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A Parry number is a real numberβ > 1 such that the Rényiβ-expansion of 1 is finite or infinite eventually periodic.
If this expansion is finite,β is said to be asimpleParry number. Remind that any Pisot number is a Parry number.In a
previous work we have determined the complexity of the fixed point uβ of the canonical substitution associated with
β-expansions, whenβ is a simple Parry number. In this paper we consider the case whereβ is a non-simple Parry
number. We determine the structure of infinite left special branches, which are an important tool for the computation
of the complexity ofuβ . These results allow in particular to obtain the following characterization: the infinite word
uβ is Sturmian if and only ifβ is a quadratic Pisot unit.
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1 Introduction
A natural way to understand the combinatorial structure of an infinite word consists in studying its (factor)
complexity function. The complexity function of an infiniteword u over a finite alphabet is defined as
follows: C(n) is the number of finite factors of lengthn appearing inu. Clearly an infinite wordu is
eventually periodic if and only if there exists somen in N such thatC(n) 6 n. The simplest aperiodic
words have complexityC(n) = n+1 for all n in N. Such words are calledSturmianwords. The Fibonacci
word is well known to be Sturmian, see for instance [13, Chapter 2]. The Fibonacci word is associated in
a canonical way with the golden ratio.

Numeration systems where the baseβ is not an integer have been wisely studied, and one can find
definitions and results in [13, Chapter 7]. Let us recall the particular role played by some numbers. A
Pisot numberβ is an algebraic integer such that all its Galois conjugates are less than 1 in modulus. The
golden ratio and the natural integers are Pisot numbers. Numeration systems in base a Pisot number play
an important role in the modelization of quasicrystals. Thefirst quasicrystal was discovered in 1984: it is
a solid structure presenting a local symmetry of order 5,i.e., a local invariance under rotation ofπ/5, and
it is linked to the golden ratio and to the Fibonacci substitution. The Fibonacci word is a historical model
of a one-dimensional mathematical quasicrystal.
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More generally, letβ > 1 be a real number such that the Rényi expansion of 1 in baseβ is eventually
periodic or finite; these numbers are calledParry numbers(simple if the Rényi expansion of 1 is finite).
It is known that a Pisot number is a Parry number, [4, 18].

With a Parry numberβ is associated a substitutionϕβ having a fixed pointuβ (see next section for
definitions). This substitution generates a tiling of the non-negative real line with a finite number of tiles
[19, 8]. The vertices are labelled by the elements of the set of non-negativeβ-integers, which are real
numbers having aβ-expansion with no fractional part. The notion ofβ-integerhas been introduced in the
domain of quasicrystallography, see for instance [10].

Let us recall known results on complexity of infinite wordsuβ associated withβ-expansions. The
infinite worduβ is aperiodic and therefore has complexityC(n) > n+1. Another general result about the
complexity ofuβ is derived from the fact that the complexity of a fixed point ofa primitive substitution is
a sublinear function, see for instance [1]. A substitutionξ over an alphabetA is calledprimitive, if there
existsk in N such that every letterb of A appears in thek-th iterationξk(a) of every lettera in A. It can
be easily seen that the canonical substitutionϕβ satisfies this condition. Therefore the complexity of the
infinite worduβ is a sublinear function.

For the determination of the complexityC(n) of an infinite wordu it is enough to know the first
difference∆C(n) := C(n + 1) − C(n) for all n in N. One can compute∆C(n) with the knowledge of
left special factors (or right special factors) ofu, introduced by Cassaigne [5]. Left special factors are
factors ofu which have at least two left extensions inu. The description of all left special factors and the
cardinality of the corresponding left extensions is crucial for the determination of the complexity.

In a previous work [11] we have studied the complexity of infinite words associated withβ-expansions
for a simple Parry numberβ. We recall some of the results. An infinite left special branch is an infinite
word whose every prefix is a left special factor. Letters which belong to the extension of every prefix of
an infinite left special branch are called its extensions.

Theorem 1 [11] Letβ be a simple Parry number withdβ(1) = t1t2 · · · tm. Thenuβ has a unique infinite
left special branch, namelyuβ itself. Moreover, the left extensions ofuβ are{0, 1, . . . , m − 1}.

This result implies that∆C(n) > m − 1. On the other hand, in the same paper we show using the
structure of maximal left special factors that under some additional weak conditions one has∆C(n) 6 m.
The complexity of infinite wordsuβ for simple Parry numbersβ is therefore well understood.

The present work is devoted to the case of Parry numbersβ which are not simple. We describe the
structure of infinite left special branches in the case that,in dβ(1) = t1t2 · · · tm(tm+1 · · · tm+p)

ω , all the
coefficientsti’s are positive (the integersm andp are chosen minimal). The situation is rather different
according to whether the lengthp of the periodic part ofdβ(1) is greater than or equal to 2, or is equal to
1.

If p > 2 thenuβ has a unique infinite left special branch, namelyuβ itself. Unlike the case of simple
Parry numbers, here the set of left extensions ofuβ is equal to{m, m + 1, . . . , m + p− 1}, Theorem 10.

If the length of the period ofdβ(1) is p = 1, thenuβ is not an infinite left special branch of itself, but
there arem different infinite left special branches, each of them having extension with two letters only,
Theorem 13.

We then give an exact formula for the value of the complexity function in the case thatdβ(1) = abω,
Theorem 18; thenβ is a quadratic Pisot number. From this and previous results from [10] and [11] follows
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thatuβ is a Sturmian word if and only ifβ is a quadratic Pisot unit,i.e., β is the largest of the roots of
x2 = qx + 1, q > 1, or x2 = qx − 1, q > 3.

Sturmian words can be characterized by the property that they are binary words with exactly one left
and exactly one right special factor of each length. A generalization of this notion are the Arnoux-Rauzy
words, defined as words over an alphabet withk letters, having exactly one left and exactly one right
special factor of each length withk extensions. In [11] we have shown that, for a simple Parry numberβ,
uβ is an Arnoux-Rauzy word if and only ifβ is aconfluentPisot number, that is to say ifdβ(1) = tt · · · t1,
see [9] for definitions and properties of confluent numeration systems. Note that in [2] we completely
describe the palindromic complexity of the worduβ whenβ is a confluent Pisot number. Here we are
only able to prove that for non-simple Parry numbersβ with all the coefficientsti’s positive, the infinite
worduβ is not an Arnoux-Rauzy word, Corollary 5.

We end this paper with some open problems. The situation is quite different if we allow some of the
coefficientsti’s to vanish. In [11] we have considered the Pisot numberβ with dβ(1) = 2(01)ω, which
appears in quasicrystallography as it presents a 7-fold symmetry. We have shown that in this caseuβ has
two distinct infinite left special branches, and the complexity is equal toC(n) = 2n + 1.

From a result of Cassaigne [6] we know that the first difference ∆C(n) is bounded from above by
a constant, for any worduβ whenβ is a Parry number. Computer experiments suggest the following
conjecture: For alln in N

#A− 1 6 ∆C(n) 6 #A

where#A denotes the cardinality of the alphabet ofuβ .

2 Preliminaries

2.1 Words and complexity

A word (finite or infinite) on a finite alphabetA is an arbitrary (finite or infinite) concatenation of letters
in the alphabet. The length of a finite wordw, i.e., the number of its letters, is denoted by|w|. The set of
finite words over the alphabetA is denoted byA∗. Equipped with the operation of concatenation it is a
free monoid. We will use the following notationak = aa · · ·a

︸ ︷︷ ︸

k times

.

A morphism onA∗ is a mapξ : A∗ → A∗ for which ξ(uw) = ξ(u)ξ(w) for all u andw in A∗. A
morphism is uniquely determined by the wordsξ(a) for all a in A. If ξ(a) is a non-empty word for all
a ∈ A and if there exists a lettera0 in A such thatξ(a0) = a0w for some non-empty wordw, then the
morphismξ is called asubstitution. The reader will find related results on substitutions in [16].

The action of a substitution can be naturally extended to infinite wordsu = u0u1u2 · · · by the prescrip-
tion ξ(u) = ξ(u0)ξ(u1)ξ(u2) · · · . An infinite wordu is invariant under a substitutionξ (or is its fixed
point), if ξ(u) = u. The infinite wordlimn→∞ ξn(a0) is a fixed point ofξ.

A finite wordw = w0w1 · · ·wn−1 is called afactorof u of lengthn if w0w1 · · ·wn−1 = uiui+1 · · ·ui+n−1

for somei in N0 (we denote byN the set of positive integers and byN0 the set of non-negative integers).
The set of factors ofu of all lengths is denoted byF (u). Thefactor complexity(or simplycomplexity) of
the infinite wordu is the mappingC : N → N defined by

C(n) := #{w | w ∈ F (u), |w| = n} .
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One can compute∆C(n) = C(n + 1) − C(n) with the knowledge of left special factors or right special
factors ofu. We shall focus on left special factors defined as follows. Let w be a factor of an infinite word
u. The set of all lettersa such thataw is a factor ofu is calledleft extensionof w and denoted byext(w),

ext(w) := {a ∈ A | aw ∈ F (u)} .

If #ext(w) > 2, thenw is called aleft special factorof u.
The description of all left special factors and the cardinality of the corresponding left extensions is

crucial for determination of the complexity, since the following simple relation holds

C(n + 1) − C(n) =
∑

w∈F (u),|w|=n

(

#ext(w) − 1
)

. (1)

An infinite wordv = v0v1v2 · · · is called aninfinite left special branchof u if every prefix ofv is a left
special factor ofu. Clearly, sinceext(w′) ⊇ ext(w) for w andw′ in F (u) such thatw′ is a prefix ofw,
the left extension of all sufficiently large prefixes ofv is constant. Thus we can define the left extension
of the infinite left special branchv by

ext(v) :=
⋂

w prefix ofv

ext(w) .

A left special factorw is called amaximal left special factor, if #ext(wa) = 1 for all lettersa in A. It is
clear that every left special factor is a prefix of a maximal left special factor or of an infinite left special
branch.

2.2 β-expansions and substitutions

For a real baseβ > 1, every non-negative real numberx can be represented in the form

x = xkβk + xk−1β
k−1 + xk−2β

k−2 + · · · =

k∑

i=−∞
xiβ

i ,

wherexi ∈ {0, 1, . . . , ⌈β⌉ − 1}. Moreover, if we require that for everyN ∈ Z, N 6 k, the condition
0 6 x −

∑k

i=N xiβ
i < βN is fulfilled, then such a representation is unique, it is called theβ-expansion

of x and it is denoted by
(x)β = xkxk−1 · · ·x1x0.x−1x−2 · · · .

The coefficientsxi can be obtained by a greedy algorithm [17]. A representationhaving only finitely
many non-zero coefficients is said to befinite, and the trailing zeroes are omitted.

Numbersx such that theβ-expansion of|x| is of the form(|x|)β = xkxk−1 · · ·x0.000 · · · are called
β-integers, see [10], and the set ofβ-integers is denoted byZβ . If β is an integer> 1, we haveZβ = Z.
If β is not an integer, the structure ofZβ is determined by the so-calledRényi expansiondβ(1) of 1, which
is defined using the mapTβ(x) := βx − ⌊βx⌋ as the sequence

dβ(1) = t1t2t3 · · · , where ti = ⌊βT i−1
β (1)⌋ for i ∈ N
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Parry in [14] has shown that a sequence of non-negative integerst1t2t3 · · · is a Rényi expansiondβ(1)
of 1 for someβ > 1 if and only if titi+1ti+2 · · · is lexicographically strictly smaller thant1t2t3 · · · for
everyi ∈ N, i > 1. This in particular implies thatti 6 t1 for all i ∈ N.

From the construction ofdβ(1) it is obvious that1 =
∑∞

i=1 tiβ
−i. It can be shown that consecutiveβ-

integers have distances of the formDk =
∑∞

i=1 tk+iβ
−i for k ∈ N0. The set of distances{Dk | k ∈ N0}

is thus finite if and only if the Rényi expansiondβ(1) is eventually periodic [19]. Numbers with eventually
periodicdβ(1) are calledParry numbers. Obviously, a Parry number is an algebraic integer. A Parry
number is calledsimpleif dβ(1) is finite, i.e.,

dβ(1) = t1t2 · · · tm (2)

wherem in N is such thattm 6= 0. Otherwise

dβ(1) = t1t2 · · · tm(tm+1 · · · tm+p)
ω (3)

where in the period at least one of the coefficients is non-zero. Preperiod and period are not given uniquely,
we shall assume that they have minimal length. In this casetm 6= tm+p.

When β is a simple Parry number satisfying (2), the setZβ hasm different distances{Di | i =
0, 1, . . . , m − 1} between neighbours. Ifβ is a Parry number withdβ(1) of the form (3), then there are
m + p distances{Di | i = 0, 1, . . . , m + p − 1}. Identifying the distanceDi with i, the sequence of
distances between non-negativeβ-integers forms an infinite worduβ in the alphabet{0, 1, . . . , m − 1},
resp.{0, 1, . . . , m + p − 1}.

The infinite worduβ associated with the sequence of distances between consecutive β-integers for a
Parry numberβ is the fixed point of a substitutionϕ = ϕβ canonically associated withβ [8]. For a simple
Parry numberβ satisfying (2) this substitution is defined on the alphabetA = {0, 1, . . . , m − 1} by

ϕ(0) = 0t11
ϕ(1) = 0t22

...
ϕ(m − 2) = 0tm−1(m − 1)
ϕ(m − 1) = 0tm

(4)

Thusuβ = limn→∞ ϕn(0).

For instance takeβ = 1+
√

5
2 the golden ratio. Thendβ(1) = 11, and the golden ratio is a simple Parry

number. The substitutionϕ associated with1+
√

5
2 is the Fibonacci substitution defined by

ϕ(0) = 01 , ϕ(1) = 0 .

The infinite worduβ is the Fibonacci word

uβ = 0100101001 · · · .

In case the Rényi expansion is infinite eventually periodic(3) the substitution is defined on the alphabet
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A = {0, 1, . . . , m + p − 1} by

ϕ(0) = 0t11
ϕ(1) = 0t22

...
ϕ(m + p − 2) = 0tm+p−1(m + p − 1)
ϕ(m + p − 1) = 0tm+pm

(5)

anduβ = limn→∞ ϕn(0).

3 Factors of uβ of special type
From now on we shall consider Parry numbersβ, which are not simple,i.e., such that their Rényi expan-
sion is of the formdβ(1) = t1t2 · · · tm(tm+1 · · · tm+p)

ω.
With the exception of Lemma 2 and Lemma 3 we focus on thoseβ which have all their coefficients

in dβ(1) positive,i.e., ti > 1 for all i. Note that this assumption together with the Parry’s lexicographic
condition ondβ(1) implies thatt1 > 2. Such conditions help us to avoid technicalities, the ideashowever
could be generalized.

Lemma 2 can be proved easily by induction with the following notation: Letv = wkv′, thenw−kv =
v′. The symbol◦ stands for concatenation.

Lemma 2 For everyn in N,

ϕn+m+p(0) =
(
ϕn+m+p−1(0)

)t1 (
ϕn+m+p−2(0)

)t2
· · · (ϕn(0))

tm+p

◦ (ϕn(0))−tm · · ·
(
ϕn+m−2(0)

)−t2 (
ϕn+m−1(0)

)−t1
ϕn+m(0) .

The following lemma can be simply derived from the definitionof the morphismϕ.

Lemma 3 Letn be inN. The wordϕm+n(0) ends with the letterm+k, wherek ∈ {0, 1, . . . , p−1} and
k ≡ n (mod p).

From now on we assume that indβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω , for eachi > 1, ti > 1, because

in that case non-zero letters in the infinite worduβ are separated by blocks of 0’s. The following result
describes the form of these blocks.

Proposition 4 All factors of the infinite worduβ of the formX0sY , whereX andY are non-zero letters
ands is in N0, are precisely the following ones:

k0t11 for k = 1, 2, . . . , m + p − 1,

10tkk for k = 1, 2, . . . , m + p − 1,

10tm+pm .

(6)

Proof: Since the substitutionϕ is primitive, every factor appears infinitely many times in its fixed point
uβ. From the definition ofϕ we see that fork 6= m, the desired blocks are of the formX0tkk, where
X 6= 0. Fork = m, the blocks are of the formX0tmm andX0tm+pm.
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Consider a blockX0tkk for k > 2. Such a block is a suffix ofϕ
(
0tk−1(k − 1)

)
. Sincetk−1 > 0, we

haveϕ
(
0tk−1(k − 1)

)
= w0t110tkk for some wordw, which implies thatX = 1.

If k = m, the blockX0tm+pm is a suffix ofϕ
(
0tm+p−1(m + p − 1)

)
. Sincetm+p−1 > 0, we have

ϕ
(
0tm+p−1(m + p − 1)

)
= w0t110tm+p−1m for some wordw, which implies thatX = 1.

Let us describe the blocks of the formX0t11. Sinceuβ = limn→∞ ϕn(0), ϕ2(0) =
(
0t11

)t1
0t22 and

t1 > 2, the worduβ contains the factor10. Then it has also the factorϕ(10) = 0t220t11, and thus also
20. Similarly uβ has a factork0 for everyk ∈ {1, 2, . . . , m + p − 2}. This implies thatuβ has factors
ϕ(k0) = 0tk(k + 1)0t11. Thus the desired blocks arek0t11 for k = 1, 2, . . . , m + p − 1.

Discussing all possibilities for the letterY , we have described all the blocks of the formX0sY , X, Y 6=
0. 2

The above proposition implies an interesting corollary. For all considered non-simple Parry numbers
β, the set of factors ofuβ is not closed under mirror image. For, taking ak such thattk < t1, the set of
factors contains the word10tkk but not the wordk0tk1. However, invariance of the set of factors under
mirror image is a necessary condition for a word to be an Arnoux-Rauzy word [7].

Corollary 5 Let dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω with ti > 0 for all 1 6 i 6 m + p. Thenuβ is not

an Arnoux-Rauzy word.

For further considerations we will use the following notation.

Remark 1 Assume that for some non-zero letterY there exist distinct integerss, r such thatX10
rY and

X20
sY are inF (u) for some lettersX1 6= 0 andX2 6= 0. From Proposition 4 it is obvious that necessarily

Y = m. The corresponding blocks are10tmm and10tm+pm. In the sequel we use the following notation

t := min{tm, tm+p} . (7)

4 Pre-images of left special factors
The description of the structure of left special factors in the infinite worduβ is facilitated by the fact that
every left special factor is given by an image of a shorter left special factor under the substitution. In
this section we study the action of the substitutionϕ on the left special factors, depending on their left
extensions.

Lemma 6 Let w be a left special factor ofuβ containing a non-zero letter and such that0 ∈ ext(w).
Thenext(w) = {0, 1} and there exists a factor̂w of uβ such thatw = 0tmϕ(ŵ)0s wheres ∈ N0, s 6 t1
andext(ŵ) ⊇ {m − 1, m + p − 1} andt is given by(7).

Proof: Let w be a left special factor ofuβ containing a non-zero letter and such that0 ∈ ext(w). Then
there exists a prefix ofw of the form0ℓY for some non-zero letterY and someℓ ∈ N0. Let X ∈ ext(w),
X 6= 0. SinceX0ℓY and0ℓ+1Y are factors ofuβ, Remark 1 implies thatY = m, ℓ = t, andX = 1.
The factorw is therefore of the formw = 0tmw′0s for somes ∈ N0 and some wordw′, which is either
empty or ends in a non-zero letter. Ifw′ is empty (which corresponds to the case thatw contained exactly
one non-zero letter), then the proof is finished takingŵ as the empty word. Otherwisew′ is a factor ofuβ

ending in a non-zero letter. Form (6) it follows thats 6 t1.
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It remains to show thatw′ = ϕ(ŵ) for some wordŵ such thatext(ŵ) ⊇ {m − 1, m + p − 1}.
We show it fortm+p > tm, the opposite case is analogous. Iftm+p > tm, then words10tmmw′

and0tm+pmw′ are factors ofuβ. From the definition ofϕ it follows that there exists a word̂w such that
0tmmw′ = ϕ

(
(m−1)ŵ

)
and0tm+pmw′ = ϕ

(
(m+p−1)ŵ

)
, and both words(m−1)ŵ and(m+p−1)ŵ

are factors ofuβ. Thusŵ is a left special factor ofuβ and its left extension contains lettersm − 1 and
m + p − 1, what was to be shown. 2

Lemma 7 Let w be a left special factor ofuβ containing a non-zero letter and suppose there exist two
distinct non-zero lettersX andY such thatX andY are inext(w). Then there exists a left special factor
ŵ and an integers ∈ N0, s 6 t1, such thatw = ϕ(ŵ)0s. Moreover,ext(w) is formed by the suffixes of
length 1 of the wordsϕ(Z) for all Z ∈ ext(ŵ).

Proof: Lemma 6 implies that0 /∈ ext(w). Let us writew in the formw = w′0s, wherew′ ends in
a non-zero letter. Obviouslys 6 t1. If ext(w) = {X1, . . . , Xk}, thenX1w

′, . . . , Xkw′ are factors of
uβ. SinceXi 6= 0, for all i = 1, 2, . . . , k, the definition ofϕ implies that there exist lettersZ1, . . . , Zk

and a wordŵ such thatZ1ŵ, . . . , Zkŵ are factors ofuβ and X1w
′, . . . , Xkw′ are suffixes of words

ϕ
(
Z1ŵ

)
, . . . ,

(
Zkŵ

)
. 2

5 Infinite left special branches for dβ(1) with period of length p > 2
In this section we focus on the case thatp > 2. We shall see further on that wordsuβ such thatp = 1
differ substantially from this case.

Combination of Lemma 2 and 3 leads to the fact that the wordϕn(0) has at leastp left extensions,
namely thatext

(
ϕn(0)

)
⊇ {m, m + 1, . . . , m + p − 1}.

Corollary 8 Letp > 2. Thenuβ is an infinite left special branch of itself and

ext(uβ) ⊇ {m, m + 1, . . . , m + p − 1} .

The following lemma shows that the letters0, 1, . . . , m−1 do not belong to the extension of any infinite
left special branch.

Lemma 9 Letp > 2. There exists a constantK such that every left special factorw, whose left extension
contains a letteri ∈ {0, 1, . . . , m − 1}, has length|w| bounded byK.

Proof: Obviously, the largest factor ofuβ not containing a non-zero letter is0t1 . Suppose thatw is a left
special factor containing a non-zero letter.

First assume thatext(w) contains the letter 0. According to Lemma 6 we haveext(w) = {0, 1} and
there exist a wordw1 and a non-negative integers1 6 t1 such that

w = 0tmϕ(w1)0
s1 , ext(w1) ⊇ {m − 1, m + p − 1} .

Let us discuss the casep > m. Lemma 7 implies that there exist a sequence of wordsw2, w3, . . . , wm

and a sequence of non-negative integerss2, s3, . . . , sm 6 t1 such that

w1 = ϕ(w2)0
s2 ext(w2) ⊇ {m − 2, m + p − 2} ,

w2 = ϕ(w3)0
s3 ext(w3) ⊇ {m − 3, m + p − 3} ,

...
wm−1 = ϕ(wm)0sm ext(wm) ⊇ {0, p} .
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Sincep 6= 1, the latter implies using Lemma 6 thatwm does not contain a non-zero letter,i.e., wm =
0sm+1 , wheresm+1 6 t1. The left special factorw is therefore of the form

w = 0tmϕm
(
0sm+1

)
ϕm−1

(
0sm

)
· · ·ϕ2

(
0s3

)
ϕ
(
0s2

)
0s1 (8)

Sincesi 6 t1 andt 6 t1, the length of the wordw is bounded,

|w| 6 1 + t1 +
∣
∣ϕm(0t1)ϕm−1(0t1) · · ·ϕ(0t1)0t1

∣
∣ , (9)

where the bound on the right hand side does not depend onw. Let us now discuss the casem > p. Again,
using Lemma 7 we construct the sequencew2, w3, . . . . Forwp we obtain thatext(wp) ⊇ {m − p, m}.
In the next step, two cases may occur, namelyext(wp+1) ⊇ {m − p − 1, m − 1} andext(wp+1) ⊇
{m − p − 1, m + p − 1}. For both of these cases we obtain thatext(wm) ⊇ {0, X}, with X > 2, and
thus using Lemma 6 the wordwm is of the formwm = 0sm+1 for somesm+1 6 t1. Thus the original
left special factorw can be written in the form (8) and its length is bounded as in (9).

It remains to prove that|w| is bounded, ifext(w) does not contain 0. Let us denotek = min{i | i ∈
ext(w)}. From the assumptions of the lemma we have1 6 k 6 m − 1. Pick j in ext(w) different from
k. Repeated application of Lemma 7 (k times) leads to

w = ϕk(wk)ϕk−1
(
0sk

)
ϕk−2

(
0sk−1

)
· · ·ϕ

(
0s2

)
0s1 ,

for some sequence of non-negative integerss1, . . . , sk 6 t1 and a left special factorwk of uβ, satisfying
ext(wk) ⊇ {0, X}, X > 1. For such left special factorwk the statement of this lemma has been already
proved in the first part of the proof. Thus the length|wk| is bounded by (9). Sincek 6 m − 1, also the
length of the word|w| is bounded. 2

For the proof of the main theorem of this section we need to measure the diversity of two distinct infinite
wordsu = u1u2u3 · · · andv = v1v2v3 · · · . For that we introduce

d(u, v) := min{i ∈ N | vi 6= ui} . (10)

The reciprocal value ofd(u, v) is used for defining a distance between infinite words.

Theorem 10 Let p > 2. Thenuβ has a unique infinite left special branch, namelyuβ itself. Moreover,
ext(uβ) = {m, m + 1, . . . , m + p − 1}.

Proof: Let u be an infinite left special branch ofuβ. Using Lemma 9 for every sufficiently long prefixw
of uβ we haveext(w) ⊆ {m, m + 1, . . . , m + p − 1}. Thus using Lemma 7 every infinite left special
branch ofuβ is the imageϕ(û) of some infinite left special brancĥu. The statement of the theorem will be
proved by contradiction. Assume thatu = u1u2u3 · · · andv = v1v2v3 · · · are distinct infinite left special
branches ofuβ. Assume that among all infinite left special branches we havechosen the pairu, v so that
d(u, v) is minimal. We find infinite special branchesû, v̂ in such a way thatϕ(û) = u andϕ(v̂) = v.
From the definition ofϕ it is obvious thatd(û, v̂) < d(u, v), which contradicts the choice ofu, v. Thus
we have proved that there exists at most one infinite left special branch. According to Corollary 8 we
derive that the unique left special branch isuβ and thatext(uβ) = {m, m + 1, . . . , m + p − 1}. 2
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6 Infinite left special branches for dβ(1) with period of length p = 1

Let us study the structure of infinite left special branches in case that the length of the period in the Rényi
expansiondβ(1) is p = 1. Here we work with the alphabet{0, 1, . . . , m − 1, m}, and the substitutionϕ
is given as

0 7→ 0t11, 1 7→ 0t22, . . . , (m − 1) 7→ 0tmm, m 7→ 0tm+1m.

Lemma 11 Let p = 1. Then there exists a constantK such that every left special factorw of uβ such
that{i, j} ⊂ ext(w) and|i − j| > 2 has length smaller thanK.

Proof: Let w be a left special factor ofuβ such that{i, j} ⊂ ext(w). Without loss of generality assume
thati + 2 6 j. Eitherw is of the formw = 0s, then clearly|w| 6 t1. Orw contains a non-zero letter, and
then using Lemma 6 we havei 6= 0. Repeated application of Lemma 7 (i times) leads to

w = ϕi(wi)ϕ
i−1(0si) · · ·ϕ2(0s3)ϕ(0s2)0s1

for some non-negative integerss1, s2, . . . , si 6 t1, wherewi is a left special factor ofuβ satisfying
ext(wi) ⊃ {0, X} for X > 2. Lemma 6 then implies thatwi = 0si+1 for somesi+1 6 t1. Since
i 6 m − 2, the length of the wordw is bounded by a constant independent ofw. 2

Corollary 12 Let p = 1 and letu be an infinite left special branch ofuβ. Thenext(u) = {i, i + 1} for
somei ∈ {0, 1, 2, . . . , m − 1}.

Theorem 13 Letp = 1. Define infinite words

v(0) := 0tmϕm(0tm)ϕ2m(0tm)ϕ3m(0tm) · · · ,

v(1) := ϕ
(
v(0)

)
,

v(2) := ϕ
(
v(1)

)
,

...

v(m−1) := ϕ
(
v(m−2)

)
.

For every i ∈ {0, 1, . . . , m − 1}, the wordv(i) is an infinite left special branch with left extension
ext(v(i)) = {i, i + 1}. The infinite worduβ has no other infinite left special branches.

Proof: Let u be an infinite left special branch ofuβ such that0 ∈ ext(u). Corollary 12 implies that
ext(u) = {0, 1}. Due to Lemma 6 there exists an infinite left special branch ofu(1) such thatu =
0tϕ

(
u(1)

)
andext(u(1)) = {m − 1, m}. Lemma 7 and Lemma 11 implies that there exists an infinite

left special branchu(2) so thatu(1) = ϕ
(
u(2)

)
andext(u(2)) = {m − 2, m − 1}. In this way we obtain

a sequence of infinite left special branchesu(0), . . . , u(m), whereu(m−1) = ϕ
(
u(m)

)
andext(u(m)) =

{0, 1}. Together we have
u = 0tmϕm

(
u(m)

)
. (11)

We have shown that to every infinite left special branchu with ext(u) = {0, 1} one can find another
infinite left special branchu(m) with the same extension. Moreover (11) holds true.
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We show by contradiction that there cannot exist more than one infinite left special branch withext(u) =
{0, 1}. Assume the opposite,i.e., that bothu, v are infinite left special branches with extensionext(u) =
ext(v) = {0, 1}, moreover assume that the pairu, v is such thatd(u, v) is minimal, whered(uv, v) is de-
fined in (10). Now we findu(m) andv(m) so that (11) is satisfied. From the definition ofϕ we obviously
haved

(
u(m), v(m)

)
< d(u, v), but u(m), v(m) are infinite left special branches with extension{0, 1},

which contradicts the choice ofu, v.
If there exists an infinite left special branchu with extensionext(u) = {0, 1}, it must satisfy the

equation of words
u = 0tmϕm(u) . (12)

Thusu = 0tmû for some infinite word̂u. Substituting into (12) we obtain

0tmû = 0tmϕm
(
0tmû

)
= 0tmϕm(0tm)ϕm(û) .

Thusû = ϕm(0tm)ˆ̂u for some infinite word̂̂u, i.e., u = 0tmϕm(0tm)ˆ̂u. Repeated substitution into (12)
shows that the infinite wordv(0) defined in the assertion of the theorem is a unique candidate to be the
infinite left special branch with extension{0, 1}. In order to prove thatv(0) is indeed the infinite left
special branch, it suffices to realize that0tm is a left special factor and use an auxiliary statement:

If 0tmw for some finite wordw is a left special factor withext(0tmw) ⊇ {0, 1}, then0tmϕm
(
0tm

)
ϕm(w)

is also a left special factor and its extension contains{0, 1}.
Lemma 7 implies that every left special branch with left extension{i, i + 1} is thei-th iteration under

ϕβ of an infinite left special branch with extension{0, 1}. Since such a branch is unique, namelyv(0), the
only infinite left special branch with extension{i, i + 1} is v(i) = ϕi

(
v(0)

)
. This completes the proof.2

7 Complexity of words uβ for quadratic Parry numbers
Quadratic Parry numbers have a simple characterization [12], namely that a quadratic irrationalβ > 1 is
a Parry number if and only if it is a Pisot number, i.e., an algebraic integer with all conjugates in modulus
strictly smaller than 1. In the quadratic case it results to all solutions of equations

x2 = qx + r, q, r ∈ N, q > r, or
x2 = qx − r, q, r ∈ N, q > r + 2 .

Thus the Rényi expansiondβ(1) has for quadratic Parry numbers the form

dβ(1) = qr or dβ(1) = (q − 1)(q − r − 1)ω .

Here we shall study the case of non-simple Parry numbers. Note thatq−1 > 0 andq−r−1 > 0 and thus
we can use the results derived in previous sections under thecondition that the coefficients of the Rényi
expansion of 1 are all positive. For simplicity of notation we denotea = q − 1 andb = q − r − 1, thus
the Rényi expansion of 1 to be considered isdβ(1) = abω. The corresponding infinite worduβ is a word
over the binary alphabet{0, 1} invariant under the substitution

ϕ(0) = 0a1 , ϕ(1) = 0b1 , where a > b > 1 (13)



12 Christiane Frougny and Zuzana Masákov́a and Edita Pelantov́a

As a result of Section 6, we know that the worduβ has a unique infinite left special branch, sayv, which
satisfies the word equation

v = 0b1ϕ(v) = 0b1ϕ(0b1)ϕ2(0b1) · · · . (14)

In order to determine the complexity of the worduβ, we need to determine also the maximal left special
factors.

Remark 2

(i) According to Proposition 4 there exist only two factors of uβ of the formX0sY , X 6= 0 andY 6= 0,
namely10a1 and10b1.

(ii) Sincea > b, every maximal left special factor, which contains at leastone letter 1 has the suffix
10b.

Proposition 14

(i) Every maximal left special factorw, which contains at least one letter 1 is of the formw =
0b1ϕ(ŵ)0b, whereŵ is a maximal left special factor.

(ii) If a = b + 1, then there is no maximal left special factor of the form0s, s in N; if a > b + 2, then
the maximal left special factor not containing a letter 1 is0a−1.

Proof: Suppose that the maximal left special factorw contains a letter 1. Since0w and1w are inF (uβ),
statement (i) of Remark 2 implies thatw = 0b1w′ for some wordw′. If w′ does not contain a letter 1, then
(ii) of Remark 2 impliesw = 0b10b, which is a prefix of the infinite left special branchv of uβ , (cf. (14)).
This is a contradiction with the maximality ofw. Therefore using the statement ii) of Remark 2 the word
w must be of the formw = 0b1w′′10b for some non-empty wordw′′. Since bothw = 00b1w′′10b and
w = 10b1w′′10b are factors ofuβ, there exists a word̂w such thatϕ(ŵ) = w′′1, and1ŵ and0ŵ belong
to F (uβ), i.e., ŵ is a left special factor ofuβ. Assume that̂w is not a maximal special factor. Then there
exists a letterY ∈ {0, 1}, such that0ŵY and01ŵY are factors ofuβ . The images of these two factors,
namely0a1ϕ(ŵ)ϕ(Y ) and0a10b1ϕ(ŵ)ϕ(Y ) are also elements ofF (uβ). Therefore0b1ϕ(ŵ)ϕ(Y ) is a
left special factor andw = 0b1ϕ(ŵ)0b is its proper prefix which contradicts the maximality ofw.

The statement (ii) of the proposition is obvious from (i) of Remark 2. 2

Proposition 15 Let w be a maximal left special factor ofuβ. Then0b1ϕ(w)0b is also a maximal left
special factor ofuβ .

Proof: Since0w and 1w are factors ofuβ , then also the wordsϕ(0w) = 0a1ϕ(w) andϕ(01w) =
0a10b1ϕ(w) belong toF (uβ). Sincea > b, the word0b1ϕ(w) is a left special factor ofuβ . The word
0b1ϕ(w) has the suffix 1, and the letter 1 is always followed by0b. Thus0b1ϕ(w)0b is also a left special
factor. If it is not maximal, then either0b1ϕ(w)0b1 or 0b1ϕ(w)0a1 is also a left special factor and thus
w1 or w0 is a left special factor, which contradicts the maximality of w. 2

Combining Propositions 14 and 15 we obtain the following corollary.

Corollary 16 Letuβ be the infinite word invariant under the substitution(13).
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1. The worduβ contains maximal left special factors if and only ifa > b + 2.

2. Leta > b + 2. Let(U (k))k∈N be the sequence of words satisfying the recurrent relation

U (1) = 0a−1 ,

U (k) = 0bϕ(U (k−1))0b , k > 2 .

The set of words{U (k) | k ∈ N} coincides with the set of all maximal left special factors ofuβ.

For a binary alphabet, the formula (1) for the first difference of the complexity function has the form

∆C(n) = C(n + 1) − C(n) = number of left special factors of lengthn.

If a = b + 1, then the numberβ is a solution ofx2 = (a + 1)x − 1 and thus it is an algebraic unit.
(Recall that an algebraic unit is a root of a polynomial with integer coefficients such that the leading and
absolute coefficients are±1.) According to the statement 1 of Corollary 16, the corresponding worduβ

has no maximal left special factors, and therefore every left special factor ofuβ is a prefix of the unique
infinite left special branch ofuβ. This implies that∆C(n) = 1 for everyn ∈ N. We deduce the following
corollary, which says thatuβ is a Sturmian word forr = a − b = 1.

Corollary 17 Letβ > 1 and letβ2 = qβ − 1. Then the complexityC(n) of the infinite worduβ satisfies
C(n) = n + 1 for everyn ∈ N.

In the following we therefore focus on the caser > 2, i.e., a > b + 2. Then every left special factor is
a prefix of the infinite left special branchv or of some maximal left special factorU (k), k ∈ N. Note that
it is not excluded that some of the left special factors are common prefixes of both. Therefore we define a
sequence of words(V (k))k∈N as

V (k) = the maximal common prefix ofv andU (k).

This means that for everyk ∈ N there exists an infinite wordR(k)
1 and a non-empty finite wordR(k)

2 such

thatv = V (k)R
(k)
1 andU (k) = V (k)R

(k)
2 , and the wordsR(k)

1 , R(k)
2 do not have a common prefix. Clearly

V (1) = 0b.
The recurrent relation forU (k) and the word equation (14) for the infinite left special branch v imply

that
U (k) = 0b1ϕ(U (k−1))0b = 0b1ϕ(V (k−1))ϕ(R

(k−1)
2 )0b

v = 0b1ϕ(v) = 0b1ϕ(V (k−1))ϕ(R
(k−1)
1 )

(15)

Since one of the wordsR(k−1)
1 , R

(k−1)
2 begins with 1 and the other with 0, then one of the words

ϕ(R
(k−1)
1 ), ϕ(R

(k−1)
2 ) has the prefix0b1 and the other the prefix0a1. Comparing the wordsU (k) andv

in the relations (15) we obtain
V (k) = 0b1ϕ(V (k−1))0b .

Thus the word sequences(U (k))k∈N and(V (k))k∈N are given by the same recurrence relation; they differ
by the initial wordU (1) = 0a−1, V (1) = 0b. For the lengths of words of these sequences we therefore
have

|U (k)| = |V (k)| + (a − b − 1)|ϕ(k−1)(0)| , for k ∈ N . (16)
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From the definition ofU (k) andV (k) it is obvious that the sequences of lengths(|U (k)|)k∈N, (|V (k)|)k∈N

are strictly increasing. In order to describe these sequences, we define the integer sequences(Gk)∞k=0,
(Hk)∞k=0 by

G0 = H0 = 1 ,

Gk = |ϕk(0)| , Hk = |ϕk(1)| , for k ∈ N .

Since

ϕ(k)(0) = ϕ(k−1)(0a1) = (ϕ(k−1)(0))aϕ(k−1)(1) ,

ϕ(k)(1) = ϕ(k−1)(0b1) = (ϕ(k−1)(0))bϕ(k−1)(1) ,

we obtain for the sequences(Gk)∞k=0, (Hk)∞k=0 the recurrence relationsG0 = H0 = 1,

Gk = aGk−1 + Hk−1 ,

Hk = bGk−1 + Hk−1 ,
for k > 1 . (17)

One can easily show by induction onk that fork > 2

V (k) = ϕ(1)ϕ2(1) · · ·ϕ(k−1)(1)ϕ(k−1)(0b)ϕ(k−2)(0b) · · ·ϕ(0b)0b .

For the length|V (k)| we thus have

|V (k)| = b

k−1∑

i=0

Gi +

k−1∑

i=1

Hi =

k∑

i=1

Hi − 1 (18)

and using the relation (16)

|U (k)| =

k∑

i=1

Hi − 1 + (a − b − 1)Gk−1 . (19)

In order to show that for everyn ∈ N there exists at most one left special factor of lengthn which is
not prefix of the infinite left special branch, it suffices to verify that

|V (k)| > |U (k−1)| for every k > 2 .

We use (18) and (19) to see that it suffices to verify

Hk > (a − b − 1)Gk−2 . (20)

SinceGk, Hk are positive integers, from the relations (17) we easily obtain

Gk > aGk−1 , (21)

Gk+1 = (a + 1)Gk − (a − b)Gk−1 . (22)
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In order to verify the inequality (20) we rewrite its left hand side using the relations (17), (22) and
estimate it using (21), to obtain

Hk = Gk+1 − aGk = (b + 1)Gk−1 − (a − b)Gk−2 >

> a(b + 1)Gk−2 − (a − b)Gk−2 = (ab + b)Gk−2 .

Since for positive integersa, b, a > b > 1 it holds thatab + b > a− b− 1, the inequality (20) is satisfied.
The elements of the sequences(|U (k)|)k∈N, (|V (k)|)k∈N are thus ordered in the following way:

|V (1)| < |U (1)| < |V (2)| < |U (2)| < |V (3)| < |U (3)| < · · · (23)

Using the relations (18) and (22) we can easily derive that|V (k)| satisfies

|V (k+2)| = (a + 1)|V (k+1)| − (a − b)|V (k)| + 3b−a+1 .

Taking (19), we see that|U (k)| satisfies the same recurrence relations but with different initial values.
The following theorem summarizes the results about the complexity function for uβ when β is a

quadratic Parry number. The statement concerning non-simple Parry numbers follows from the above
considerations; the part for simple Parry numbers can be derived from the general theorem proved in [11].

Theorem 18 Let β be a quadratic Parry number. Then the complexityC(n) of the infinite worduβ

satisfies

C(n + 1) − C(n) =

{
1, if Uk−1 < n 6 Vk for somek ∈ N ,

2, if Vk < n 6 Uk for somek ∈ N ,

where(Uk)k∈N0
and(Vk)k∈N0

are integer sequences defined by the recurrences

Uk+2 = q Uk+1 − r Uk + 2q−3r−1 , with U0 = −1, U1 = q − 2 ,

Vk+2 = q Vk+1 − r Vk + 2q−3r−1 , with V0 = −1, V1 = q − r − 1 ,

if β2 = qβ − r, for q, r ∈ N, q > r + 2, and

Uk+2 = q Uk+1 + rUk + 2q , with U0 = 1 − r−1, U1 = q + r − 1 ,

Vk+2 = q Vk+1 + r Vk + 2q , with V0 = 0, V1 = q ,

if β2 = qβ + r, for q, r ∈ N, q > r.

Note that the sequences(Uk)k∈N0
and(Vk)k∈N0

are formally defined even in the unitary caser = 1,
but then they coincide and the first difference of complexityis constantly equal to 1, whenceC(n) = n+1
for n ∈ N. On the other hand, ifβ is not a unit, then the above theorem implies thatC(n) is not a linear
function.

In order to characterize Parry numbersβ for which uβ is a Sturmian word, it suffices to realize that
C(1) = 2 implies thatβ is a quadratic integer. Thus we have the following corollary.

Corollary 19 The infinite worduβ associated with a Parry numberβ is Sturmian if and only ifβ is a
quadratic Pisot unit.
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8 Open problems and one more example
1) We have described the infinite left special branches only forthose Parry numbersβ such that in
dβ(1) = t1 · · · tm(tm+1 · · · tm+p)

ω all coefficients are positive. Under such assumptions and ifp > 2,
the infinite worduβ has a unique infinite left special branch. The situation is quite different if we allow that
some of the coefficientsti vanish. In [11] we consider the Pisot numberβ with dβ(1) = 2(01)ω, which
has two distinct infinite left special branches. The complexity in this case is equal toC(n) = 2n + 1.

2) The studied infinite wordsuβ are invariant under a primitive substitution and thereforehave sublinear
complexityC(n). From the result of Cassaigne [6] it follows that the first difference∆C(n) is bounded
from above by a constant. All our computer experiments show that the first difference of complexity ofuβ

for a Parry numberβ takes at most two values. More precisely, denote#A the cardinality of the alphabet
of uβ.

Conjecture 20 For all n in N

#A− 1 6 ∆C(n) 6 #A.

Let us mention the results and examples which support this conjecture.

• In [11] it is shown that fordβ(1) = t1t2 · · · tm satisfyingt1 > max{t2, . . . , tm−1} or t1 = t2 =
· · · = tm−1 the conjecture holds true.

• The relationdβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω implies thatβ is a root of the polynomial

(xp − 1)(xm − t1x
m−1 − t2x

m−2 − · · · − tm)−

− tm+1x
p−1 − tm+2x

p−2 − · · · − tm+p−1x − tm+p .
(24)

If this polynomial is irreducible,i.e., β is an algebraic integer of degreem+p, we can use the result
of Tijdeman [20], which implies that

∆C(n) > m + p − 1 = #A− 1 .

Let us mention that for many non-simple Parry numbersβ the polynomial (24) is indeed irreducible.

• Whendβ(1) = t1 · · · tm(tm+1)
ω andti > 0 for all i, Theorem 13 implies that∆C(n) > m =

#A− 1. If moreoverm = 1, then according to Theorem 18 we have∆C(n) 6 #A.

• Most interesting is the case whendβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω with p > 2. The alphabet of

the infinite worduβ isA = {0, 1, . . . , m + p− 1}, while Theorem 10 implies only∆C(n) > p− 1
instead of expectedm + p− 1. The remaining contribution to the first difference of complexity can
thus be obtained uniquely by maximal left special factors.

Example 1 For illustration, let us study the structure of left specialfactors of the infinite worduβ with
dβ(1) = 543(12)ω. Suchβ is a root of the irreducible polynomialx5 − 5x4 − 5x3 − 3x2 + 3x + 1. For
the study of the complexity of the infinite worduβ we have used the computer program [15]. The infinite
worduβ over the alphabetA = {0, 1, 2, 3, 4} is the fixed point of the substitution

ϕ(0) = 051, ϕ(1) = 042, ϕ(2) = 033, ϕ(0) = 04, ϕ(0) = 023 .
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Although according to Theorem 10 the infinite worduβ is an infinite left special branch with extension
{3, 4}, some prefixes ofuβ have larger extension, namely

the prefix ofuβ of lengthn 6 4 has the extension{0, 1, 2, 3, 4},
the prefix ofuβ of length5 6 n 6 28 has the extension{1, 2, 3, 4},
the prefix ofuβ of length29 6 n 6 167 has the extension{2, 3, 4},
all prefixes ofuβ longer than 167 are left special factors with extension only{3, 4}.

Figure 1 shows schematically the tree of left special factors ofuβ . The cardinality of the extensions of
the factors of given length is marked by the thickness of the lines.
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Fig. 1: Tree of left special factors of the infinite worduβ with dβ(1) = 543(12)ω

Let us denote byU (1) the prefix ofuβ of length4, by U (2) the prefix ofuβ of length28, and byU (3)

the prefix ofuβ of length167. It is easy to see that

U (1) = 04 , ext(U (1)) = {0, 1, 2, 3, 4} ,
U (2) = ϕ(U (1))04 , ext(U (2)) = {1, 2, 3, 4} ,

U (3) = ϕ(U (2))03 , ext(U (3)) = {2, 3, 4} .

The first maximal left special factor is

U (4) = 023ϕ(U (3))0 , with ext(U (4)) = {0, 1} .

This factor is of length974 and the longest common prefix ofU (4) anduβ is 02. Therefore in Figure 1
the broken line corresponding tou(4) and the half-line corresponding touβ have a common segment of
length2.

It can be shown that every other maximal left special factor can be obtained by the recurrence

U (n) = ϕ(U (n−1))0sn , where sn =

{
1, if n is even,
2, if n is odd.
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Moreover, for alln the extension satisfies#ext(U (n)) = 2. The lengths ofU (n) for n = 5, 6, 7 and of
the common prefixes ofU (n) anduβ are given in Figure 1.

Let us mention that even the factorsU (1), U (2), U (3) can be in some sense understood as maximal left
special factors. For although they can be extended to the right by a lettera ∈ A in such a way thatU (i)a
is a left special factor, however for all sucha, we have#ext(U (i)) > #ext(U (i)a) > 2.

Every left special factorw of lengthn > 167 has in its extension only 2 letters,i.e., every such left
special factor contributes to the first difference of complexity by 1. ∆C(n) is thus equal to the number of
left special factors of lengthn. The bottom line in Figure 1 shows the increment of complexity which is
equal to 4 or 5 for everyn, which again supports Conjecture 20.

Notice that in this example the structure of maximal left special factors is essentially different from that
of uβ for quadratic non-simple Parry numbersβ, see Section 7. Here the inequalities (23) say that the
common prefix ofuβ andU (n) is longer than the previous maximal left special factorU (n−1), i.e., the
maximal left special factors do not overlap, unlike to our example.

3) As the last open problem let us mention the question for whichβ the infinite worduβ has other left
special factors than prefixes of an infinite left special branch. This question is discussed in [11] for simple
Parry numbersβ, i.e., for dβ(1) = t1 · · · tm. It is shown that iftm > 2, thenuβ has infinitely many
maximal left special factors.

The conditiontm > 2 is however not necessary for existence of maximal left special factors. For
example, the infinite worduβ corresponding to the simple Parry numberβ such thatdβ(1) = 101000101
has a maximal left special factor [3]. In [11] it is shown thatif t1 > max{t2, . . . , tm−1} or t1 = t2 =
· · · = tm−1, thenuβ has a maximal left special factor if and only iftm > 2.

For non-simple Parry numbersβ the question of existence of maximal left special factors has been
treated only in the quadratic case.
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