then determine the palindromic
complexity, that is P(n), the number of palindromes in uβ of length n. In the de-
scription of P(n) we use the notions introduced in [25] for the factor complexity. The
connection of the factor and palindromic complexity is not surprising. For example,
in [2] the authors give an upper estimate of the palindromic complexity P(n) in terms
of C(n).

In this paper we show that if the length of palindromes is not bounded, which is
equivalent to lim supn→∞P(n) > 0, then

P(n+ 1) + P(n) = C(n + 1) − C(n) + 2 , for n ∈ N . (1)

In general it is has been shown [5] that for a uniformly recurrent word with
lim supn→∞P(u) > 0 the inequality

P(n + 1) + P(n) ≤ C(n + 1) − C(n) + 2

holds for all n ∈ N. Moreover, the authors proved the formula (1) to be valid
for infinite words coding the r-interval exchange. Finally, it is known that the for-
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mula (1) holds also for Arnoux-Rauzy words [2] and for complementation-symmetric
sequences [19].

We then give a complete description of the set of palindromes, its structure and
properties. The exact palindromic complexity of the word uβ is given in Theorem 7.1.

Further on, we study the occurrence of palindromes of arbitrary length in the
prefixes of the word uβ. It is known [21] that every word w of length n contains at
most n + 1 different palindromes. The value by which the number of palindromes
differs from n+1 is called the defect of the word w. Infinite words whose every prefix
has defect 0 are called full. We show that whenever lim supn→∞P(n) > 0, the infinite
word uβ is full.

2 Preliminaries

Let us first recall the basic notions which we work with, for more details reader is
referred to [30]. An alphabet is a finite set whose elements are called letters. A finite
word w = w1w2 · · ·wn on the alphabet A is a concatenation of letters. The length
n of the word w is denoted by |w|. The set of all finite words together with the
empty word ε equipped with the operation of concatenation is a free monoid over the
alphabet A, denoted by A∗.

An infinite sequence of letters of A of the form

u0u1u2 · · · , · · ·u2u1u0, or · · ·u−2u−1u0u1u2 · · ·

is called right infinite word, left infinite word, or two-sided infinite word, respectively.
If for a two-sided infinite word the position of the letter indexed by 0 is important,
we introduce pointed two-sided infinite words, · · ·u−2u−1|u0u1u2 · · · .

A factor of a word v (finite or infinite) is a finite word w such that there exist
words v1, v2 satisfying v = v1wv2. If v1 = ε, then w is called a prefix of v, if v2 = ε,
then w is a suffix of v. For a finite word w = w1w2 · · ·wn with a prefix v = w1 · · ·wk,
k ≤ n, we define v−1w := wk+1 · · ·wn.

On the set A∗ we can define the operation ∼ which to a finite word w = w1 · · ·wn

associates w̃ = wn · · ·w1. The word w̃ is called the reversal of w. A finite word
w ∈ A∗ for which w = w̃ is called a palindrome.

The set of all factors of an infinite word u is called the language of u and denoted
by L(u). The set of all palindromes in L(u) is denoted by Pal(u). The set of
words of length n in L(u), respectively in Pal(u) determines the factor, respectively
palindromic complexity of the infinite word u. Formally, the functions C : N → N,
P : N → N are defined by

C(n) := # {w | w ∈ L(u), |w| = n} ,
P(n) := # {w | w ∈ Pal(u), |w| = n} .
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Obviously, we have P(n) ≤ C(n) for n ∈ N. We have moreover

P(n) ≤ 16

n
C

(
n+

⌊n
4

⌋)
,

as shown in [2].
For the determination of the factor complexity important is the notion of the

so-called left or right special factors, introduced in [18]. The extension of a factor
w ∈ L(u) by a letter to the left is called the left extension of w, analogously we define
the right extension of a factor w. Formally, we have the sets

Lext(w) := {aw | aw ∈ L(u)} ,
Rext(w) := {wa | wa ∈ L(u)} .

If #Lext(w) ≥ 2, we say that w is a left special factor of the infinite word u. Similarly,
if #Rext(w) ≥ 2, then w is a right special factor of u. For the first difference of
complexity we have

∆C(n) = C(n+ 1) − C(n) =
∑

w∈L(u), |w|=n

(#Lext(w) − 1) .

In this formula we can exchange Lext(w) with Rext(w).
Infinite words which have for each n at most one left special factor and at most

one right special factor are called episturmian words [28]. Arnoux-Rauzy words of
order m are special cases of episturmian words; they are defined as words on a m-letter
alphabet such that for every n there exist exactly one left special factor w1 and exactly
one right special factor w2. Moreover, these special factors satisfy #Lext(w1) =
#Rext(w2) = m.

Analogically to the case of factor complexity, for the palindromic complexity it is
important to define the palindromic extension: If for a palindrome p ∈ Pal(u) there
exists a letter a such that apa ∈ Pal(u), then we call the word apa the palindromic
extension of p.

A mapping on a free monoid A∗ is called a morphism if ϕ(vw) = ϕ(v)ϕ(w) for
all v, w ∈ A∗. Obviously, for determining the morphism it is sufficient to define ϕ(a)
for all a ∈ A. The action of a morphism can be naturally extended on right infinite
words by the prescription

ϕ(u0u1u2 · · · ) := ϕ(u0)ϕ(u1)ϕ(u2) · · · .

A non-erasing2 morphism ϕ, for which there exists a letter a ∈ A such that ϕ(a) = aw
for some non-empty word w ∈ A∗, is called a substitution. An infinite word v such
that ϕ(v) = v is called a fixed point of the substitution ϕ. Obviously, any substitution

2A morphism ϕ on an alphabet A is non-erasing if for any a ∈ A the image ϕ(a) is a non-empty
word.
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has at least one fixed point, namely limn→∞ ϕn(a). Assume that there exists an index
k ∈ N such that for every pair of letters i, j ∈ A the word ϕk(i) contains as a factor
the letter j. Then the substitution ϕ is called primitive.

Similarly, one can extend the action of a morphism to left infinite words. For
a pointed two-sided infinite word u = · · ·u−3u−2u−1|u0u1 · · · we define action of a
morphism ϕ by ϕ(u) = · · ·ϕ(u−3)ϕ(u−2)ϕ(u−1)|ϕ(u0)ϕ(u1) · · · . One can also define
analogically the notion of a fixed point.

Right infinite words which will be studied in this paper, are connected with the
Rényi β-expansion of real numbers [35]. For a real number β > 1 the transformation
Tβ : [0, 1] → [0, 1) is defined by the prescription

Tβ(x) := βx− bβxc .
The sequence of non-negative integers (tn)n≥1 defined by ti = bβT i−1(1)c satisfies
1 = t1

β
+ t2

β2 + t3
β3 + · · · . It is called the Rényi expansion of 1 and denoted by

dβ(1) = t1t2t3 · · · .
In order that the sequence t1t2t3 · · · be the Rényi expansion of 1 for some β, it must
satisfy the so-called Parry condition [31]

titi+1ti+2 · · · ≺ t1t2t3 · · · for all i = 2, 3, . . . ,

where the symbol ≺ stands for ”lexicographically strictly smaller”. A number β > 1
for which dβ(1) is eventually periodic is called a Parry number. If moreover dβ(1) has
only finitely many non-zero elements, we say that β is a simple Parry number and in
the notation for dβ we omit the ending zeros, i.e. dβ(1) = t1t2 · · · tm, where tm 6= 0.

A Pisot number is an algebraic integer such that all its Galois conjugates are in
modulus less than 1. A Pisot number is a Parry number [14]. It is known that a
Parry number is a Perron number, i.e. an algebraic integer all of whose conjugates
are in modulus less than β. Solomyak [36] has shown that all conjugates of a Parry
number lie inside the disc of radius 1

2
(1 +

√
5), i.e. the golden ratio.

With every Parry number one associates a canonical substitution ϕβ, see [22]. For
a simple Parry number β with dβ(1) = t1t2 · · · tm the substitution ϕ = ϕβ is defined
on the alphabet A = {0, 1, . . . , m− 1} by

ϕ(0) = 0t11
ϕ(1) = 0t22

...
ϕ(m− 2) = 0tm−1(m− 1)
ϕ(m− 1) = 0tm

(2)

The notation 0k in the above stands for a concatenation of k zeros. The substitution
ϕ has a unique fixed point, namely the word

uβ := lim
n→∞

ϕn(0) ,
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which is the subject of the study of this paper. The substitution (2) is primitive,
and thus according to [33], the factor complexity of its fixed point is sublinear. The
exact values of C(n) for uβ with dβ = t1 · · · tm satisfying t1 > max{t2, . . . , tm−1} or
t1 = t2 = · · · = tm−1 can be found in [25]. The determination of the palindromic
complexity of uβ is the aim of this article.

A similar canonical substitution is defined for non-simple Parry numbers. Par-
tial results about the factor and palindromic complexity of uβ for non-simple Parry
numbers β can be found in [7, 26].

One can define the canonical substitution ϕβ even if the Rényi expansion dβ(1)
is infinite non-periodic, i.e. β is not a Parry number. In this case, however, the
substitution and its fixed point are defined over an infinite alphabet. The study of
such words uβ is out of the scope of this paper.

3 Words uβ with bounded number of palindromes

The infinite word uβ associated with a Parry number β is a fixed point of a primitive
substitution. This implies that the word uβ is uniformly recurrent [23]. Let us recall
that an infinite word u is called uniformly recurrent if every factor w in L(u) occurs
in u with bounded gaps.

Lemma 3.1. If the language L(u) of a uniformly recurrent word u contains infinitely
many palindromes, then L(u) is closed under reversal.

Proof. From the definition of a uniformly recurrent word u it follows that for every
n ∈ N there exists an integer R(n) such that every arbitrary factor of u of length
R(n) contains all factors of u of length n. Since we assume that Pal(u) is an infinite
set, it must contain a palindrome p of length ≥ R(n). Since p contains all factors
of u of length n, and p is a palindrome, it contains with every w such that |w| = n
also its reversal w̃. Thus w̃ ∈ L(u). This consideration if valid for all n and thus the
statement of the lemma is proved.

Note that this result was first stated, without proof, in [21].
The fact that the language is closed under reversal is thus a necessary condition

so that a uniformly recurrent word has infinitely many palindromes. The converse is
not true [12].

For infinite words uβ associated with simple Parry numbers β the invariance of
L(uβ) under reversal is studied in [25].

Proposition 3.2 ([25]). Let β > 1 be a simple Parry number such that dβ(1) =
t1t2 · · · tm .

1. The language L(uβ) is closed under reversal, if and only if

Condition (C) : t1 = t2 = · · · = tm−1 .
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2. The infinite word uβ is an Arnoux-Rauzy word if and only if Condition (C) is
satisfied and tm = 1.

Corollary 3.3. Let β be a simple Parry number which does not satisfy Condition
(C). Then there exists n0 ∈ N such that P(n) = 0 for n ≥ n0.

Numbers β satisfying Condition (C) have been introduced and studied in [24] from
the point of view of linear numeration systems. Confluent linear numeration systems
are exactly those for which there is no propagation of the carry to the right in the
process of normalization, which consists of transforming a non-admissible represen-
tation on the canonical alphabet of a number into the admissible β-expansion of that
number. A number β satisfying Condition (C) is known to be a Pisot number, and
will be called a confluent Pisot number.

Set
t := t1 = t2 = · · · = tm−1 and s := tm .

From the Parry condition for the Rényi expansion of 1 it follows that t ≥ s ≥ 1. Then
the substitution ϕ is of the form

ϕ(0) = 0t1
ϕ(1) = 0t2

...
ϕ(m− 2) = 0t(m− 1)
ϕ(m− 1) = 0s

t ≥ s ≥ 1 . (3)

Note that in the case s = 1, the number β is an algebraic unit, and the corresponding
word uβ is an Arnoux-Rauzy word, for which the palindromic complexity is known.
Therefore in the paper we often treat separately the cases s ≥ 2 and s = 1.

4 Palindromic extensions in uβ

In the remaining part of the paper we study the palindromic structure of the words
uβ for confluent Pisot numbers β.

For an Arnoux-Rauzy word u (and thus also for a Sturmian word) it has been
shown that for every palindrome p ∈ L(u) there is exactly one letter a in the alphabet,
such that apa ∈ L(u), i.e. any palindrome in an Arnoux-Rauzy word has exactly one
palindromic extension [19]. Since the length of the palindromic extension apa of p is
|apa| = |p| + 2, we have for Arnoux-Rauzy words P(n + 2) = P(n) and therefore

P(2n) = P(0) = 1 and P(2n + 1) = P(1) = #A .

Determining the number of palindromic extensions for a given palindrome of uβ is
essential also for our considerations here. However, let us first introduce the following
notion.
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Definition 4.1. We say that a palindrome p1 is a central factor of a palindrome p2

if there exists a finite word w ∈ A∗ such that p2 = wp1w̃.

For example, a palindrome is a central factor of its palindromic extensions.
The following simple result can be easily obtained from the form of the substitu-

tion (3), and is a special case of a result given in [25].

Lemma 4.2 ([25]). All factors of uβ of the form X0nY for X, Y 6= 0 are the following

X0t1, 10tX with X ∈ {1, 2, . . . , m− 1}, and 10t+s1 . (4)

Remark 4.3.

1. Every pair of non-zero letters in uβ is separated by a block of at least t zeros.
Therefore every palindrome p ∈ L(uβ) is a central factor of a palindrome with
prefix and suffix 0t.

2. Since ϕ(A) is a suffix code, the coding given by the substitution ϕ is uniquely
decodable. In particular, if w1 ∈ L(uβ) is a factor with the first and the last
letter non-zero, then there exist a factor w2 ∈ L(uβ) such that 0tw1 = ϕ(w2).

Proposition 4.4.

(i) Let p ∈ L(uβ). Then p ∈ Pal(uβ) if and only if ϕ(p)0t ∈ Pal(uβ).

(ii) Let p ∈ Pal(uβ). The number of palindromic extensions of p and ϕ(p)0t is the
same, i.e.

#{a ∈ A | apa ∈ Pal(uβ)} = #{a ∈ A | aϕ(p)0ta ∈ Pal(uβ)} .

Proof. (i) Let p = w0w1 · · ·wn−1 ∈ L(uβ). Let us study under which conditions the
word ϕ(p)0t is also a palindrome, i.e. when

ϕ(w0)ϕ(w1) · · ·ϕ(wn−1)0
t = 0t ˜ϕ(wn−1) · · · ϕ̃(w1)ϕ̃(w0) . (5)

The substitution ϕ has the property that for each letter a ∈ A it satisfies ϕ̃(a) =
0−tϕ(a)0t. Using this property, the equality (5) can be equivalently written as

ϕ(p) = ϕ(w0) · · ·ϕ(wn−1) = ϕ(wn−1) · · ·ϕ(w0) = ϕ(p̃) .

As a consequence of unique decodability of ϕ we obtain that (5) is valid if and only
if p = p̃.

(ii) We show that for a palindrome p it holds that

apa ∈ Pal(uβ) ⇐⇒ bϕ(p)0tb ∈ Pal(uβ) , where b ≡ a+ 1 (mod m) ,
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which already implies the equality of the number of palindromic extensions of palin-
dromes p and ϕ(p)0t.

Let apa ∈ Pal(uβ). Then

ϕ(a)ϕ(p)ϕ(a)0t =

{
0t(a+ 1)ϕ(p)0t(a+ 1)0t , for a 6= m− 1 ,

0sϕ(p)0t+s , for a = m− 1 ,

is, according to (i) of this proposition, also a palindrome, which has a central factor
(a+ 1)ϕ(p)0t(a + 1) for a 6= m− 1, and 0ϕ(p)0t0 for a = m− 1.

On the other hand, assume that bϕ(p)0tb ∈ Pal(uβ). If b 6= 0, then using 1.
of Remark 4.3, we have 0tbϕ(p)0tb0t = ϕ

(
(b − 1)p(b − 1)

)
0t ∈ Pal(uβ). Point (i)

implies that (b − 1)p(b − 1) ∈ Pal(uβ) and thus (b − 1)p(b − 1) is a palindromic
extension of p. If b = 0, then Lemma 4.2 implies that 10sϕ(p)0t0s1 ∈ L(uβ) and so
1ϕ

(
(m− 1)p(m− 1)0

)
∈ L(uβ), which means that (m− 1)p(m− 1) is a palindromic

extension of p.

Unlike Arnoux-Rauzy words, in the case of infinite words uβ with dβ(1) = tt · · · ts,
t ≥ s ≥ 2, it is not difficult to see using Lemma 4.2 that there exist palindromes which
do not have any palindromic extension. Such a palindrome is for example the word
0t+s−1.

Definition 4.5. A palindrome p ∈ Pal(uβ) which has no palindromic extension is
called a maximal palindrome.

It is obvious that every palindrome is either a central factor of a maximal palin-
drome, or is a central factor of palindromes of arbitrary length.

Proposition 4.4 allows us to define a sequence of maximal palindromes starting
from an initial maximal palindrome. Put

U (1) := 0t+s−1, U (n) := ϕ(U (n−1))0t, for n ≥ 2 . (6)

Lemma 4.2 also implies that the palindrome 0t has for s ≥ 2 two palindromic
extensions, namely 00t0 and 10t1. Using Proposition 4.4 we create a sequence of
palindromes, all having two palindromic extensions. Put

V (1) := 0t, V (n) := ϕ(V (n−1))0t, for n ≥ 2 . (7)

Remark 4.6. It is necessary to mention that the factors U (n) and V (n) defined above
play an important role in the description of factor complexity of the infinite word
uβ. Let us cite several results for uβ invariant under the substitution (3) with s ≥ 2,
taken from [25], which will be used in the sequel.

(1) Any prefix w of uβ is a left special factor which can be extended to the left
by any letter of the alphabet, i.e. aw ∈ L(uβ) for all a ∈ A, or equivalently
Lext(w) = A.
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(2) Any left special factor w which is not a prefix of uβ is a prefix of U (n) for some
n ≥ 1 and such w can be extended to the left by exactly two letters.

(3) The words U (n), n ≥ 1 are maximal left special factors of uβ, i.e. U (n)a is not
a left special factor for any a ∈ A. The infinite word uβ has no other maximal
left special factors.

(4) The word V (n) is the longest common prefix of uβ and U (n), moreover, for every
n ≥ 1 we have

|V (n)| < |U (n)| < |V (n+1)| (8)

(5) For the first difference of factor complexity we have

∆C(n) =

{
m if |V (k)| < n ≤ |U (k)| for some k ≥ 1 ,

m− 1 otherwise .

Now we are in position to describe the palindromic extensions in uβ. The main
result is the following one.

Proposition 4.7. Let uβ be the fixed point of the substitution ϕ given by (3) with
parameters t ≥ s ≥ 2, and let p be a palindrome in uβ. Then

(i) p is a maximal palindrome if and only if p = U (n) for some n ≥ 1;

(ii) p has two palindromic extensions in uβ if and only if p = V (n) for some n ≥ 1;

(iii) p has a unique palindromic extension if and only if p 6= U (n), p 6= V (n) for all
n ≥ 1.

Proof. (i) Proposition 4.4, point (ii) and the construction of U (n) imply that U (n) is
a maximal palindrome for every n. The proof that no other palindrome p is maximal
will be done by induction on the length |p| of the palindrome p.

Let p be a maximal palindrome. If p does not contain a non-zero letter, then using
Lemma 4.2, obviously p = U (1). Assume therefore that p contains a non-zero letter.
Point 1. of Remark 4.3 implies that p = 0tp̂0t, where p̂ is a palindrome. Since p is a
maximal palindrome, p̂ ends and starts in a non-zero letter. Otherwise, p would be
extendable to a palindrome, which contradicts maximality. From 2. of Remark 4.3 we
obtain that p = 0tp̂0t = ϕ(w)0t for some factor w. Proposition 4.4, (i), implies that w
is a palindrome. Point (ii) of the same proposition implies that w has no palindromic
extension, i.e. w is a maximal palindrome, with clearly |w| < |p|. The induction
hypothesis implies that w = U (n) for some n ≥ 1 and p = ϕ(U (n))0t = U (n+1).

(ii) and (iii) From what we have just proved it follows that every palindrome
p 6= U (n), n ≥ 1, has at least one palindromic extension. Since we know that V (n) has
exactly two palindromic extensions, for proving (ii) and (iii) it remains to show that
if a palindrome p has more than one extension, then p = V (n), for some n ≥ 1.
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Assume that ipi and jpj are in L(uβ) for i, j ∈ A, i 6= j. Obviously, p is a left
special factor of uβ. We distinguish two cases, according to whether p is a prefix of
uβ, or not.

• Let p be a prefix of uβ. Then there exists a letter k ∈ A such that pk is a
prefix of uβ and using (1) of Remark 4.6, the word apk ∈ L(uβ) for every letter
a ∈ A, in particular ipk and jpk belong to L(uβ). We have either k 6= i, or
k 6= j; without loss of generality assume that k 6= i. Since L(uβ) is closed under
reversal, we must have kpi ∈ L(uβ). Since ipi and kpi are in L(uβ), we obtain
that pi is also a left special factor of uβ, and pi is not a prefix of uβ. By (2) of
Remark 4.6, p is the longest common prefix of uβ and some maximal left special
factor U (n), therefore using (4) of Remark 4.6 we have p = V (n).

• If p is a left special factor of uβ, which is not a prefix of uβ, then by (2) of
Remark 4.6, p is a prefix of some U (n) and the letters i, j are the only possible
left extensions of p. Since p 6= U (n), there exists a unique letter k such that
pk is a left special factor of uβ and pk is a prefix of U (n), i.e. the possible left
extensions of pk are the letters i, j. Since by symmetry kp ∈ L(uβ), we have
k = i or k = j, say k = i. Since jpk = jpi ∈ L(uβ), we have also ipj ∈ L(uβ).
Since by assumption ipi and jpj are in L(uβ), both pi and pj are left special
factors of uβ. Since p is not a prefix of uβ, neither pi nor pj are prefixes of uβ.
This contradicts the fact that k is a unique letter such that pk is left special.

Thus we have shown that if a palindrome p has at least two palindromic extensions,
then p = V (n).

From the above result it follows that if n 6= |V (k)|, n 6= |U (k)| for all k ≥ 1, then
every palindrome of length n has exactly one palindromic extension, and therefore
P(n+ 2) = P(n). Inequalities in (4) of Remark 4.6 further imply that |V (i)| 6= |U (k)|
for all i, k ≥ 1. Therefore the statement of Proposition 4.7 can be reformulated in
the following way:

P(n+ 2) − P(n) =





1 if n = |V (k)| ,
−1 if n = |U (k)| ,

0 otherwise .

Point (5) of Remark 4.6 can be used for deriving for the second difference of factor
complexity

∆2C(n) = ∆C(n + 1) − ∆C(n) =





1 if n = |V (k)| ,
−1 if n = |U (k)| ,

0 otherwise .

Therefore we have for s ≥ 2 that P(n+2)−P(n) = ∆C(n+1)−∆C(n), for all n ∈ N.
We thus can derive the following theorem.

12



Theorem 4.8. Let uβ be the fixed point of the substitution (3). Then

P(n + 1) + P(n) = ∆C(n) + 2 , for n ∈ N .

Proof. Let the parameter in the substitution (3) be s = 1. Then uβ is an Arnoux-
Rauzy word, for which P(n+ 2) − P(n) = 0 = ∆C(n + 1) − ∆C(n).
For s ≥ 2 we use P(n + 2) − P(n) = ∆C(n + 1) − ∆C(n) derived above.

We have

P(n+ 1) + P(n) = P(0) + P(1) +
n∑

i=1

(
P(i + 1) − P(i− 1)

)
=

= 1 +m+

n∑

i=1

(
∆C(i) − ∆C(i− 1)

)
= 1 +m+ ∆C(n) − ∆C(0) =

= 1 +m+ ∆C(n) − C(1) + C(0) = ∆C(n) + 2 ,

where we have used P(0) = C(0) = 1 and P(1) = C(1) = m = #A.

Remark 4.9. According to (5) of Remark 4.6, we have ∆C(n) ≤ #A. This implies
P(n + 1) + P(n) ≤ #A + 2, and thus the palindromic complexity is bounded.

5 Centers of palindromes

We have seen that the set of palindromes of uβ is closed under the mapping p 7→
ϕ(p)0t. We study the action of this mapping on the centers of the palindromes. Let
us mention that the results of this section are valid for β a confluent Pisot number
with t ≥ s ≥ 1, i.e. also for the Arnoux-Rauzy case.

Definition 5.1. Let p be a palindrome of odd length. The center of p is a letter a
such that p = waw̃ for some w ∈ A∗. The center of a palindrome p of even length is
the empty word.

If palindromes p1, p2 have the same center, then also palindromes ϕ(p1)0
t, ϕ(p2)0

t

have the same center. This is a consequence of the following lemma.

Lemma 5.2. Let p, q ∈ Pal(uβ) and let q be a central factor of p. Then ϕ(q)0t is a
central factor of ϕ(p)0t.

Note that the statement is valid also for q being the empty word.

Proof. Since p = wqw̃ for some w ∈ A∗, we have ϕ(p)0t = ϕ(w)ϕ(q)ϕ(w̃)0t, which is a
palindrome by (i) of Proposition 4.4. It suffices to realize that 0t is a prefix of ϕ(w̃)0t.
Therefore we can write ϕ(p)0t = ϕ(w)ϕ(q)0t0−tϕ(w̃)0t. Since |ϕ(w)| = |0−tϕ(w̃)0t|,
the word ϕ(q)0t is a central factor of ϕ(p)0t.
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The following lemma describes the dependence of the center of the palindrome
ϕ(p)0t on the center of the palindrome p. Its proof is a simple application of properties
of the substitution ϕ, we will omit it here.

Lemma 5.3. Let p1 ∈ Pal(uβ) and let p2 = ϕ(p1)0
t.

(i) If p1 = w1aw̃1, where a ∈ A, a 6= m − 1, then p2 = w2(a + 1)w̃2, where
w2 = ϕ(w1)0

t.

(ii) If p1 = w1(m−1)w̃1 and s+t is odd, then p2 = w20w̃2, where w2 = ϕ(w1)0
s+t−1

2 .

(iii) If p1 = w1(m− 1)w̃1 and s+ t is even, then p2 = w2w̃2, where w2 = ϕ(w1)0
s+t

2 .

(iv) If p1 = w1w̃1 and t is even, then p2 = w2w̃2, where w2 = ϕ(w1)0
t

2 .

(v) If p1 = w1w̃1 and t is odd, then p2 = w20w̃2, where w2 = ϕ(w1)0
t−1

2 .

Lemmas 5.2 and 5.3 allow us to describe the centers of palindromes V (n) which
are in case s ≥ 2 characterized by having two palindromic extensions.

Proposition 5.4. Let V (n) be palindromes defined by (7).

(i) If t is even, then for every n ≥ 1, V (n) has the empty word ε for center and
V (n) is a central factor of V (n+1).

(ii) If t is odd and s is even, then for every n ≥ 1, V (n) has the letter i ≡ n−1
(mod m) for center, and V (n) is a central factor of V (n+m).

(iii) If t is odd and s is odd, then for every n ≥ 1, V (n) has the empty word ε for
center if n ≡ 0 (mod (m + 1)), otherwise it has for center the letter i ≡ n−1
(mod (m + 1)). Moreover, V (n) is a central factor of V (m+n+1).

Proof. If t is even, then the empty word ε is the center of V (1) = 0t. Using Lemma 5.2
we have that ϕ(ε)0t = V (1) is a central factor of ϕ(V (1))0t = V (2). Repeating
Lemma 5.2 we obtain that V (n) is a central factor of V (n+1). Since ε is the center of
V (1), it is also the center of V (n) for all n ≥ 1.

It t is odd, the palindrome V (1) has center 0 and using Lemma 5.3, V (2) has center
1, V (3) has center 2, . . . , V (m) has center m − 1. If moreover s is even, then V (m+1)

has again center 0. Moreover, from (ii) of Lemma 5.3 we see that 0s+t is a central
factor of V (m+1), which implies that V (1) = 0t is a central factor of V (m+1). In case
that s is odd, then V (m) having center m − 1 implies that V (m+1) has center ε and
V (m+2) has center 0. Moreover, using (v) of Lemma 5.3 we see that V (1) = 0t is a
central factor of V (m+2). Repeated application of Lemma 5.2 implies the statement
of the proposition.
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As we have said, every palindrome p is either a central factor of a maximal palin-
drome U (n), for some n ≥ 1, or p is a central factor of palindromes with increasing
length. An example of such a palindrome is V (n), for n ≥ 1, which is according to
Proposition 5.4 central factor of palindromes of arbitrary length. According to the
notation introduced by Cassaigne in [18] for left and right special factors extendable
to arbitrary length special factors, we introduce the notion of infinite palindromic
branch. We will study infinite palindromic branches in the next section.

6 Infinite palindromic branches

Definition 6.1. Let v = · · · v3v2v1 be a left infinite word in the alphabet A. Denote
by ṽ the right infinite word ṽ = v1v2v3 · · · .

• Let a ∈ A. If for every index n ≥ 1, the word p = vnvn−1 · · · v1av1v2 · · · vn ∈
Pal(uβ), then the two-sided infinite word vaṽ is called an infinite palindromic
branch of uβ with center a, and the palindrome p is called a central factor of
the infinite palindromic branch vaṽ.

• If for every index n ≥ 1, the word p = vnvn−1 · · ·v1v1v2 · · · vn ∈ Pal(uβ), then
the two-sided infinite word vṽ is called an infinite palindromic branch of uβ

with center ε, and the palindrome p is called a central factor of the infinite
palindromic branch vṽ.

Since for Arnoux-Rauzy words every palindrome has exactly one palindromic ex-
tension, we obtain for every letter a ∈ A exactly one infinite palindromic branch with
center a; there is also one infinite palindromic branch with center ε.

Obviously, every infinite word with bounded palindromic complexity P(n) has
only a finite number of infinite palindromic branches. This is therefore valid also for
uβ.

Proposition 6.2. The infinite word uβ invariant under the substitution (3) has for
each center c ∈ A ∪ {ε} at most one infinite palindromic branch with center c.

Proof. Lemma 5.3 allows us to create from one infinite palindromic branch another
infinite palindromic branch. For example, if vaṽ is an infinite palindromic branch with

center a 6= m−1, then using (i) of Lemma 5.3, the two-sided word ϕ(v)0t(a+1)0tϕ̃(v)
is an infinite palindromic branch with center (a + 1). Similarly for the center m− 1
or ε. Obviously, this procedure creates from distinct palindromic branches with the
same center c ∈ A∪ {ε} again distinct palindromic branches, for which the length of
the maximal common central factor is longer than the length of the maximal common
central factor of the original infinite palindromic branches. This would imply that uβ

has infinitely many infinite palindromic branches, which is in contradiction with the
boundedness of the palindromic complexity of uβ, see Remark 4.9.
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Remark 6.3. Examples of infinite palindromic branches can be easily obtained from
Proposition 5.4 as a two-sided limit of palindromes V (kn) for a suitably chosen subse-
quence (kn)n∈N and n going to infinity, namely

• If t is even, then the two-sided limit of palindromes V (n) is an infinite palin-
dromic branch with center ε.

• If t is odd and s even, then the two-sided limit of palindromes V (k+mn) for
k = 1, 2, . . . , m is an infinite palindromic branch with center k − 1.

• If t is odd and s odd, then the two-sided limit of palindromes V (k+(m+1)n) for
k = 1, 2, . . . , m is an infinite palindromic branch with center k − 1, and for
k = m + 1 it is an infinite palindromic branch with center ε.

Corollary 6.4.

(i) If s is odd, then uβ has exactly one infinite palindromic branch with center c for
every c ∈ A ∪ {ε}.

(ii) If s is even and t is odd, then uβ has exactly one infinite palindromic branch
with center c for every c ∈ A, and uβ has no infinite palindromic branch with
center ε.

(iii) If s is even and t is even, then uβ has exactly one infinite palindromic branch
with center ε, and uβ has no infinite palindromic branch with center a ∈ A.

Proof. According to Proposition 6.2, uβ may have at most one infinite palindromic
branch for each center c ∈ A ∪ {ε}. Therefore it suffices to show existence/non-
existence of such a palindromic branch. We distinguish four cases:

— Let s be odd and t odd. Then an infinite palindromic branch with center c
exists for every c ∈ A ∪ {ε}, by Remark 6.3.

— Let s be odd and t even. The existence of an infinite palindromic branch with
center ε is ensured again by Remark 6.3. For determining the infinite palindromic
branches with other centers, we define a sequence of words

W (1) = 0 , W (n+1) = ϕ(W (n))0t , n ∈ N, n ≥ 1 .

Since s+ t is odd, using (i) and (ii) of Lemma 5.3, we know that W (n) is a palindrome
with center i ≡ n−1 (mod m). In particular, we have that 0 = W (1) is a central
factor of W (m+1). Using Lemma 5.2, also W (n) is a central factor of W (m+n) for all
n ≥ 1. Therefore we can construct the two-sided limit of palindromes W (k+mn) for
n going to infinity, to obtain an infinite palindromic branch with center k − 1 for all
k = 1, 2, . . . , m.

— Let s be even and t be odd. Then an infinite palindromic branch with center
c exists for every c ∈ A, by Remark 6.3. A palindromic branch with center ε does
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not exist, since using Lemma 4.2 two non-zero letters in the word uβ are separated
by a block of 0’s of odd length, which implies that palindromes of even length must
be shorter than t+ s.

— Let s and t be even. The existence of an infinite palindromic branch with center
ε is ensured again by Remark 6.3. Infinite palindromic branches with other centers
do not exist. The reason is that in this case the maximal palindrome U (1) = 0t+s−1

has center 0 and using Lemma 5.3 the palindromes U (2), U (3), . . . , U (m) have centers
1, 2, . . . , m − 1, respectively. For all n > m the center of U (n) is the empty word
ε. If there existed an infinite palindromic branch vaṽ, then the maximal common
central factor p of vaṽ and U (a+1) would be a palindrome with center a and with two
palindromic extensions. Using Proposition 4.7, p = V (k) for some k. Proposition 5.4
however implies that for t even the center of V (k) is the empty word ε, which is a
contradiction.

Remark 6.5. The proof of the previous corollary implies:

(i) In case t odd, s even, uβ has only finitely many palindromes of even length, all
of them being central factors of U (1) = 0t+s−1.

(ii) In case t and s are even, uβ has only finitely many palindromes of odd length
and all of them are central factors of one of the palindromes U (1), U (2), . . . ,
U (m), with center 0, 1, . . . , m− 1, respectively.

7 Palindromic complexity of uβ

The aim of this section is to give explicit values of the palindromic complexity of uβ.
We shall derive them from Theorem 4.8, which expresses P(n) + P(n + 1) using the
first difference of factor complexity; and from (5) of Remark 4.6, which recalls the
results about C(n) of [25].

Theorem 7.1. Let uβ be the fixed point of the substitution (3), with parameters
t ≥ s ≥ 2.

(i) Let s be odd and let t be even. Then

P(2n + 1) = m

P(2n) =

{
2, if |V (k)| < 2n ≤ |U (k)| for some k,

1, otherwise.
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(ii) Let s and t be odd. Then

P(2n+ 1) =





m + 1, if |V (k)| < 2n+ 1 ≤ |U (k)| for some k
with k 6≡ 0 (mod (m+ 1)),

m, otherwise.

P(2n) =





2, if |V (k)| < 2n ≤ |U (k)| for some k
with k ≡ 0 (mod (m+ 1)),

1, otherwise.

(iii) Let s be even and t be odd. Then

P(2n+ 1) =





m+ 2, if |V (k)| < 2n + 1 ≤ |U (k)| for some k ≥ 2 ,

m, if 2n+ 1 ≤ |V (1)| ,
m+ 1, otherwise.

P(2n) =

{
1, if 2n ≤ |U (1)| ,
0, otherwise.

(iv) Let s and t be even. Then

P(2n + 1) =

{
#

{
k ≤ m

∣∣ 2n + 1 ≤ |U (k)|
}
, if 2n+ 1 ≤ |U (m)| ,

0, otherwise.

P(2n) =





m + 2, if |V (k)| < 2n ≤ |U (k)|
for some k ≥ m + 1 ,

#
{
k ≤ m

∣∣ 2n > |V (k)|
}

+ 1, if 2n ≤ |V (m+1)| ,
m + 1, otherwise.

Proof. We prove the statement by cases:

(i) Let s be odd and t be even. It is enough to show that P(2n + 1) = m for all
n ∈ N. The value of P(2n) can then be easily calculated from Theorem 4.8 and
(5) of Remark 4.6.

From (i) of Corollary 6.4 we know that there exists an infinite palindromic
branch with center c for all c ∈ A. This implies that P(2n + 1) ≥ m. In order
to show the equality, it suffices to show that all maximal palindromes U (k) are
of even length, or equivalently, have ε for center. Since both t and t+ s− 1 are
even, 0t = V (1) is a central factor of 0t+s−1 = U (1). Using Lemma 5.2, V (k) is a
central factor of U (k) for all k ≥ 1. According to (i) of Proposition 5.4, V (k) are
palindromes of even length, and thus also the maximal palindromes U (k) are of
even length. Therefore they do not contribute to P(2n + 1).
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(ii) Let s and t be odd. We shall determine P(2n) and the values of P(2n+ 1) can
be deduced from Theorem 4.8 and (5) of Remark 4.6.

From (i) of Corollary 6.4 we know that there exists an infinite palindromic
branch with center ε. Thus P(2n) ≥ 1 for all n ∈ N. Again, V (1) = 0t is a
central factor of U (1) = 0t+s−1, and thus V (k) is a central factor of U (k) for all
k ≥ 1. A palindrome of even length, which is not a central factor of an infinite
palindromic branch must be a central factor of U (k) for some k, and longer than
|V (k)|. Since |U (k)| < |V (k+1)| < |U (k+1)| (cf. (5) of Remark 4.6), at most one
such palindrome exists for each length. We have P(2n) ≤ 2. It suffices to
determine for which k, the maximal palindrome U (k) is of even length, which
happens exactly when its central factor V (k) is of even length and that is, using
(iii) of Proposition 5.4, for k ≡ 0 (mod (m+ 1)).

(iii) Let s be even and t be odd. According to (i) of Remark 6.5, all palindromes
of even length are central factors of U (1) = 0t+s−1. Therefore P(2n) = 1 if
2n ≤ |U (1)| and 0 otherwise. The value of P(2n + 1) can be calculated from
Theorem 4.8 and (5) of Remark 4.6.

(iv) Let s and t be even. Using (ii) of Remark 6.5, the only palindromes of odd
length are central factors of U (k) for k = 1, 2, . . . , m. Therefore P(2n + 1) = 0
for 2n+1 > |U (m)|. If 2n+1 ≤ |U (m)|, the number of palindromes of odd length
is equal to the number of maximal palindromes longer than 2n+ 1. The value
of P(2n) can be calculated from Theorem 4.8 and (5) of Remark 4.6.

For the determination of the value P(n) for a given n, we have to know |V (k)|,
|U (k)|. In [25] it is shown that

|V (k)| = t
k−1∑

i=0

Gi , and |U (k)| = |V (k)| + (s− 1)Gk−1 ,

where Gn is a sequence of integers defined by the recurrence

G0 = 1 , Gn = t(Gn−1 + · · · +G0) + 1 , for 1 ≤ n ≤ m− 1 ,

Gn = t(Gn−1 + · · · +Gn−m+1) + sGn−m , for n ≥ m .

The sequence (Gn)n∈N defines the canonical linear numeration system associated with
the number β, see [15] for general results on these numeration systems. In this
particular case, (Gn)n∈N defines a confluent linear numeration system, see [24] for its
properties.
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8 Substitution invariance of palindromic branches

Infinite words uβ are invariant under the substitution (3). One can ask whether also
their infinite palindromic branches are invariant under a substitution. In case that an
infinite palindromic branch has as its center the empty word ε, we can use the notion
of invariance under substitution as defined for pointed two-sided infinite words. We
restrict our attention to infinite palindromic branches of such type.

Recall that an infinite palindromic branch of uβ with center ε exists, (according
to Corollary 6.4), only if in the Rényi expansion dβ(1) = tt · · · ts, t is even, or both t
and s are odd. Therefore we shall study only such parameters.

Let us first study the most simple case, dβ(1) = t1 for t ≥ 1. Here β is a quadratic
unit, and the infinite word uβ is a Sturmian word, expressible in the form of the
mechanical word µα,%,

µα,%(n) =
⌊
(n + 1)α+ %

⌋
−

⌊
nα + %

⌋
, n ∈ N ,

where the irrational slope α and the intercept ρ satisfy α = ρ = β

β+1
. The infinite

palindromic branch with center ε of the above word uβ = µα,% is a two-sided Sturmian
word with the same slope α = β

β+1
, but intercept 1

2
. Indeed, two mechanical words

with the same slope have the same set of factors independently on their intercepts,
and moreover the sturmian word µα, 1

2

is an infinite palindromic branch of itself, since

µα, 1
2
(n) = µα, 1

2
(−n− 1) , for all n ∈ Z .

Therefore if v = µα, 1
2

(0)µα, 1
2

(1)µα, 1
2

(2) · · · , then ṽv is the infinite palindromic branch
of uβ with the center ε.

Since the Sturmian word µα,% coincides with uβ, it is invariant under the substi-
tution ϕ. As a consequence of [32], the slope α is a Sturm number, i.e. a quadratic
number in (0, 1) such that its conjugate α′ satisfies α′ /∈ (0, 1), (using the equivalent
definition of Sturm numbers given in [1]).

The question about the substitution invariance of the infinite palindromic branch
ṽv is answered using the result of [4] (or also [37, 13]). It says that a Sturmian word
whose slope is a Sturm number, and whose intercept is equal to 1

2
, is substitution

invariant as a two-sided pointed word, i.e. there exists a substitution ψ such that
ṽ|v = ψ(ṽ)|ψ(v).

Example 8.1. The Fibonacci word uβ for dβ(1) = 11 is a fixed point of the substi-
tution

ϕ(0) = 01, ϕ(1) = 0 .

Its infinite palindromic branch with center ε is

ṽv for v = 010100100101001001010 · · ·
which is the fixed point limn→∞ ψn(0)|ψn(0) of the substitution

ψ(0) = 01010, ψ(1) = 010 .

20



Let us now study the question whether infinite palindromic branches in uβ for
general dβ(1) = tt · · · ts with t even, or t and s odd, are also substitution invariant.
It turns out that the answer is positive. For construction of a substitution ψ under
which a given palindromic branch is invariant, we need the following lemma.

Lemma 8.2. Let vṽ be an infinite palindromic branch with center ε. Then the left
infinite word v = · · · v3v2v1 satisfies

v = ϕ(v)0
t

2 for t even,

v = ϕm+1(v)ϕm(0
t+1

2 )0
t−s

2 for t and s odd.

Proof. Let t be even and let vṽ be the unique infinite palindromic branch with center
ε. Recall that vṽ = limn→∞ V (n). Consider arbitrary suffix vsuf of v, i.e. vsuf ṽsuf is a
palindrome of uβ with center ε. Denote w := ϕ(vsuf)0

t

2 . Using (iv) of Lemma 5.3 the
word p = ww̃ is a palindrome of uβ with center ε. We show by contradiction that w
is a suffix of v.

Suppose that p = ww̃ is not a central factor of limn→∞ V (n), then there exists a
unique n such that p is a central factor of U (n). Then according to Proposition 4.7,
p is uniquely extendable into a maximal palindrome. In that case we take a longer
suffix v′suf of v, so that the length of the palindrome p′ = w′w̃′, w′ := ϕ(v′suf)0

t

2 satisfies
|p′| > |U (n)|. However, p′ (since it contains p as its central factor) is a palindromic
extension of p, and therefore p′ is a central factor of U (n), which is a contradiction.
Thus ϕ(vsuf)0

t

2 is a suffix of v for all suffixes vsuf of v, therefore v = ϕ(v)0
t

2 .
Let now s and t be odd. If vsuf is a suffix of the word v, then vsuf ṽsuf is a palindrome

of uβ with center ε. Using Lemma 5.3, the following holds true.

w0 = ϕ(vsuf)0
t−1

2 =⇒ w00w̃0 ∈ Pal(uβ)

w1 = ϕ(w0)0
t =⇒ w11w̃1 ∈ Pal(uβ)

w2 = ϕ(w1)0
t =⇒ w22w̃2 ∈ Pal(uβ)

...

wm−1 = ϕ(wm−2)0
t =⇒ wm−1(m− 1)w̃m−1 ∈ Pal(uβ)

wε = ϕ(wm−1)0
s+t

2 =⇒ wεw̃ε ∈ Pal(uβ)

Together we obtain

wε = ϕm+1(vsuf)ϕ
m(0

t−1

2 )ϕm−1(0t) · · ·ϕ2(0t)ϕ(0t)0
s+t

2 .

Since ϕm(0) = ϕm−1(0t)ϕm−2(0t) · · ·ϕ(0t)0s, the word wε can be rewritten in a simpler
form

wε = ϕm+1(vsuf)ϕ
m(0

t−1

2 )ϕm(0)0
t−s

2 = ϕm+1(vsuf)ϕ
m(0

t+1

2 )0
t−s

2

Since wε is again a suffix of v, the statement of the lemma for s and t odd holds
true.
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Theorem 8.3. Let uβ be the fixed point of the substitution ϕ given by (3), and let
vṽ be the infinite palindromic branch of uβ with center ε. Then the left-sided infinite
word v is invariant under the substitution ψ defined for all letters a ∈ {0, 1, . . . , m−1}
by

ψ(a) =

{
w−1ϕ(a)w , where w = 0

t

2 , for t even,

w−1ϕm+1(a)w , where w = ϕm(0
t+1

2 )0
t−s

2 , for t and s odd.

Moreover, if t is even, then ψ(a) is a palindrome for all a ∈ A and vṽ as a pointed
sequence is invariant under the same substitution ψ.

Proof. First let us show that the substitution ψ is well defined.

• Let t be even. Since 0
t

2 is a prefix of ϕ(a) for all a ∈ {0, 1, . . . , m − 2} and
ϕ(m− 1) = 0s, therefore 0

t

2 is a prefix of ϕ(m− 1)0
t

2 = 0s+ t

2 .

• Let t and s be odd. Let us verify that w is a prefix of ϕm+1(a)w.

– If a 6= m− 1, we show that w = ϕm(0
t+1

2 )0
t−s

2 is a prefix of

ϕm+1(a) = ϕm
(
0t(a+ 1)

)
= ϕm(0

t+1

2 )ϕm(0
t−1

2 )ϕm(a + 1) .

It suffices to show that 0
t−s

2 is a prefix of ϕm(0
t−1

2 ). For t = s it is obvious. For

t > s ≥ 1 we obtain t ≥ 3 and so ϕm(0
t−1

2 ) = ϕm(0)ϕm(0
t−3

2 ) and clearly 0
t−s

2

is a prefix of ϕm(0).

– If a = m− 1, then

ϕm+1(m− 1)w = ϕm(0s)ϕm(0
t+1

2 )0
t−s

2 = ϕm(0
t+1

2 )ϕm(0)ϕm(0s−1)0
t−s

2 .

Since 0
t−s

2 is a prefix of ϕm(0), the correctness of the definition of the substitu-
tion ψ is proven.

Now it is enough to prove that ψ(v) = v. Lemma 8.2 says that in the case that t is
even the left infinite word v = · · · v3v2v1 satisfies v = ϕ(v)w. Thus we have

ψ(v) = · · ·ψ(v3)ψ(v2)ψ(v1) = · · ·w−1ϕ(v3)ww
−1ϕ(v2)ww

−1ϕ(v2)w =

= · · ·ϕ(v3)ϕ(v2)ϕ(v1)w = ϕ(v)w = v .

In case that t and s are odd, the proof is the same, using ϕm+1 instead of ϕ.
If t is even, it is clear from the prescription for ψ, that ψ(a) is a palindrome for

any letter a, which implies the invariance of the word vṽ under ψ.

Let us mention that for t, s odd the words ψ(a), a ∈ A, may not be palindromes.
In that case the right-sided word ṽ is invariant under another substitution, namely

a 7→ ψ̃(a). Nevertheless even for t, s odd it may happen that ψ(a) is a palindrome
for all letters. Then the two-sided word vṽ is invariant under ψ. This situation is
illustrated on the following example.
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Example 8.4. Consider the Tribonacci word, i.e. the word uβ for dβ(1) = 111. It is
the fixed point of the substitution

ϕ(0) = 01, ϕ(1) = 02, ϕ(2) = 0 ,

which is in the form (3) for t = s = 1 and m = 3. Therefore w = ϕ3(0) = 0102010.
The substitution ψ, under which the infinite palindromic branch vṽ of the Tribonacci
word is invariant, is therefore given as

ψ(0) := w−1ϕ4(0)w = 0102010102010,
ψ(1) := w−1ϕ4(1)w = 01020102010,
ψ(2) := w−1ϕ4(2)w = 0102010.

Note that the substitution ψ has the following property: the word ψ(a) is a palindrome
for every a ∈ A.

9 Number of palindromes in the prefixes of uβ

In [21] the authors obtain an interesting result which says that every finite word w
contains at most |w| + 1 different palindromes. (The empty word is considered as a
palindrome contained in every word.) Denote by P (w) the number of palindromes
contained in the finite word w. Formally, we have

P (w) ≤ |w|+ 1 for every finite word w.

The finite words w for which the equality is reached are called full (as suggested
in [16]). An infinite word u is called full, if all its prefixes are full. In [21] the authors
have shown that every Sturmian word is full. They have shown the same property
for episturmian words.

The infinite word uβ can be full only if its language is closed under reversal, i.e.
in the simple Parry case for dβ(1) = tt · · · ts, t ≥ s ≥ 1. For s ≥ 2 such words are not
episturmian, nevertheless, we shall show that they are full.

We shall use the notions and results introduced in [21].

Definition 9.1. A finite word w satisfies property Ju, if there exists a palindromic
suffix of w which is unioccurrent in w.

Clearly, if w satisfies Ju, then it has exactly one palindromic suffix which is unioc-
current, namely the longest palindromic suffix of w.

Proposition 9.2 ([21]). Let w be a finite word. Then P (w) = |w|+ 1 if and only if
all the prefixes ŵ of w satisfy Ju, i.e. have a palindrome suffix which is unioccurrent
in ŵ.

Theorem 9.3. The infinite word uβ invariant under the substitution (3) is full.
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Proof. We show the statement using Proposition 9.2 by contradiction. Let w be a
prefix of uβ of minimal length which does not satisfy Ju, and let X0k is a suffix of w
with X 6= 0.

First we show that k ∈ {0, t + 1}. For, if 1 ≤ k ≤ t or t + 2 ≤ k, then q is the
maximal palindromic suffix of w0−1 if and only if 0q0 is the maximal palindromic
suffix of w. Since 0q0 occurs at least twice in w, then also q occurs at least twice in
w0−1, which is a contradiction with the minimality of w.

Define

w1 =

{
w0t if w has suffix X 6= 0 ,

w0s−1 if w has suffix X0t+1, X 6= 0 .

For the maximal palindromic suffix p of w denote

p1 =

{
0tp0t if w has suffix X 6= 0 ,

0s−1p0s−1 if w has suffix X0t+1, X 6= 0 .

Since in uβ every two non-zero letters are separated by the word 0t or 0t+s, we
obtain that

(i) p1 is the maximal palindromic suffix of w1.

(ii) the position of centers of palindromes p and p1 coincide in all occurrences in uβ.

Since p occurs in w at least twice, also the palindromic suffix p1 occurs at least twice
in w1, i.e. the word w1 is a prefix of uβ which does not satisfy Ju.

From the definition of w1 it follows that

w1 = ϕ(ŵ)0t

for some prefix ŵ of uβ. Thus the maximal palindromic suffix p1 of w1 is of the
form p1 = ϕ(p̂)0t, where p̂ is a factor of ŵ. According to (i) of Proposition 4.4, p̂ is
a palindrome, and the same proposition implies that p̂ is the maximal palindromic
suffix of ŵ. Since p1 occurs at least twice in w1, also p̂ occurs at least twice in ŵ.
Therefore ŵ does not satisfy the property Ju. As

|ŵ| < |ϕ(ŵ)| < |w|,

we have a contradiction with the minimality of w.

10 Conclusions

The study of palindromic complexity of an uniformly recurrent infinite word is in-
teresting in the case that its language is closed under reversal. Infinite words uβ
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associated to Parry numbers β are uniformly recurrent. If β is a simple Parry num-
ber, the language of uβ is invariant under reversal if the Rényi expansion of 1 satisfies
dβ(1) = tt · · · ts, i.e. is a confluent Parry number, and the corresponding palindromic
complexity is the subject of this paper.

For non-simple Parry number β, the condition under which the language of the
infinite word uβ is closed under reversal has been stated by Bernat [10]. He has shown
that the language of uβ is closed under reversal if and only if β is a quadratic number,
i.e. a root of minimal polynomial X2 − aX + b, with a ≥ b + 2 and b ≥ 1. In this
case dβ(1) = (a − 1)(a − b − 1)ω. The palindromic complexity of the corresponding
infinite words uβ is described in [7].

Infinite words uβ for non-simple Parry numbers β are thus another example for
which the equality

P(n) + P(n + 1) = ∆C(n) + 2

is satisfied for all n ∈ N. According to our knowledge, among all examples of infinite
words satisfying this equality, the words uβ (for both simple and non-simple Parry
number β) are exceptional in that they have the second difference ∆2C(n) 6= 0.
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[15] A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est
pas entière, Acta Math. Acad. Sci. Hungar. 54 (1989), 237–241.

[16] S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the palindromic complexity of
infinite words, Internat. J. Found. Comput. Sci. 15 (2004), 293–306.
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ated with beta-expansions, RAIRO Theor. Inform. Appl. 38 (2004), 163–185;
Corrigendum, RAIRO Theor. Inform. Appl. 38 (2004), 269–271.
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