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A Parry number is a real numbgr> 1 such that the Rénys-expansion of 1 is finite or infinite eventually periodic.
If this expansion is finiteg is said to be @impleParry number. Remind that any Pisot number is a Parry nurirbar.
previous work we have determined the complexity of the fixeithf. s of the canonical substitution associated with
(B-expansions, whef is a simple Parry number. In this paper we consider the caseeshis a non-simple Parry
number. We determine the structure of infinite left speciahbhes, which are an important tool for the computation
of the complexity ofuz. These results allow in particular to obtain the followirtacacterization: the infinite word
ug is Sturmian if and only if3 is a quadratic Pisot unit.
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1 Introduction

A natural way to understand the combinatorial structurenahéinite word consists in studying its (factor)
complexity function. The complexity function of an infiniteord « over a finite alphabet is defined as
follows: C(n) is the number of finite factors of length appearing inu. Clearly an infinite wordu is
eventually periodic if and only if there exists somen N such thaC(n) < n. The simplest aperiodic
words have complexitg(n) = n+1 for all n in N. Such words are callegturmiarwords. The Fibonacci
word is well known to be Sturmian, see for instance [13, CaapL The Fibonacci word is associated in
a canonical way with the golden ratio.

Numeration systems where the basés not an integer have been wisely studied, and one can find
definitions and results in [13, Chapter 7]. Let us recall thetipular role played by some numbers. A
Pisot numbeys is an algebraic integer such that all its Galois conjugates$ess than 1 in modulus. The
golden ratio and the natural integers are Pisot numbers.gxation systems in base a Pisot number play
an important role in the modelization of quasicrystals. Titet quasicrystal was discovered in 1984: it is
a solid structure presenting a local symmetry of order5,a local invariance under rotation of 5, and
it is linked to the golden ratio and to the Fibonacci substitu The Fibonacci word is a historical model
of a one-dimensional mathematical quasicrystal.
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More generally, lef3 > 1 be a real number such that the Rényi expansion of 1 in Baseventually
periodic or finite; these numbers are calkary numbergsimple if the Rényi expansion of 1 is finite).
It is known that a Pisot number is a Parry number, [4, 18].

With a Parry numbep is associated a substitutigry having a fixed pointg (see next section for
definitions). This substitution generates a tiling of th@mzgative real line with a finite number of tiles
[19, 8]. The vertices are labelled by the elements of the Eabn-negatives-integers, which are real
numbers having g-expansion with no fractional part. The notion®integerhas been introduced in the
domain of quasicrystallography, see for instance [10].

Let us recall known results on complexity of infinite wordg associated with3-expansions. The
infinite wordug is aperiodic and therefore has complexity:) > n+ 1. Another general result about the
complexity ofug is derived from the fact that the complexity of a fixed poinagirimitive substitution is
a sublinear function, see for instance [1]. A substitutjasver an alphabetl is calledprimitive, if there
existsk in N such that every lettdrof A appears in thé-th iteration¢® (a) of every lettera in A. It can
be easily seen that the canonical substitutigrsatisfies this condition. Therefore the complexity of the
infinite wordug is a sublinear function.

For the determination of the complexig(n) of an infinite wordw it is enough to know the first
differenceAC(n) := C(n + 1) — C(n) for all n in N. One can comput&C(n) with the knowledge of
left special factors (or right special factors) @f introduced by Cassaigne [5]. Left special factors are
factors ofu which have at least two left extensionsuinThe description of all left special factors and the
cardinality of the corresponding left extensions is crui@athe determination of the complexity.

In a previous work [11] we have studied the complexity of ittéinwords associated with-expansions
for a simple Parry numbe?. We recall some of the results. An infinite left special btargcan infinite
word whose every prefix is a left special factor. Letters \wtielong to the extension of every prefix of
an infinite left special branch are called its extensions.

Theorem 1 [11] Let 3 be a simple Parry number witls (1) = t1t2 - - - £, Thenug has a unique infinite
left special branch, namely; itself. Moreover, the left extensions«f are {0, 1,...,m — 1}.

This result implies thalAC(n) > m — 1. On the other hand, in the same paper we show using the
structure of maximal left special factors that under sontbtamhal weak conditions one hasC(n) < m.
The complexity of infinite words,g for simple Parry numbers is therefore well understood.

The present work is devoted to the case of Parry numBerbich are not simple. We describe the
structure of infinite left special branches in the case thatg(1) = t1ta - - -ty (b1 - - - tmtp)”, all the
coefficientst;’s are positive (the integera andp are chosen minimal). The situation is rather different
according to whether the lengthof the periodic part ofig(1) is greater than or equal to 2, or is equal to
1.

If p > 2 thenug has a unique infinite left special branch, namelyitself. Unlike the case of simple
Parry numbers, here the set of left extensiongis equal to{m,m + 1,...,m + p — 1}, Theorem 10.

If the length of the period odz(1) isp = 1, thenug is not an infinite left special branch of itself, but
there aremn different infinite left special branches, each of them hgwmntension with two letters only,
Theorem 13.

We then give an exact formula for the value of the complexityction in the case thalz(1) = ad®,
Theorem 18; theps is a quadratic Pisot number. From this and previous reswalits f10] and [11] follows
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thatug is a Sturmian word if and only i is a quadratic Pisot unite., 5 is the largest of the roots of
:CQqu—i—l,q) 1,0rx2:q:v—1,q>3.

Sturmian words can be characterized by the property thgtarebinary words with exactly one left
and exactly one right special factor of each length. A gdimation of this notion are the Arnoux-Rauzy
words, defined as words over an alphabet vitletters, having exactly one left and exactly one right
special factor of each length withextensions. In [11] we have shown that, for a simple Parrylmenf,
ug Is an Arnoux-Rauzy word if and only if is aconfluenfisot number, that is to saydf; (1) = tt - - - t1,
see [9] for definitions and properties of confluent numeraigstems. Note that in [2] we completely
describe the palindromic complexity of the waed when g is a confluent Pisot number. Here we are
only able to prove that for non-simple Parry numbgnwith all the coefficients;’s positive, the infinite
wordug is not an Arnoux-Rauzy word, Corollary 5.

We end this paper with some open problems. The situationiie different if we allow some of the
coefficientst;’s to vanish. In [11] we have considered the Pisot numbwith dg(1) = 2(01)“, which
appears in quasicrystallography as it presents a 7-foldrsstny. We have shown that in this casg has
two distinct infinite left special branches, and the comityeis equal toC(n) = 2n + 1.

From a result of Cassaigne [6] we know that the first diffeeeA€ (n) is bounded from above by
a constant, for any wordg wheng is a Parry number. Computer experiments suggest the faipwi
conjecture: Foralh in N

#A-1<AC(n) < #A
where#.4 denotes the cardinality of the alphabetgf

2 Preliminaries
2.1 Words and complexity

A word (finite or infinite) on a finite alphabet is an arbitrary (finite or infinite) concatenation of letters
in the alphabet. The length of a finite woud i.e., the number of its letters, is denoted Jay|. The set of
finite words over the alphabet is denoted by4*. Equipped with the operation of concatenation it is a
free monoid. We will use the following notatiarf = aa - - - a.

k times

A morphism onA* is a map¢ : A* — A* for which {(uw) = £(u)é(w) for all w andw in A*. A
morphism is uniquely determined by the wordg) for all a in A. If £(a) is a non-empty word for all
a € A and if there exists a letter, in A such thatt(ay) = aow for some non-empty word, then the
morphism( is called asubstitution The reader will find related results on substitutions in[16

The action of a substitution can be naturally extended taibefivordsu = ugujus - - - by the prescrip-
tion £(u) = &(up)&(u1)é(usz) - --. Aninfinite wordwu is invariantunder a substitutiog (or is its fixed
point), if £(u) = u. The infinite wordlim,, .., £"(ag) is a fixed point of.

Afinite wordw = wowy - - - wy,—1 IS called dactorof u of lengthn if wow - - - Wp—1 = WiUs41 -+ Ujrn—1
for somei in Ny (we denote byN the set of positive integers and Bl the set of non-negative integers).
The set of factors of; of all lengths is denoted b¥'(u). Thefactor complexityor simply complexity of
the infinite wordu is the mapping : N — N defined by

C(n) :==#{w|w € F(u), lw| =n}.
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One can computA&C(n) = C(n + 1) — C(n) with the knowledge of left special factors or right special
factors ofu. We shall focus on left special factors defined as followsg..ee a factor of an infinite word
u. The set of all letters such thatw is a factor ofu is calledleft extensiorof w and denoted byxt(w),

ext(w) :={a € Alaw € F(u)}.

If #ext(w) > 2, thenw is called deft special factoof .
The description of all left special factors and the cardipaif the corresponding left extensions is
crucial for determination of the complexity, since the daling simple relation holds

Cntl)-Cn)= > (#ext(w) - 1) . )

wEF (u),|w|=n

An infinite wordv = vgvyvs - - - is called arinfinite left special branclbf « if every prefix ofv is a left
special factor of:. Clearly, sinceext(w’) 2 ext(w) for w andw’ in F(u) such thatw' is a prefix ofw,
the left extension of all sufficiently large prefixeswfs constant. Thus we can define the left extension
of the infinite left special branch by

ext(v) 1= ﬂ ext(w) .

w prefix ofv

A left special factonw is called amaximal left special factqif #ext(wa) = 1 for all lettersa in A. Itis
clear that every left special factor is a prefix of a maximél$pecial factor or of an infinite left special
branch.

2.2 [-expansions and substitutions

For areal basg > 1, every non-negative real numbecan be represented in the form

k

=Bt B o= Y
wherez; € {0,1,...,[8] — 1}. Moreover, if we require that for evely € Z, N < k, the condition

0<x— Zf:N x;8" < BN is fulfilled, then such a representation is unique, it isamhthe3-expansion
of z and it is denoted by
()8 = TpTp—1 - T1TO-T_1T—2 - .

The coefficientst; can be obtained by a greedy algorithm [17]. A representdiging only finitely
many non-zero coefficients is said tofirate, and the trailing zeroes are omitted.

Numbersz such that thes-expansion ofz| is of the form(|z|)s = zrak—_1 - - 20.000- - are called
B-integers see [10], and the set gfintegers is denoted bgs. If 5 is an integer> 1, we haveZg = Z.
If 5is notan integer, the structure@f is determined by the so-call&ényi expansiods(1) of 1, which
is defined using the mdps(z) := Bz — | Bz] as the sequence

dg(1) = tytotz -, where ¢, =[BT '(1)] forieN
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Parry in [14] has shown that a sequence of non-negativedréeg-ts - - - is a Rényi expansiods(1)
of 1 for someg > 1 if and only if t;¢;11t;42 - - - IS lexicographically strictly smaller thantots - - - for
everyi € N, ¢ > 1. This in particular implies that; < ¢; forall i € N.

From the construction afs(1) it is obvious thatl = >":°, ¢;37". It can be shown that consecutige
integers have distances of the fof = >"°° 44,37 for k € Ny. The set of distanceDy, | k € Ny}
is thus finite if and only if the Rényi expansidp(1) is eventually periodic [19]. Numbers with eventually
periodicdg(1) are calledParry numbers Obviously, a Parry number is an algebraic integer. A Parry
number is calledimpleif dg(1) is finite,i.e,

dg(l) =tata - tm (2)
wherem in N is such that,,, # 0. Otherwise

dg(1) = tita -t (b1 - tgp)” 3)

where in the period at least one of the coefficients is non-Z@reperiod and period are not given uniquely,
we shall assume that they have minimal length. In this ¢asg t,,+p.

When S is a simple Parry number satisfying (2), the Zet hasm different distancedD; | i =
0,1,...,m — 1} between neighbours. I} is a Parry number witldz(1) of the form (3), then there are
m + p distancesD; | i = 0,1,...,m + p — 1}. Identifying the distancé; with 4, the sequence of
distances between non-negatis«ntegers forms an infinite wordg in the alphabef0,1,...,m — 1},
resp.{0,1,...,m+p—1}.

The infinite wordug associated with the sequence of distances between consegtntegers for a
Parry numbep is the fixed point of a substitutiopn = g canonically associated with[8]. For a simple
Parry numbeys satisfying (2) this substitution is defined on the alphalbet {0,1,...,m — 1} by

o(0) = 0h1
o(1) = 002
; 4)
e(m—2) = 0t=-1(m—1)
p(m—1) = 0

Thusug = lim, .« ¢™(0).
For instance takg = 1*—2\/5 the golden ratio. Theds(1) = 11, and the golden ratio is a simple Parry
number. The substitutiop associated witHJFQ—V5 is the Fibonacci substitution defined by

@(0) =01,  ¢(1)=0.
The infinite wordug is the Fibonacci word
ug = 0100101001 - - - .

In case the Rényi expansion is infinite eventually peri¢8j¢he substitution is defined on the alphabet
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A={0,1,....m+p—1} by

e(0) = 0h1
p(1) = 002
: (5)
p(m+p—2) = 0'=tr-1(m+p-—1)

Qtm+rm

p(m+p—1)

andug = lim,, .o ¢™(0).

3 Factors of uz of special type

From now on we shall consider Parry numbgrsvhich are not simpld,e., such that their Rényi expan-
sion is of the formig(1) = t1ta - - -ttt - - tingp) -

With the exception of Lemma 2 and Lemma 3 we focus on th®géich have all their coefficients
in dg(1) positive,i.e, t; > 1 for all i. Note that this assumption together with the Parry’s legiephic
condition ondg(1) implies thatt; > 2. Such conditions help us to avoid technicalities, the idemgever
could be generalized.

Lemma 2 can be proved easily by induction with the followirgation: Letv = w*v’, thenw*v =
v’. The symbob stands for concatenation.

Lemma 2 Foreverynin N,

n+m n+m — t1 n+m — to n m+p
PTP(0) = (" TPTH0)) T (9" TTPTR(0)) - (@ (0)
n —lm n+m— —t2 n+m— —t1 p4m
o (9"(0)) -+ (9" TTTE(0)) T (¢ TH(0) T ™ (0).
The following lemma can be simply derived from the definitadrthe morphismp.

Lemma 3 Letn be inN. The wordy™*"(0) ends with the lettem + k, wherek € {0,1,...,p—1} and
k=n (mod p).
From now on we assume thatdig(1) = t1 - -ty (Emg1 - - - tmp)®, fOr eachi > 1,¢; > 1, because

in that case non-zero letters in the infinite warg are separated by blocks of 0’s. The following result
describes the form of these blocks.

Proposition 4 All factors of the infinite word:s of the formX 0°Y", whereX andY are non-zero letters
ands is in Ny, are precisely the following ones:

k0t 1 fork=1,2,.... m+p—1,
10tk fork=1,2,....m+p—1, (6)
10tm+rm .

Proof: Since the substitutiop is primitive, every factor appears infinitely many timest® fixed point
ug. From the definition ofp we see that fok # m, the desired blocks are of the forX0*:k, where
X # 0. Fork = m, the blocks are of the fornX 0'mm and X 0'm+rm.
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Consider a blockX 0%k for k > 2. Such a block is a suffix ap (0%~ (k — 1)). Sincet,_; > 0, we
havey (0™~ (k — 1)) = w0" 10" k for some wordw, which implies that{ = 1.

If k& = m, the blockX0'"+»m is a suffix of (0 +7=1(m + p — 1)). Sincet,,4p—1 > 0, we have
@(0'+r=1(m + p — 1)) = w0 10'+»-1m for some wordw, which implies that{ = 1.

Let us describe the blocks of the for0"' 1. Sinceus = lim, .o ¢™(0), ¢*(0) = (0™ 1)t10t22 and
t1 > 2, the wordug contains the factot0. Then it has also the factgr(10) = 02201, and thus also
20. Similarly ug has a factok0 for everyk € {1,2,...,m + p — 2}. This implies that.s has factors
©(k0) = 0% (k + 1)0**1. Thus the desired blocks ak€'1 fork =1,2,...,m+p— 1.

Discussing all possibilities for the lett&r, we have described all the blocks of the fa0°Y, X, Y #
0. O

The above proposition implies an interesting corollaryr &bconsidered non-simple Parry numbers
8, the set of factors oii is not closed under mirror image. For, taking auch that, < ¢;, the set of
factors contains the worth? k but not the wordc0**1. However, invariance of the set of factors under
mirror image is a necessary condition for a word to be an AxARauzy word [7].

Corollary 5 Letdg(1l) = t1 - - tm(tmt1 - - tmtp)® With¢; > 0 for all 1 < i < m + p. Thenug is not
an Arnoux-Rauzy word.

For further considerations we will use the following nodati

Remark 1 Assume that for some non-zero leftéthere exist distinct integers r such thatX;0"Y and
X20°Y are in F(u) for some lettersy{; # 0 andX» # 0. From Proposition 4 itis obvious that necessarily
Y = m. The corresponding blocks ai®*m and10~+»m. In the sequel we use the following notation

t:= min{tm, tmip} - @)

4 Pre-images of left special factors

The description of the structure of left special factordhia infinite wordu is facilitated by the fact that
every left special factor is given by an image of a shorterdpkcial factor under the substitution. In
this section we study the action of the substitutioon the left special factors, depending on their left
extensions.

Lemma6 Letw be a left special factor ofiz containing a non-zero letter and such thate ext(w).
Thenext(w) = {0, 1} and there exists a factab of uz such thatw = 0mp(w)0°* wheres € Ny, s < t;
andext(w) 2 {m — 1,m + p — 1} andt is given by(7).

Proof: Let w be a left special factor afs containing a non-zero letter and such that ext(w). Then
there exists a prefix af of the form0*Y” for some non-zero lettér and somée € Ny. Let X € ext(w),
X # 0. SinceX0‘Y and0“*'Y are factors ofug, Remark 1 implies that’ = m, £ = t, andX = 1.
The factorw is therefore of the formw = 0'mw’0° for somes € Ny and some wordy’, which is either
empty or ends in a non-zero letteradf is empty (which corresponds to the case thaontained exactly
one non-zero letter), then the proof is finished takings the empty word. Otherwise is a factor ofus
ending in a non-zero letter. Form (6) it follows tha& ¢;.
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It remains to show that’ = () for some wordiw such thatext(w) 2 {m — 1,m +p — 1}.
We show it fort,,;+, > t., the opposite case is analogous.t/f,, > t,, then words10'mw’
and0‘~+»muw’ are factors ofi3. From the definition ofs it follows that there exists a word such that
0fmmuw’ = ¢((m—1)w) and0+»mw’ = ¢((m+p—1)w), and both word$m —1)w and(m+p—1)w
are factors ofug. Thusw is a left special factor ofig and its left extension contains letters— 1 and
m + p — 1, what was to be shown. |

Lemma7 Letw be a left special factor ofiz containing a non-zero letter and suppose there exist two
distinct non-zero letter& andY such thatX andY are inext(w). Then there exists a left special factor
w and an integes € Ny, s < ¢, such thatw = ¢(w)0°. Moreoverext(w) is formed by the suffixes of
length 1 of the wordg(Z) for all Z € ext(w).

Proof: Lemma 6 implies thab ¢ ext(w). Let us writew in the formw = w’0°, wherew’ ends in

a non-zero letter. Obviously < ¢;. If ext(w) = {Xy,..., Xz}, thenXjuw/', ..., Xpw' are factors of
ug. SinceX; # 0, foralli = 1,2,...,k, the definition ofp implies that there exist lettets, ,. .., Z;
and a wordw such thatZ;w, ..., Zyw are factors ofug and X w/,. .., X,w' are suffixes of words
cp(Zlﬁ)), e (ka) O

5 Infinite left special branches for d(1) with period of length p > 2

In this section we focus on the case that 2. We shall see further on that wordg such thap = 1
differ substantially from this case.

Combination of Lemma 2 and 3 leads to the fact that the wgt(D) has at leasp left extensions,
namely thatxt(¢"(0)) 2 {m,m+1,...,m+p—1}.

Corollary 8 Letp > 2. Thenug is an infinite left special branch of itself and
ext(ug) 2 {m,m+1,...,m+p—1}.

The following lemma shows that the lettérsl, . . ., ,m — 1 do not belong to the extension of any infinite
left special branch.

Lemma9 Letp > 2. There exists a constahf such that every left special factar, whose left extension
contains a lettet € {0,1,...,m — 1}, has lengtHw| bounded by¥.

Proof: Obviously, the largest factor afs not containing a non-zero letter@:. Suppose that is a left
special factor containing a non-zero letter.

First assume thatxt(w) contains the letter 0. According to Lemma 6 we have(w) = {0,1} and
there exist a wordy; and a non-negative integey < ¢; such that

w = 0'mep(w)0°" ext(w)) 2 {m—1,m+p—1}.
Let us discuss the cage> m. Lemma 7 implies that there exist a sequence of warglavs, . . ., w,,
and a sequence of non-negative integerss, . . ., s,, < t1 such that
w; = @(wg)0% ext(wz) 2 {m—2,m+p— 2},

wy = (ws)0%s ext(ws) 2 {m—3,m+p—3},

Wm—1 = @(wn)0°m ext(w,) 2 {0,p}.
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Sincep # 1, the latter implies using Lemma 6 that,, does not contain a non-zero letteg., w,, =
0°m+1, wheres,,+1 < t1. The left special factow is therefore of the form

w = Otmwm (Osm+1)<pm71 (Osm) . (,02 (053)90(052)051 (8)
Sinces; < t; andt < ty, the length of the wordb is bounded,
lw] <1+t + [@™(07)™ 1 (07) - - p(07)0" |, 9)

where the bound on the right hand side does not depend aet us now discuss the case> p. Again,
using Lemma 7 we construct the sequengews, . ... Forw, we obtain thatxt(w,) 2 {m — p,m}.
In the next step, two cases may occur, namely(w,+1) 2 {m —p — 1,m — 1} andext(wp+1) 2
{m —p—1,m + p — 1}. For both of these cases we obtain that(w,,) 2 {0, X}, with X > 2, and
thus using Lemma 6 the word,,, is of the formw,, = 0°~*! for somes,,,.1 < t;. Thus the original
left special factorw can be written in the form (8) and its length is bounded as)n (9

It remains to prove thdtw| is bounded, ifext(w) does not contain 0. Let us dendte= min{i | i €
ext(w)}. From the assumptions of the lemma we hawe & < m — 1. Pickj in ext(w) different from
k. Repeated application of Lemma/ times) leads to

w = (pk(wk)(pkfl (Osk)(pk72 (Osk,]) . 90(052)051 ,

for some sequence of non-negative integers. ., s, < t; and a left special factap;, of ug, satisfying
ext(wy) 2 {0, X}, X > 1. For such left special factar;, the statement of this lemma has been already
proved in the first part of the proof. Thus the lengih | is bounded by (9). Sinck < m — 1, also the

length of the wordw| is bounded. O
For the proof of the main theorem of this section we need tcsaregthe diversity of two distinct infinite
wordsu = ujusus - - - andv = vyvaus - - -. For that we introduce
d(u,v) :=min{i € N | v; # u;}. (10)

The reciprocal value of(u, v) is used for defining a distance between infinite words.

Theorem 10 Letp > 2. Thenug has a unique infinite left special branch, namelyitself. Moreover,
ext(ug) = {m,m+1,...,m+p—1}.

Proof: Let u be an infinite left special branch af;. Using Lemma 9 for every sufficiently long prefix

of ug we haveext(w) C {m,m + 1,...,m + p — 1}. Thus using Lemma 7 every infinite left special
branch ofug is the imagep (i) of some infinite left special brangh The statement of the theorem will be
proved by contradiction. Assume that= ujusus - - - andv = vivevs - - - are distinct infinite left special
branches ofig. Assume that among all infinite left special branches we lehesen the pait, v so that
d(u,v) is minimal. We find infinite special branchéso in such a way thap(i) = v andp(0) = v.
From the definition ofp it is obvious thati(i, ) < d(u,v), which contradicts the choice af v. Thus
we have proved that there exists at most one infinite leftiapecanch. According to Corollary 8 we
derive that the unique left special branchijsand thatext(ug) = {m,m+1,...,m+p— 1}. O
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6 Infinite left special branches for d;(1) with period of length p = 1

Let us study the structure of infinite left special brancimesase that the length of the period in the Rényi
expansionig(1) is p = 1. Here we work with the alphab¢0,1,...,m — 1, m}, and the substitutiop
is given as

0 0"1, 1+022, ..., (m—1)—0"m, m 0"+im,

Lemmall Letp = 1. Then there exists a constafit such that every left special factar of ug such
that{i, j} C ext(w) and|i — j| > 2 has length smaller thai’.

Proof: Letw be a left special factor aiz such that{i, j} C ext(w). Without loss of generality assume
thati 4+ 2 < j. Eitherw is of the formw = 07, then clearlyjw| < ¢;. Orw contains a non-zero letter, and
then using Lemma 6 we have# 0. Repeated application of Lemmairifnes) leads to

w = @' (w;)p" 1 (0%) - - ©*(0%)p(0°2)0°

for some non-negative integess, s2,...,s; < t1, wherew; is a left special factor ofiz satisfying
ext(w;) D {0,X} for X > 2. Lemma 6 then implies that; = 0%+* for somes;;1 < t;. Since
1 < m — 2, the length of the word is bounded by a constant independentof |

Corollary 12 Letp = 1 and letu be an infinite left special branch afs. Thenext(u) = {i,7 + 1} for
somei € {0,1,2,...,m —1}.

Theorem 13 Letp = 1. Define infinite words

o® = 0™ (0fm) P (0 m) P (0'm) -
JS1CH - g0(1}(0)) 7
510 — g0(1}(1)) 7
o= tp(v(m_z)) .
For everyi € {0,1,...,m — 1}, the wordv(® is an infinite left special branch with left extension

ext(v®) = {i,i + 1}. The infinite wordu; has no other infinite left special branches.

Proof: Let u be an infinite left special branch afz such that) € ext(u). Corollary 12 implies that
ext(u) = {0,1}. Due to Lemma 6 there exists an infinite left special branch(®f such thatu =
0tp(u) andext(u®) = {m — 1,m}. Lemma 7 and Lemma 11 implies that there exists an infinite
left special branch(® so thatu® = ¢(u?) andext(u®) = {m — 2,m — 1}. In this way we obtain
a sequence of infinite left special branché¥, ..., u(™), whereu(™=1 = o (u(™) andext(u(™) =
{0,1}. Together we have

u = 0'mp™ (u(m)) . (12)

We have shown that to every infinite left special bramctith ext(u) = {0,1} one can find another
infinite left special branch(") with the same extension. Moreover (11) holds true.
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We show by contradiction that there cannot exist more thanmfimite left special branch witdxt(u) =
{0,1}. Assume the oppositee., that bothu, v are infinite left special branches with extensism(u) =
ext(v) = {0, 1}, moreover assume that the paijw is such that/(u, v) is minimal, wherei(uv, v) is de-
fined in (10). Now we find.(™) andv("™) so that (11) is satisfied. From the definitiongfve obviously
haved(u(™,v(™) < d(u,v), butu(™, v(™) are infinite left special branches with extensifin 1},
which contradicts the choice af v.

If there exists an infinite left special branehwith extensionext(u) = {0,1}, it must satisfy the
equation of words

u = 0'me™(u). (12)

Thusu = 0'm for some infinite wordi. Substituting into (12) we obtain
0'ma = 0'me™ (0'ma) = 0'me™ (0'm)™ (4) .

Thusa = ™ (0'm)a for some infinite wordi, i.e., u = 0'me™ (0'm)a. Repeated substitution into (12)
shows that the infinite word(® defined in the assertion of the theorem is a unique candidaie the
infinite left special branch with extensid, 1}. In order to prove that®) is indeed the infinite left
special branch, it suffices to realize titétn is a left special factor and use an auxiliary statement:

If 0*mw for some finite wordy is a left special factor withxt(0'mw) 2 {0, 1}, then0me™ (0'm) ™ (w)
is also a left special factor and its extension contdind }.

Lemma 7 implies that every left special branch with left @sien{i,i + 1} is thei-th iteration under
¢z of an infinite left special branch with extensigd, 1}. Since such a branch is unique, nameR), the
only infinite left special branch with extensidn i + 1} is v® = ¢ (v(?)). This completes the proof]

7 Complexity of words uz for quadratic Parry numbers

Quadratic Parry numbers have a simple characterizatignianely that a quadratic irrationgl > 1 is
a Parry number if and only if it is a Pisot number, i.e., an bigé integer with all conjugates in modulus
strictly smaller than 1. In the quadratic case it resultditeautions of equations

22 =qz+r, q,7 €N, g=r, or
2> =qx—r, q,7 €N, q=r+2.

Thus the Rényi expansiafy (1) has for quadratic Parry numbers the form
dg(l) = gqr or dg(1)=(¢—1)(g—r—1)~.

Here we shall study the case of non-simple Parry numbers thaty — 1 > 0 andg—r —1 > 0 and thus
we can use the results derived in previous sections undexothdition that the coefficients of the Rényi
expansion of 1 are all positive. For simplicity of notatioe @enotez = ¢ — 1 andb = ¢ — r — 1, thus
the Rényi expansion of 1 to be consideredd$l) = ab“. The corresponding infinite worg is a word
over the binary alphabgD, 1} invariant under the substitution

©(0) =01, (1) =0, wherea>b>1 (13)
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As aresult of Section 6, we know that the wargl has a unique infinite left special branch, sayvhich
satisfies the word equation
v =0"1p(v) = 0°1p(0°1)?(0°1) - - - . (14)

In order to determine the complexity of the wargd, we need to determine also the maximal left special
factors.

Remark 2

(i) According to Proposition 4 there exist only two factofs.g of the formX0°Y, X # 0 andY # 0,
namelyl0¢1 and10°1.

(i) Sincea > b, every maximal left special factor, which contains at leas¢ letter 1 has the suffix
10°.

Proposition 14

(i) Every maximal left special factow, which contains at least one letter 1 is of the fotm =
0°1¢(20)0°, wherew is a maximal left special factor.

(i) If a = b+ 1, then there is no maximal left special factor of the farms in N; if a > b + 2, then
the maximal left special factor not containing a letter Dis!.

Proof: Suppose that the maximal left special faciocontains a letter 1. Sindev andlw are inF'(ug),
statement (i) of Remark 2 implies that= 0°1w’ for some wordy’. If w’ does not contain a letter 1, then
(i) of Remark 2 impliesv = 0°10°, which is a prefix of the infinite left special branchof us, (cf. (14)).
This is a contradiction with the maximality af. Therefore using the statement ii) of Remark 2 the word
w must be of the formy = 0°1w”10° for some non-empty word:”. Since bothw = 00°1w”10” and
w = 10°1w”10° are factors ofig, there exists a word such thatp(w) = w1, and1w and0w belong
to F(ug), i.e., w is a left special factor ofig. Assume thatb is not a maximal special factor. Then there
exists a lettel” € {0, 1}, such thabwY and01wY are factors ofig. The images of these two factors,
namely0®1p(w)p(Y) and0*10°1p()p(Y') are also elements df(us). Therefored®1y(w)p(Y) is a
left special factor andy = 0°1¢(w)0° is its proper prefix which contradicts the maximality.of

The statement (ii) of the proposition is obvious from (i) adrRark 2. O

Proposition 15 Let w be a maximal left special factor afs. Then0®1p(w)0? is also a maximal left
special factor ofug.

Proof: SinceOw and 1w are factors ofug, then also the word®(0w) = 0%1p(w) and p(0lw) =
0101 (w) belong toF (ug). Sincea > b, the word0®1p(w) is a left special factor ofis. The word
0°1¢(w) has the suffix 1, and the letter 1 is always followedBy Thus0?14(w)0 is also a left special
factor. If it is not maximal, then eithe1,(w)0°1 or 0°1p(w)0%1 is also a left special factor and thus
wl or w0 is a left special factor, which contradicts the maximality.o O

Combining Propositions 14 and 15 we obtain the followingpdary.

Corollary 16 Letug be the infinite word invariant under the substituti(ir3).
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1. The wordug contains maximal left special factors if and onlyif> b + 2.

2. Leta > b+ 2. Let(U(’“)keN be the sequence of words satisfying the recurrent relation

U(l) — Oafl7
UkR = 0pu*—)b, k>2.

The set of word$U %) | k € N} coincides with the set of all maximal left special factors:gf

For a binary alphabet, the formula (1) for the first differeiné the complexity function has the form
AC(n) =C(n + 1) — C(n) = number of left special factors of length

If @ = b+ 1, then the numbes is a solution ofz> = (a + 1)z — 1 and thus it is an algebraic unit.
(Recall that an algebraic unit is a root of a polynomial witteger coefficients such that the leading and
absolute coefficients arel.) According to the statement 1 of Corollary 16, the corresfiog wordus
has no maximal left special factors, and therefore evetysl@cial factor ofs is a prefix of the unique
infinite left special branch afz. This implies thatAC(n) = 1 for everyn € N. We deduce the following
corollary, which says thats is a Sturmian word for = a — b = 1.

Corollary 17 Let3 > 1 and lets? = ¢3 — 1. Then the complexit§(n) of the infinite wordu satisfies
C(n) =n+ 1foreveryn € N.

In the following we therefore focus on the case: 2, i.e, a > b+ 2. Then every left special factor is
a prefix of the infinite left special branehor of some maximal left special fact6i*), k € N. Note that
it is not excluded that some of the left special factors ararmon prefixes of both. Therefore we define a
sequence of wordd”(¥)) < as

V%) = the maximal common prefix af andU (*).

This means that for everly € N there exists an infinite worRY“) and a non-empty finite worRék) such
thaty = VR RM andU® = v® R and the word®R'*, R\ do not have a common prefix. Clearly
v =ob.
The recurrent relation fo7 *) and the word equation (14) for the infinite left special btanémply
that
U® = 010U *D)00 = 0°1o(VE D) p(RF)0b

(15)
v=0"1pw) = 01p(VE )Ry )

Since one of the wordﬁgk’l), Rék’l) begins with 1 and the other with 0, then one of the words

@(ng_l)), @(Ré’“_l)) has the prefix1 and the other the prefi¥*1. Comparing the word& () andv
in the relations (15) we obtain
V) = gb1p(VE=D)b

Thus the word sequencé8 *)),.cy and(V *)),.cy are given by the same recurrence relation; they differ
by the initial wordU(") = 0*—1, V(1) = 0P, For the lengths of words of these sequences we therefore
have

TR = V| 4 (a—b—1)[p*D(0)], fork € N. (16)
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From the definition of7(*) andV (¥ it is obvious that the sequences of lengtfis™®)|)xen, (V) ) ren
are strictly increasing. In order to describe these seqpgnwe define the integer sequents)i2 .
(Hk)iio by

GO = HO fr ]_7
Gr = |9°0)], Hy=l|g"Q)|, forkeN.
Since
(p(k) (0) = Sp(k_l) (Oal) _ ((P(k_l)(O))QQD(k_l)(l),
(p(k)(l) - (p(k—l)(obl) _ (<p(k—1)(0))b<p(k_1)(1)’

we obtain for the sequencéS.)2,, (Hx), the recurrence relationsy = Hy = 1,

Gy = aGg-1+ Hi-1,
for k> 1. (17)
Hy = bGr—1+Hp_1,
One can easily show by induction érthat fork > 2
V) = o(1)?(1) -+ o* D (1)p* D (07)p* 2 (0%) - - (0")0" .

For the lengthV (*)| we thus have

k—1 k—1 k
VO =b>"Gi+> Hi=> Hi—1 (18)
=0 i=1 i=1
and using the relation (16)
k
UM =3 Hi—1+(a—b-1)Gr_1. (19)

=1

In order to show that for every € N there exists at most one left special factor of lengtivhich is
not prefix of the infinite left special branch, it suffices taifyethat

VR > | ut=Y|  forevery k > 2.
We use (18) and (19) to see that it suffices to verify
Hy > (a—b—1)Ghs. (20)
SinceGy, Hy, are positive integers, from the relations (17) we easilyabt

Gk > aGk_l s (21)
Gry1 = (a + 1)Gk - (CL — b)Gk,1 . (22)
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In order to verify the inequality (20) we rewrite its left ldhside using the relations (17), (22) and
estimate it using (21), to obtain
H; = GkJrl —alGy = (b + 1)Gk,1 — (CL — b)Gk,Q >
> a(b + I)Gk,Q - (CL — b)Gk,Q = (ab + b)Gk,Q .

Since for positive integers, b, a > b > 1 it holds thatab + b > a — b — 1, the inequality (20) is satisfied.
The elements of the sequencds® |)xen, (|V*)|)ren are thus ordered in the following way:

|V(1)| < |U(1)| < |V(2)| < |U(2)| < |V(3)| < |U(3)| < e (23)
Using the relations (18) and (22) we can easily derive &t | satisfies
[VERD] = (a 4+ D)VED| — (a = b)|VP| + 3b—a+1.

Taking (19), we see thal/ (¥)| satisfies the same recurrence relations but with differetial values.

The following theorem summarizes the results about the ¢exitp function for ug when g is a
quadratic Parry number. The statement concerning nonksifgrry numbers follows from the above
considerations; the part for simple Parry numbers can bieedkirom the general theorem proved in [11].

Theorem 18 Let 5 be a quadratic Parry number. Then the compleXity:) of the infinite wordug
satisfies
1, if U._1 <n

2, if Vi <n

V., forsomek e N,

Cn+1)—=C(n) _{

<
< U, forsomeke N,

where (U ) ren, and (Vi) ren, are integer sequences defined by the recurrences

Uiy = qUxs1 — Uy + 2¢—3r—1, with Uy =-1, U =q—2,
Vite = qViy1 — rVi + 2¢—3r—1, with Vo=-1, Vi=q—1r—-1,

if 32 =qB—r, forq,r €N, q>r+2,and

Upro = qUrpr + Uy + 2q, with Uy=1—-7r"1, Uy=q+r-1,
Vire = qVip+ Ve + 2¢, with  Vy =0, Vi=gq,

if 32 =qB+r,forg,r eN,qg>r.

Note that the sequencéd;. )ren, and (Vi) ren, are formally defined even in the unitary case- 1,
but then they coincide and the first difference of compleisigonstantly equal to 1, when€én) = n+1
for n € N. On the other hand, if is not a unit, then the above theorem implies th@t) is not a linear
function.

In order to characterize Parry numbetdor which ug is a Sturmian word, it suffices to realize that
C(1) = 2 implies thatg is a quadratic integer. Thus we have the following corollary

Corollary 19 The infinite wordug associated with a Parry numbet is Sturmian if and only iff is a
quadratic Pisot unit.
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8 Open problems and one more example

1) We have described the infinite left special branches onlytifose Parry numbers such that in
dg(l) = t1- -ty (tm1 - - - tmap)® all coefficients are positive. Under such assumptions apdif 2,

the infinite wordu g has a unique infinite left special branch. The situation itecfiifferent if we allow that
some of the coefficients vanish. In [11] we consider the Pisot numlgewith dg(1) = 2(01)“, which

has two distinct infinite left special branches. The comipyer this case is equal t6(n) = 2n + 1.

2) The studied infinite wordsg are invariant under a primitive substitution and therefaree sublinear
complexityC(n). From the result of Cassaigne [6] it follows that the firsfetiéenceAC(n) is bounded
from above by a constant. All our computer experiments shaithe first difference of complexity afs
for a Parry numbeg takes at most two values. More precisely, derbié the cardinality of the alphabet
of Uug-

Conjecture20 Forall nin N
#A—-1< AC(n) < #A.
Let us mention the results and examples which support tmgcture.

e In[11] it is shown that fordg(1) = t1ts - - - t,,, satisfyingt; > max{ta,...,tm_1} Ort; =t =
-+ = t,,—1 the conjecture holds true.

e Therelationdg(1) = t1 - -ty (tmt1 - - - tmp)® iMplies thatg is a root of the polynomial

(xp _ 1)(xm _ tlfL‘m_l _ t2xm—2 . — tm)_ (24)
— tm+1$p71 — thFQQ?piQ — = thrpflI — thrp .

If this polynomial is irreduciblei.e., 5 is an algebraic integer of degree+ p, we can use the result
of Tijdeman [20], which implies that

ACn)zm+p—1=#A-1.
Let us mention that for many non-simple Parry numlggttse polynomial (24) is indeed irreducible.

e Whendg(l) = t1---tm(tm+1)” andt; > 0 for all 4, Theorem 13 implies thahC(n) > m =
#A — 1. If moreoverm = 1, then according to Theorem 18 we ha¥€(n) < #.A.

e Most interesting is the case Wheép(1) = 1 - -ty (tm+1 - - - tmtp)” With p > 2. The alphabet of
the infinite wordug is A = {0, 1, ..., m+p— 1}, while Theorem 10 implies onlrC(n) > p — 1
instead of expectegh + p — 1. The remaining contribution to the first difference of coexity can
thus be obtained uniquely by maximal left special factors.

Example 1 For illustration, let us study the structure of left sped&ators of the infinite word:s with
dp(1) = 543(12)*. Suchg is a root of the irreducible polynomiaf — 52* — 523 — 322 + 3z + 1. For
the study of the complexity of the infinite wotcs we have used the computer program [15]. The infinite
word ug over the alphabetl = {0, 1,2, 3, 4} is the fixed point of the substitution

©(0) = 0°1, ©(1) = 02, (2) = 0°3, ©(0) = 04, ©(0) = 0%3.
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Although according to Theorem 10 the infinite warg is an infinite left special branch with extension
{3,4}, some prefixes of 3 have larger extension, namely

the prefix ofug of lengthn < 4 has the extensiof0, 1, 2, 3,4},

the prefix ofug of length5 < n < 28 has the extensiofl, 2, 3, 4},

the prefix ofug of length29 < n < 167 has the extensiof®, 3,4},

all prefixes ofug longer than 167 are left special factors with extension ¢Blyt}.

Figure 1 shows schematically the tree of left special factdi.s. The cardinality of the extensions of
the factors of given length is marked by the thickness ofittesl|

mn:
infinite left special branch
U™ ends inn = 188946
U® ends inn = 32646
U® ends inn = 5640
U@
AC(n) : 4

Fig. 1: Tree of left special factors of the infinite wotgs with dg(1) = 543(12)%

Let us denote by/ (") the prefix ofus of length4, by U the prefix ofus of length28, and by ()
the prefix ofug of length167. It is easy to see that

U(l) = 04’ ext(U(l)) = {071127314}7
U(Q) — (p(U(l))O47 ext(U(Q)) = {1723374}3
U®d = ¢(U(2))03, ext(U(g)) = {2,3,4}.

The first maximal left special factor is
UW =023pU®)0, with ext(U®) = {0,1}.

This factor is of lengtt974 and the longest common prefix 6% andug is 02. Therefore in Figure 1
the broken line corresponding td* and the half-line corresponding tg; have a common segment of
length2.

It can be shown that every other maximal left special facéortoe obtained by the recurrence

1, ifniseven,

() — (=10 _
UM = (U 7)0, - where S”‘{z if 1 is odd.
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Moreover, for alln the extension satisfiegext(U(™)) = 2. The lengths ot/ (™ for n = 5,6,7 and of
the common prefixes df ") andug are given in Figure 1.

Let us mention that even the factdr§!), U(?), U®) can be in some sense understood as maximal left
special factors. For although they can be extended to thébiga lettera € A in such a way thal/ (V¢
is a left special factor, however for all suehwe have#ext(U®) > #ext(U®a) > 2.

Every left special factotw of lengthn > 167 has in its extension only 2 letterise., every such left
special factor contributes to the first difference of comijtyeby 1. AC(n) is thus equal to the number of
left special factors of length. The bottom line in Figure 1 shows the increment of compjewihich is
equal to 4 or 5 for every, which again supports Conjecture 20.

Notice that in this example the structure of maximal leftdpkfactors is essentially different from that
of ug for quadratic non-simple Parry numbegissee Section 7. Here the inequalities (23) say that the
common prefix ofus andU™ is longer than the previous maximal left special fadtr—, i.e., the
maximal left special factors do not overlap, unlike to ouample.

3) Asthe last open problem let us mention the question for whitle infinite wordug has other left
special factors than prefixes of an infinite left special bharT his question is discussed in [11] for simple
Parry numberss, i.e, for dg(1) = t;---t,,. Itis shown that ift,, > 2, thenug has infinitely many
maximal left special factors.

The conditiont,,, > 2 is however not necessary for existence of maximal left sppdactors. For
example, the infinite words corresponding to the simple Parry numpesuch thatlg(1) = 101000101
has a maximal left special factor [3]. In [11] it is shown tifat; > max{ta,...,t;m—1} Ort; = tg =
-+ = tm_1, thenug has a maximal left special factor if and onlytjf, > 2.

For non-simple Parry numbefsthe question of existence of maximal left special factors been
treated only in the quadratic case.
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