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Abstract

We consider numeration systems where the base is a negative integer, or a complex
number which is a root of a negative integer. We give parallel algorithms for addition
in these numeration systems, from which we derive on-line algorithms realized by finite
automata. A general construction relating addition in base # and addition in base g™ is
given. Results on addition in base § = /b, where b is a relative integer, follow. We also
show that addition in base the golden ratio is computable by an on-line finite automaton,
but is not parallelizable.

1 Introduction

A positional numeration system is given by a base and by a set of digits. In the most usual
numeration systems, the base is an integer b > 2 and the digit set is {0,...,6—1}. In order
to represent complex numbers without separating the real and the imaginary part, one can
use a complex base. For instance, it is known that every complex number can be expressed
with base iv/2 and digit set {0,1} (see [20]). For example, —3/2 — iv/2/2 = (101 - 1), /3
Recently there have been several contributions to complex arithmetic ([18, 10], [26], [15], [2],
31]).

Among the complex bases 3 that have been considered so far, the most studied ones have
the property that there is a power of 3 which is an integer, namely for base § = iv/b, where
b > 2 is an integer, 3? = —b, and for base 8 = -1+, * = —4 ([19], [28]). In those systems,
the digits are integers. We might also mention that some authors have considered numeration
systems with complex digits. For instance, every complex number has a representation in
base 2 using digit set {0,1,¢,14 ¢} [27]. Herreros [18] has studied the representation of
complex numbers using base 2 and digit set {0,1,(,...,(°}, where (¢ = 1. Robert [30] has
considered base iv/3 and digit set {0, 1, (14 iv/3)/2}.

In this work, we do not consider the question of the representability of the complex
plane, but we focus on the addition process. Addition of two numbers in the classical b-ary
numeration system, where b is an integer > 2, has a linear time complexity. In order to save
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time, several solutions have been proposed. A celebrated one is the Avizienis signed-digit
representation [3], which consists of changing the digit set. Instead of taking digits from the
canonical digit set {0,...,b— 1}, they are taken from a balanced set of the form {a,...,a},
where a denotes the digit —a, a being an integer such that 6/2 < a < b— 1 (b has to be
> 3). Such a numeration system is redundant, that is to say, some numbers may have several
representations. This property allows one to perform addition in constant time in parallel,
because there is a limited carry propagation. A similar algorithm for base 2 has been devised
by Chow and Robertson [8] using digit set {1,0,1}. Here addition is realized in parallel with
a window of size 3. In terms of automata theory, such functions are called local : a function
is p-local if the value of an output digit is determined through a window of size p.

On-line arithmetic is the performing of arithmetic operations in Most Significant Digit
First (MSDF) mode (that is, from left to right), digit serially after a certain latency delay
[12]. This allows the pipelining of different operations such as addition, multiplication and
division. It is also appropriate for the processing of real numbers having infinite expansions.
It is well known that when multiplying two real numbers, only the left part of the result
is significant. On-line multiplication uses parallel addition, and this allows one to have a
linear time algorithm for multiplication. It is then necessary to use a redundant numeration
system (see [32]).

In this paper, the finite state automata is our model of computability. A function is
computable by a finite automaton if it needs only a finite auxiliary storage memory, inde-
pendent of the size of the data. In that setting, one knows that addition of two integers
in the classical b-ary system is computable by a finite automaton but that squaring is not
(see [11]). Actually, the natural finite automaton one designs to perform addition processes
numbers in the Least Significant Digit First (LSDF) mode (that is, from right to left), and
is called a right subsequential automaton. Moreover, one input digit gives one output digit.

On-line finite automata have been introduced by Muller [25]. They are sequential finite
automata processing data in MSDF mode, and such that one input digit gives one output
digit, after a certain latency delay. They are a special kind of left subsequential automata.
The Avizienis and the Chow-Robertson algorithms for parallel addition in integral base
lead to the construction of on-line finite automaton for addition (see [25], [16]). There is a
general result which says that if a function is p-local, then it is computable by an on-line
finite automaton with delay p — 1. However, in this paper, we will always give an explicit
construction of an on-line finite automaton realizing a local function, having less states than
the general one.

Let us recall a result we shall use latter on: a function is said to have a bounded delay if
it is realized by a finite automaton such that on every loop, the input and the output have
same length. If a function has a bounded delay and if it is left (sub)sequential, then it is

computable by an on-line finite automaton [16].

Parallel algorithms for addition in bases —2, iv/2, 2i and —1 4 i have been given in
[26]. Results on addition in bases —b, iv/b and —1 4 ¢ in connexion with automata theory
have been presented in [15]. Note that in the system defined by Herreros, addition can be
performed in parallel [18, 10], and is computable by a right subsequential finite automaton
[31]. In the Robert’s system, addition is a right subsequential function [31].

In this paper, we first consider addition in negative base, and we show that properties



similar to addition in the standard b-ary system are still satisfied. We then show how
algorithms for addition in base iv/b can be deduced from those in base —b. We give the
full constructions because they explain the general case. We then present a general result
which says that if ¢ and v are two digit set conversions, ¢ in base § and ¥ in base v = 3™,
then if ¢ is local, resp. computable by an on-line automaton, resp. letter-to-letter right
subsequential, so is ¢ (Theorem 1). Conversely, if ¢ is computable by a letter-to-letter finite
automaton so is ¢, but not on the same digit sets (Proposition 10).

From that we derive that, if b is an integer, |b] > 2, in base § = Vb, addition on

{0,...,]b] — 1} is a right subsequential function. If |b] > 3, let D = {a,...,a} where a =
||6]/2] 4+ 1. Then addition in base 3 on D is a (m+ 1)-local function and it is computable by
an on-line finite automaton with delay m. If || > 2is even, let « = [b|/2 and D' = {a, ..., a}.

Then addition in base 3 on D’ is a (2m+ 1)-local function and it is computable by an on-line
finite automaton with delay 2m. This applies in particular to base § = —1 % 1.

We then consider a base which is not a root of an integer, namely base 7, where 7 is the
golden ratio. We give the explicit on-line finite automaton with delay 3 realizing addition
in base 7 and digit set {0,1}. The same construction is valid for the Fibonacci numeration
system. Note that addition in those systems is not computable in parallel.

2 Preliminaries

2.1 Number representations

Let 3 be a real or complex number such that |3| > 1, and let A be a finite set of real or
complex digits. A S-representation of x with digits in A is a finite or a right infinite sequence
(@) k<pn With 23 € A such that z =3 2%, Tt is denoted by

(xn. . .xo .x_lx_z . ‘)ﬁ'

We will present the results for finite words, if the expansions are infinite the constructions
are similar. To perform addition in a given numeration system with base # and digit set A,
the process will always be the same: take two numbers © = x,_1-- 29 and ¥y = y,_1 - - %o
such that x = Z;é epfF, Yy = Zz;é yrB*, with z; and y; in A. In parallel, compute z, =
xp + yg. Then z; is an element of B = {c+d | c,d € A}, and z +y = Z;é 2p3%. Addition
consists of transforming the representation z,_1 ---2p of x + y on B into an equivalent one

Sp—141 - So, such that ¢ +y = Z;é"’l spfF, with s; € A.

2.2 Words and automata

Let us recall some definitions. More details can be found in [11]. An alphabet A is a finite
set. A finite sequence of elements of A is called a word, and the set of words on A is the free
monoid A*. The empty word is denoted by £. A factor of a word w is a word f such that
there exist words w’ and w” with w = w’ fw”. When w’ = ¢, f is said to be a prefiz of w, and
when w” = ¢, f is said to be a suffiz of w. The prefix (resp. suffix) is strict when it is not
equal to the entire word w. The length of a word w = wy ---w, with w; in Afor 1 < <n
is denoted by |w| and is equal to n. By w” is denoted the word obtained by concatenating
w n times to itself. The set of words of length n (resp. < n) of A* is denoted by A™ (resp.
ASH).



The set of infinite sequences or infinite words on A is denoted by AN The infinite word
vvv - - - is denoted by v“.

An automaton over A, A= (Q, A, E,I,T),is a directed graph labelled by elements of A;
(Q is the set of states, I C (Q is the set of initial states, T" C ) is the set of terminal states
and F C Q x A x @Q is the set of labelled edges. If (p,a,q) € E, we write p — ¢. The
automaton is finite if () is finite. The automaton A is deterministic if F is the graph of a
(partial) function from @ X A into @, and if there is a unique initial state. A subset H of A*
is said to be recognizable by a finite automaton if there exists a finite automaton A such that
H is equal to the set of labels of paths starting in an initial state and ending in a terminal
state. A subset K of AN is said to be recognizable by a finite automaton if there exists a
finite automaton A such that K is equal to the set of labels of infinite paths starting in an
initial state and going infinitely often through a terminal state (Biichi acceptance condition,
see [11]).

Let X and Y be two alphabets. A 2-tape automaton is an automaton over the non-free
monoid X* x Y* : A= (Q,X* xY*, E, I,T) is a directed graph the edges of which are

labelled by elements of X™ x Y*. Words of X* are referred to as input words, words of Y*

are referred to as output words. If (p,(f,g),q) € F, we write p f—/g> ¢. The automaton is

finite if the set of edges E is finite (and thus @ is finite). These finite 2-tape automata are
also known as transducers. A relation R of X* x Y™ is said to be computable by a finite
2-tape automaton if there exists a finite 2-tape automaton A such that R is equal to the set
of labels of paths starting in an initial state and ending in a terminal state. It is equivalent
to saying that R is a rational subset of X™ x Y*. A function is computable by a finite 2-tape
automaton if its graph is computable by a finite 2-tape automaton. These definitions extend
to relations and functions of infinite words as above.

A 2-tape automaton A is said to be left sequential if edges are labelled by elements
of X x Y* if the underlying input automaton obtained by taking the projection over X
of the label of every edge is deterministic and if every state is terminal (see [5]). A left
subsequential 2-tape automaton is a left sequential automaton A = (Q, X X Y*, F,{q},w),
where w is the terminal function w : ) — Y™, whose value is concatenated to the output
word corresponding to a computation in A.

A 2-tape automaton A is said to be letter-to-letter if the edges are labelled by couples of
letters, that is, by elements of X x Y.

An on-line finite automaton with delay § is a particular left subsequential automaton
(see [16]): it is composed of a transient part, in which every path of length 4 starting in the
initial state ig is of the form

. aife . axfe as/e .
W —> 8 —> > 15,

where a; € X, for 1 < ¢ < §, and the only edge arriving in a state ig, ..., 15_1 is as above,
and of a synchronous part where edges are labelled by elements of X x Y. This means that
the automaton starts reading words of length < § outputting nothing, and after that delay,
outputs serially one digit for each input digit.

The same definition works for functions of infinite words, considering infinite paths in A,
but there is no terminal function w in that case.

All the automata considered so far work implicitly from left to right, that is to say, words
are processed from left to right, but one can define similarly right automata processing words
from right to left.



2.3 Local functions and on-line automata

The notion of local function comes from symbolic dynamics (see [4], [23]), where it is defined
on biinfinite words and often called a sliding block code. The definition on infinite words is
the following one. A function ¢ : XN - vN s said to be p-local if there exist a positive
integer p, a function ® from X? to Y such that if 2 = (2;);>0 € XN and y = (yi)i>o € YN7
then y = ¢(z) if and only if for every ¢ > 0, y; = ®(2; - - - 2;4p—1). This means that the image
of by ¢ is obtained through a sliding window of length p. The following result is folklore.

Fact 1 . A p-local function is computable by an on-line finite automaton with delay p — 1.

Proof. Let the set of states be ) = X<P~1 and the initial state be . Edges are of the form:
foraEX,seteSa—/sﬂz7 fordy---d; € Q@ with 1 <i<p—2setd;---d; a—/idl---dia, and for
di-dyy €Q,set dy-dy_y ML gy dal n

In this paper the constructions of on-line automata associated with p-local functions
we give are different. Using the redundancy of representations, we can construct on-line
automata with the same delay p — 1, but having less states.

It is known that the underlying input automaton of any sequential automaton realizing
a p-local function is a p-local automaton, that is, the arrival state of any path of length p is
entirely determined by the label of the path (see [4]).

One can define local functions of finite words (see [6], [33]). A function ¢ : X* — Y~
is said to be p-local if there exist nonnegative integer [ and r such that r + 7+ 1 = p, and
a function ® from X? to Y such thatif 2 = 2y---2, € X*and y = y1---y, € Y*, then
y = ¢(x) if and only if for every 1 < ¢ < n, y; = ®(z;_;---x44,), with the convention that,
if at the borders x;_, ..., x_1 are not defined, ®(zy---2;4,.) = ®(e---cap - 244,), and
similarly, if #;41,..., 21, are not defined, ®(z;_;---2;) = ®(2;_y---2;6---2). A p-local
function can be computed in parallel with a window of length p. It is both left and right
subsequential (see [33]).

Note that, when dealing with representation of numbers, one can always assume that a
representation is prefixed or suffixed by an adequate number of zeros. In the sequel, we will
always consider functions such that input and output have the same length.

2.4 Standard b-ary number system

Let us recall some results on addition base b, where b is an integer > 2.

ProposITION 1 . 1) Addition in base 3 = b, b > 2, with digits in A ={0,...,b— 1}, is a
letter-to-letter right subsequential function.

2) Suppose that b > 3, and let D = {a,...,a} where a = |b/2| 4+ 1. Then base b addition on
D is a 2-local function, and is computable by an on-line finite automaton with delay 1.

3) Suppose that b = 2a, a being an integer > 1, and let D =A{a,...,a}. Then base b addition
on D is a 3-local function, and is computable by an on-line finite automaton with delay 2.

1) The fact that addition is a right subsequential function can be found in [11].

2) That addition is a 2-local function is due to Avizienis [3]. For the on-line finite automaton
realizing addition in that case, see [25].

3) That addition for b = 2 is a 3-local function is in Chow and Robertson [8]. For the
construction of the on-line automaton, see [25] and [16].



3 Negative base numeration systems

Let § = —b, where b is an integer > 2. It is well known (see [20, 21], [24]) that any real
number can be represented without a sign in base —b with digits from the canonical digit
set A=14{0,...,b— 1}. Integers have a unique representation of the form dj - - -dy. We show
that properties satisfied by base b addition are also valid for base —b.

ProPOSITION 2 . Addition in base f = —b, b > 2, with digits in A = {0,...,b— 1}, is a
letter-to-letter right subsequential function.

Proof. As explained above in Section 2.1, we have to convert representations over B =
{0,...,2b—2} into equivalent representations over A. Number representations are processed
from right to left. We construct a right subsequential automaton A = (Q, B x A, F, {qo},w)
as follows. The set of states is Q = {1,0,1}. The name of a state indicates the value of the
carry. The initial state is ¢o = 0.

Let ¢ be in () and let z be in B. By the Euclidean division of ¢ + z by § = —b, there

exist unique s € A and ¢ such that ¢ + 2 = —b¢’ + s. Since —1 < ¢+ 2z < 2b — 1,
—2<¢ =(s=(g+2))/b<1and thus ¢ € (). Hence one defines an edge
¢y € E = qg+z2=0¢+s (1)

The terminal function w is defined by w(0) = ¢, w(1) =1 and w(1) = 1(b— 1).
Let z,_1- -2 € B* and N = Zz;é zkﬁk. Starting in initial state ¢o = 0, and reading
from right to left, we take the unique path

0720% g M8 gy Y g

Since, for 0 < k < n—1, g +2r = Bqryr +ar, we get N = ag+a1 3+ -+ a,_1 8" +¢,5".
Thus the S-representation of N is w(q,)a,—1---ag € A*. [

ExamMPrLE 1 . Let 3 = =2 and A = {0,1}. Here is the right subsequential automaton
realizing addition in this system.!

0/0,1/1

Let z = 11001, y = 11101, thus x +y = 22102. In the automaton, from right to left,

020 7Y M8 g2 g 28

and w(1) = 11, thus x +y = 22102 = 1101010. o

I thank Paul Gastin for his set of macros Autograph.



REMARK 1 . Addition in base —b with digits in A is not left subsequential.
Proof. Let us consider b =2 and A = {0,1}. Let d be the left-distance defined by
Av,w) = o] + [w] = 2| v A w |

where v A w denotes the longest common prefix to v and w.

Let v = (01)*02 and w = (01)"*!. Then d(v,w) = 4. The conversion of v on A is
v’ = 1(10)"*!, and that of w is v’ = w. We have d(v’,w’) = 4n + 5, thus the left-distance
between v’ and w’ becomes unbounded when n goes to infinity, as the distance between v and
w is bounded. There is a result in [9] which says that, if a function ¢ is left subsequential,
then it has the following property: Vk > 0, 3K > 0, d(v,w) < k = d(p(v), ¢(w)) < K. It
implies that addition on A cannot be realized by a left subsequential 2-tape automaton. m

We introduce another set of digits in order to obtain a redundant numeration system,
analogous to the Avizienis signed-digit representation [3]. Let @ such that 6/2 <a <b -1
and let D = {a,...,a}. Then every real number has a representation in base —b with digits
in D. The system is redundant because |D| = 2a+1 > b. We consider the smallest balanced
digit sets allowing one to perform addition in parallel.

ProOPOSITION 3 . Let § = —b, where b is an integer > 3, and let D = {a,...,a} where
a=|b/2] + 1. Then base —b addition is a 2-local function. Addition is computable by an

on-line finite automaton with delay 1.

Proof. 1) Let 2 +y = Z;é 2 6%, with z, € C' = {(2a),...,(2a)}. Write z; on the form
2, = Bcpyy + rg, with the following rules: if @ < zp < 2a, let cpp1 = 1 and rp = 25, — b; if
—2a < zp < —a, let cpyy = Land rp, = b+ zp. If |2x] <a—1, let ¢z =0 and r; = 2. Put
sp=rp+cfor0<k<n-—1and s, =c,. Thusx—l—yzzzzoskﬁk.

Ifa<z <2a,thena—-b<rpy<2a—banda—-b—1<s;<2a—b+1. Since a <b—1,
s < a, and since 2a < b+ 1, s > —a, hence sp € D. The case —2a < z; < —a is symmetric,
and the case |z;| < @ — 1 is trivial. Thus s; € D for 0 < k& < n. Hence si is a function of

zr2p—1, and addition is 2-local.

2) To avoid overflow, we assume that input words begin with a 0. Let z = 2z, € C
and let p(z) = (¢,r) = (¢kt1,7%) as determined in the above algorithm. We construct an
on-line automaton £ = (Q,C X (D Ue¢), E,{q},w) with delay 1 realizing addition. Let

K ={-a+1,...,a—1}. The set of states of the automaton is @ = {¢} U K, and the initial

state is gg = €. Synchronous edges are defined by: for any ¢ € K and for any z € C, ¢ Z/c—+>q r

in F, with (¢,7) = p(z). Since |¢| < 1land |¢| <a—1,c+q € D and r € K. There is a
transient edge ¢ 0—/6> 0.
All edges of L satisfy the following condition

qﬂrEE@ﬁq—l—z:ﬁd—l—r, (2)

that is to say, the two words ¢z and dr have the same numerical value in base 3. The
terminal function is defined by w(q) = ¢ for any ¢ € Q.

Let z,_1- 290 € (" and N = Zz;é 2p3%. Starting in initial state ¢y = &, and reading
from left to right, we take the unique path

0/ zZn_1/an Zn—2/an_1 z0 /a1

e—0 — g  —  iQn1 — Gn.



Let w(g,) = ag. By (2) we get Zz;é 2 = S0 _gap*, with ap € D, and addition is
realized by L.

Note that the automaton £ has 2a states, compare with the on-line automaton con-
structed in Fact 1 which has |C|+ 1 = 4a + 2 states. ]

EXaAMPLE 2 . Let 3 = =3 and let D = {2,...,2}. Below is the on-line finite automaton
with delay 1 realizing addition in this system.

0/0,3/1,3/1 1/1,2/2,4/0

Take x = 0202 and y = 0212. Then x + y = 0414. We have in the automaton

Vg M YA A

and w(1) =1, thus x + y = 1101. o

In the case that § = —2, the previous algorithm does not apply. We give an algorithm for
that case as well as for any even b, which is analogous to the Chow and Robertson algorithm
for base 2.

PROPOSITION 4 . Let = —b, where b = 2a, a being an integer > 1, and let D = {a, ... ,a}.
Then base —b addition is a 3-local function and is computable by an on-line finite automaton
with delay 2.

Proof. 1) Let z +y = Z;é 23", with 2, € C = {b,---,b}, and let 2, = Bcry1 + 11 be
defined by:

Ifa+1 <z <b let ey =1 and rp, = 2 —b; if —b < 2, < —a—1, let ¢pyy = 1 and
rr = b+ z.

If 2 = a and if z;_; < 0 then let c;y1 = 1 and rp = @, else let ¢4y = 0 and ry = a.

If zz = —a and if zz_1 > 0 then let cx11 = 1 and ri = a, else let cx1q = 0 and ry = —a.

If |zx] < a—1,let cgpy = 0 and rp = 2.

Let sp = rp+cp for 0 <k <n—1and s, =¢,. Clearly 2 +y=>]_ skf*. We have to
show that sy € D. When a+ 1 < |z;| < b, whatever the value of z;_; is, we get |rg| < a—1
and |ex| < 1, thus |sg| < a.

If zz = a, and if zz_; < 0 then rp = —a and ¢; = 0 or 1, thus sy = —a or —a + 1 and thus



belongs to D. If zx = @ and z;_y > 0, then ry = a and ¢, = —1 or 0, and so sy =a — 1 or
a. The case zp = —a is symmetric.

If |z] <a—1, rp =z and |eg| < 1, thus s € D. Since si is a function of zpzr_12p—2,
addition is a 3-local function.

2) We construct an on-line finite automaton £ = (Q,C x (D U¢), F,{q},w) with delay
2 realizing addition. Input words begin with a 0. If z = z; € C'is such that a + 1 < |z| < b
or |zx] < a— 1, we define p(z) = (¢,7) = (ck41,7k) as in the above algorithm. If |z| = @ we
put p(z) = (¢,r) = (0, 2).

Let K ={(d,e) e Dx D |if d = a then e > 0 and if d = —a then e < 0} \ {(1,a), (1,a)}.
These two couples are removed because they are equivalent to (0, @) and (0, a) respectively,
since b = 2a. The set of states of the automaton is @) = {(s,¢), (¢,0)} U K. The initial state
is go = (g,£). The synchronous part of £ is defined this way: let (d,e) € K.

o If [¢| < a—1, then for each z € C, there is an edge (d, €) A (c+e,r) where (¢, 1) = p(2).
Since le|] < a—1,|c+e| <a. Ifc+e=a,thene =a—1and ¢ =1, thus r > 0, and
(c+e,r) € K (the symmetric case is similar).

elf e =aand z <0, put (d,a) gl (¢ —a,r) where (¢,r) = p(z). Since z < 0, ¢ =0 or
1, and ¢ — a € D. We know that d # —a, thus d — 1 € D. If ¢ = 0, then r = z < 0, thus
(c—a,r) € K.

e lfe=aand z >0, put (d,a) 4 (c+ a,r) where (¢,r) = p(2). In that case ¢ = 0 or —1,
and thus c+a € D. If ¢=0 then r =z > 0, thus (¢ +a,r) € K.

e The case e = —a is symmetric: if z > 0, put (d, a) ghas (c+ a,r) where (c,r) = p(2). If
z <0, put (d,a) A (¢ —a,r) where (c,r) = p(2).

The transient part of £ is defined by :

e (g,¢) 0—/6> (£,0), and for z € C, there is an edge (<, 0) Z—/6> (¢,r) where (¢,r) = p(z).
Hence, for any edge in £

(d, ) 25 (e.g) € B <= B2+ Bf +2= e+ Be+yg (3)

i.e. the two words dfz and zeg have the same numerical value in base 5. The terminal
function is defined by w((d,e)) = de for (d,e) € Q.

Let z,_1-- 29 € C* and N = Zz;é zp*. Starting in initial state go = (¢,¢), we take
the unique path

(575) 0—/6> (87 0) Z’i{E (dh fl) Zni/;”" e (dn—h fn—l) ZO_/‘1>2 (dn7 fn)

Let w((d,, fn)) = a1ao. By (3), Z;é 238 = 7o arBF, with a € D, and addition in
base —b with digit set D is realized by the on-line automaton £, with 4a? 4+ 1 states. The
construction of Fact 1 gives an automaton with 16a2 + 12a + 3 states. [ ]

COROLLARY 1 . The digit set conversion in base —b between numbers written with digits
in the canonical digit set A = {0,...,b — 1} into their representation with digits in D =
{a,...,a}, with a=[b/2] + 1, or b = 2a, is computable in parallel in constant time.

Proof. Since A C C', the result follows. [

REMARK 2 . The inverse conversion, from D to A, cannot be computed on-line, but is right
subsequential.



In the same spirit, in [1] it is shown that conversion between numbers written in base
b, b integer > 2, with digit set A = {0,...,b— 1} into their representation in base —b with
the same digit set is right subsequential. We now show how to convert directly a classical
expansion in base b with digit set A = {0,...,b — 1} into an equivalent representation in
base —b and digit set D = {a,...,a}, where a + 1 < b < 2a.

PRrOPOSITION 5 . Let b be an integer > 2. The conversion from base b and digit set
A=H0,...,b—1} into base —b and digit set D = {a,...,a}, with b/2 < a < b—1, is a right

subsequential function.

Proof. The set of states of the automaton is @Q = {£,0,1,1}. The initial state is . Let
z € A. Edges are defined by:
zfz=b -

ifoﬁZSa,letez—/z>0;ifa—|—1§z§b_171et€ 50
if0<z<alet 07 eiifat1<s<b—1,let 025 1;

if0<z<a—1,let 1Z/Z—+>10;ifa§z§b—1,let 1Z/Z;b>+1 1;

if0§z§a—1,let12/1;15;ifa§z§b—1,letiz/i;l 1.

The terminal function w is given by w(e) = w(0) = £, w(l) = 1, and w(1) = 1. It is

straightforward to check that, since a + 1 < b < 2a, the output is in D. [
Note that the inverse conversion is also right subsequential.

4 Base ﬁ:i\/g

The interest of choosing a complex base and integral digits to represent complex numbers
is that computations are handled in a compact way, as when using an integral base for real
number computations.

Let 8 = iv/b, where b is an integer > 2. Any complex number is representable in base 3
with digits in the canonical digit set A = {0,...,b — 1} (see [20], [19], [17]). If b = % is a
square then every Gaussian integer has a unique finite representation of the form ay - - - ag-a_q,
a; € A.

Let j be an integer > 0, possibly infinite, and let n > 0. Since 3? = —b, we have

(azn cecapa—y ‘a—2j)ﬁ = (a2na2n—2 ceclpr_g - 'a—2j)—b+i\/5(a2n—1a2n—3 cecdyta—y e 'a—2j+1)—b-

Thus, if 2z = 2+ € C, z and y in R, the g-representation of z can be obtained by
intertwinning the —b-representation of & and the —b-representation of y/\/l;

Base 3 = —iV/b satisfies the same properties. We treat only the case § = iv/b. Most
studied cases are 3 = 2i and A = {0,..., 3}, strongly related to base —4, and = iy/2 and
A ={0,1} ([20, 21], [26], [15]).

We now show how properties satisfied by base —b addition can be extended to base iv/b.

PROPOSITION 6 . Addition in base 3 = iv/b, b > 2, with digits in A = {0,...,b—1} is a
letter-to-letter right subsequential function.

Proof. Since 3? = —b, the automaton will be deduced from the right subsequential au-
tomaton A = (Q, B x A, F, {qo},w) realizing addition in base —b (Proposition 2).
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Let B=(S,B x A, F,{so}, o) be defined as follows. The set of states is S = @ x @ and the
initial state is sg = (¢o, qo). The set of edges I is defined by
z[s z[s
F={(p,g) — (d.p)led—d €L peQ}

The terminal function in a state (p, ¢) is defined by the S-expansion of Fp + ¢, that is
to say, 0((0,0)) = =, #((0,1)) = 1, o((1,0)) = 10, o((1,1)) = 11, o((1,1)) = 11(b - 1),
o((1,1)) =10(b— 1)1, o((1,1)) = 11(b— 1) (b — 1).

The automaton B is right subsequential (and letter-to-letter). Take a word zg,—1 -+ -2 €
B* and let Z = Zzi_ol 2,3%. There is a path in B

Zo/ao Zl/al 2’2/(12

(90, 90) — (q1,90) — (P, 1) — + (Pn=1:Gn-1) Z2n_i>(12n_2(

) Z2n—1_/a>2n—1 (

Gny Pn—1 pn7Qn)

if and only if there is in A a path

Zo/ao 2’2/(12 Z4/a4 Z2n—2/a2n—2

o — 1 —> 2 —= " Q-1 — an

and a path

Zl/al ZS/ai’) Z5/a5 Z2n—1/a2n—1

o — P1 —> P2 — " Pn-1 — Pn-

Since ¢,a9,_209,_4 - - G209 is the —b-expansion of Zz;é zzk(—b)k and ppag,_1G9,_3 - - - azay
is the —b-expansion of Zz;é zokr1(—0)F, and o ((pn, @) = BPn + o, we get that
Prlnlon—102,_2 - - @109 is the f-expansion of Z. Thus the right subsequential automaton B
realizes addition in base g = ivb. ]

Addition in base iv/b and digit set A cannot be computed on-line: consider (0001)"0002
and (0001)"0001 (see Remark 1). Similarly to negative base —b, we consider digit sets for
which addition can be parallelizable.

PROPOSITION 7 . Let 3 = iv/b, where b is an integer > 3, let a = |b/2] + 1 and let
D ={a,---,a}. Then base = /b addition is a 3-local function. Addition is computable
by an on-line finite automaton with delay 2.

Proof. 1) Let z; € C' = {(2a),---, (2a)} and write 2, = 3%cjy9 + rp = (=b)cppz + 1k, as in
Proposition 3:
if a <z, <2a,let cpro =1and ry = 2z, — b, if —2a < 2 < —a, let cpro = 1 and rp = b+ 2y,
if |zi]| <a—1,let ¢pye =0 and rp = zg. In any case, |¢x| < 1 and |rg] <b—a <a-—1.

Let sp =rp+cpfor 0 <k <n—-1,s, =cn Spt1 = Cnt1, and S,12 = ¢p12. We have
x4+y= Z?:"'Oz skfF with |sg| < a. Since sg is a function of z; and zp_s, addition is 3-local.

2) To avoid overflow, input words begin with 00. Recall that the on-line automaton
L=(KUe,Cx (DUe), E, {e},w), where K = {—a+1,...,a— 1}, realizes addition in base
—b with digit set D, see Proposition 3.

We construct an on-line automaton with delay 2, M = (S,C x (DUz¢), F,{so},0) as
follows. Let the set of states be S = {(g,¢), (¢,0)} U (K x K), the initial state be 5o = (g, ¢).
The synchronous transitions of M are defined this way: for any p and ¢ in K,

(q,p)z/ﬂc (p,r) € F — qz/q—+>Cr€E.
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The transient part is (¢, ) or, (£,0) and (¢,0) or, (0,0). The terminal function is o (¢, p) =
gp for (q,p) € S. Note that for any edge in M

(¢,p) == AN (¢, p)eEF < Bq+Pp+z=pc+8d+p (4)

i.e. the two words gpz and z¢'p’ have the same numerical value in base (3.
Let z9,_1 20 € ™ and Z = 22” L 2pB%. There is a path in M

0 Zon aon Zon—2/aon z1/a 2z /a
(e,9) 25 (2,00 25 (0,0) " LE (0,00) AT ety tnet) LS Gty o) L (s )

if and only if there is in £ a path

0/e 0 Zon—2/a2n @ Zon—4/02n_2 o z0 /a2

€ dn—1 — dn
and a path
0 n— n n— n—
5&022 1—/a>2 +1p1 2 i>UL2 1---pn_1 Zl—/af’pn.

Letting ag = ¢, and a; = p,,, we have that 7'~/ zzk( byF = S0 azk(—b)%,
Zk:o Zoky1(—b ) =Y r-0 a2k+1(—b) and thus the representation of Z on the alphabet D is

A2n+4202n41 " - A140. u

We now consider the case where b is even.

ProposITION 8 . Let 3 = ivb, where b > 2 is even, let a = b/2 and let D = {a,...,a}.
Then base f = 1v/b addition is a b-local function. Addition is computable by an on-line finite

automaton with delay 4.

Proof. 1) For z; € C' = {=b,...,b} let z;, = %cpi2+rr = (—=b)crr2+7%, as in Proposition 4:
if a4+ 1<z, <2a,let cgpa =1 and rp = 2z, — b,

if —2a <zp < —a—1,let cgy2 =1 and rp =b+ 2,

if 2, = a and if zp_9 < 0, let cpy0 = 1 and rp = @ else let cpyo = 0 and 7, = a,

if 2z = a and if zz_2 > 0, let cg42 = 1 and rip = a else let ¢xy9 = 0 and rip = a,

if |zi]| <a—1,let cgpye =0 and ry = zg.

Let sp =rp+cpfor0 < k<n-1,s8, =c,, and s,41 = cyy1. Then 2 +y = Z;H'Ol skﬁk.
That si belongs to D is proved in Proposition 4. Since s is a function of zg, zp_o and zp_4,

addition is a 5-local function.

2) Consider words with digits in C', beginning with 00. Let £ = (Q,C'x(DUe), F,{(¢,¢)},w
be the on-line finite automaton with delay 2 realizing addition on D in base —b with
K ={(dye) € Dx D |if d = a then e > 0 and if d = —a then e < 0} \ {(1,0a),(1,a)}
and @ = {(s,¢),(¢,0) } U K (Proposition 4). We construct an on-line automaton with delay
4, M= (S,Cx (DUe), F,{so},0) as follows.

Let us define the shuffle of two words by (d, f) wi (e,g9) = (d, e, f,g). Note that this is
not the general shuffle product, but the internal shuffle product (see [11]). Let K s K =
{(d, f)w(e,9) | (d, f) € K, (e,9) € K}. Let the set of states be S = {(g,2) i (g,2); (£,€) L
(£,0);(2,0) L (£,0) U {(,0) wu (¢, 7) | (¢,7) € {=1,0,1} x D} U (K wu K) and the initial
state be s = (£,¢) wi (¢,€). The synchronous transitions of M are defined this way: let
(d, f) () (e,g) e K K,

(d, ) (e, 9) LS (e,q) o (d, f) € F = (d, ) L5 (@, f) e B
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The transient part of M is: (g,¢) (e, ¢) or, (e,e)(e,0) and (g,¢) (e, 0) or, (£,0) L
(,0). For z € C, let p(z) = (¢,r) € {—1,0,1} X D such that z = 3%c + r. We define edges
(£,0) L (g,0) 2l (£,0) L (c,r) where (¢,r) = p(z); for 2/ € C, (£,0) (e, r) 71 (e,r) L
(c’,r") where (¢, 1) = p(%').

Note that for any edge in M

(d ) ws(e.g) D5 (@ ) (e g) € F = Bratieti®f+0g+z = FlatBPd+ 5 +5 +o'
(5)
i.e. the two words defgz and xzd'e’ f'¢’ have the same numerical value in base 3.
The terminal function is o((d, f) i (e, g)) = defg for (d, f) (e, g) € S.
Let z9,_1 20 € ™ and Z = ZZi_ol z,3%. There is a path in M

(e 8w () Y5 (2, 0) (2,00 5 (2,0) w (2, 0) 22N (2,0) wo (dy, fr) 2n°

(di, fi) o (er, 91) il (e1,91) v (da, f2) L L

(en—hgn—l) Lo (dn—h fn—l) Zl—/a;) (dn—h fn—l) L (envgn) ZO—/a;l (envgn) L (dn7 fn)

if and only if there is in £ a path

(e, 8) 25 (2,0) 22" (dy, 1) R (o foet) S (o, )

and a path

Z2n—3/a2n+1 Zl/a5

0/e Zom—1/€
(2,2) 25 (2,0) 22" (er, 1) ety gnet) L5 (e ).

Letting as = e,, as = d,, a1 = ¢, and ay = f,, we have that Zz;é zzk(—b)k =
> r—o agk(—b)k, Zz;é zzk_H(—b)k =Y 7r0 a2k+1(—b)k and thus the representation of Z on
the alphabet D is ag,410a9, - - -aq1ap. [ ]

COROLLARY 2 . The digit set conversion in base § = iv/b between numbers written with
digits in the canonical digit set A = {0,...,b — 1} into their representation with digits in
D=A{a,...,a}, whith a = [b/2| + 1, or b= 2a, is computable in parallel in constant time.

REMARK 3 . The inverse conversion, from D to A cannot be computed on-line, but it is a

right subsequential function.

5 A generalization

We now consider two complex bases 3 and ~ with the property that, for some natural
m >0, f™ =~. Let @ = (Zpm_1Znm—2 - 20)s be a representation in base 3 on a certain
alphabet X of digits of a number Z = 3 cpcpm_y 10" (it is always possible to suppose
that representations have length a multiple of m by padding with some zeroes). Let, for 0 <
j<m-1, 20 = (% pk+j)o<k<n—1- Then obviously z =, (w(m_l),x(m_Q), .. .,x(l),x(o))
where L, denotes the m-shuffle? of m words of same length. Hence (Trm—1Znm—2 -+ T0)g =

G (@) 52 ) g Ba), (o),

%In section 4, p Liiq stands for Liiz (p, q).

13



First we show a result on automata, which is more or less folklore, but we will use latter
on the construction given in its proof. Let L. C A*, and denote by L™™ the set of m-shuffles
of elements of L of same length

Wim _ 0,0 0 11 1 m—1, m—1 m-1y _
L = {in, (vgv] - 01, 0gU1 - Vp_qy e - UG 00T 0 ) =
0,1 m—1_0,1 0 1 m—1 J o J ;
VUG Uy OO U, Uy 0 [ >0, vguy -y € Lfor 0 < <m — 1}

ProprosITION 9 . If L is recognizable by a finite automaton, so is L™,

Proof. Let A= (Q, A, E, I,T) be afinite automaton recognizing L, and let B = (S, A, F, J, U)
as follows: S = Q. J = [ U =T and there is an edge

L (Pos -« vy Prac1) —m (P1se vy Pm—1,q) € F <= po —> q € E. (6)

So there exist a path in B

— 29 _ vl _
Llim (q877q6n 1) —0>|—‘—‘m (qé77q6n 17(]?) —0>|—‘—‘m (q377q6n 17(]?7(]%)
J
. _ 1 Uk—l 11 _ .
co Ly, (f]i_p .- '7(]]7:_117 q27 .- 7‘]% ) — Ll (f]i—l_—p .- '7(]]7:_117 (]]27 .- 7qi)
,Um_—l B
t L, (q;n_—117q27”‘7q;n—2) —1>|—‘—‘m (q277q;n 1)
if and only if for each 0 < j < m — 1 there is a path in A
FR Y S
B —> @ — Gy~ @
Hence L-- is recognized by B. ]

Recall the notations: let & = #,,,_1 - - - 2o be a B-representation on X of Z = > gcrcpm—1 T£3%,
and let, for 0 < j < m—1, 2() = (@ pk4j)o<k<n—1- Let y = ypm_1 -+ -yo be a B-representation
onY of Z, and let, for 0 < j < m — 1, yl) = (Ymk+j)o<k<n—1-

THEOREM 1 . Let X and Y be two finite alphabets of digits. Let o : X™ — Y™ be a digit
set conversion in base § and let 1 : X* — Y™ be a digil set conversion in base v = 3™ such
that

y=¢x) < y) = lb(w(j)), for0<j<m-—1.

o [f ¢ is p-local then ¢ is (p — 1)m + 1-local.

o If 1) is computable by a letter-to-letter finite automaton, so is .

o If 1 is computable by an on-line finite automaton with delay 8, then ¢ is computable by an
on-line finite automaton with delay md.

o If 1) is letter-to-letter right subsequential, so is .

Proof. 1) Suppose that 1 is p-local: there exist [ and r such that p = [4+r+1land ¥ : X? - Y

such that foreach 0 < j <m—Tand 0 <k < n—1, Ykt = V(T (ktt) 4§ T (bl 1)45 " Trn(hmr) i) -
Hence yk; is determined through a window containing @, (k41)4; "+ @m(k—r)+; of length
(p—1)m+1, and ¢ is a (p— 1)m + 1-local function.

2) Suppose that 1 is computable by a letter-to-letter finite automaton A = (Q, X XY, E, I, T).

By the same construction as in the proof of Proposition 9, we define a letter-to-letter finite
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automaton B = (S, X x Y, F,J,U), with S = Q=», J = [""», U = T and edges are
defined as in Equation (6).

Let # = @ppme1-- 20 € X* and y = ¢(2) = Ypm—1---Y0 € Y*. Since yl) = ¢($(j)) for
0<7<m-1, (x(j), y(j)) is the label of a path recognized by A. That B recognizes ¢ is
proved as in Proposition 9.

3) Suppose that 1 is computable by an on-line finite automaton A = (@, X x (Y Ue), F, qo,w)
with delay §, where w : @ — Y™ is a partial terminal function. By the same construction
as above, we define a letter-to-letter finite automaton B = (5, X x (Y Ue¢), F, sg, o), with
S=Qm, so =i (qoy -+ -5 9), o(wim (Pos -+ s Prm—1)) = (@(po), - - -, w(pm—1)) for states
p; € Q) such that w(p;) is defined. Edges are defined as in Equation (6). Clearly, B is left
subsequential. Moreover, if A has delay §, every path of length mé in B is labelled by couples
belonging to X x e, so B is on-line with delay mJd.

4) Suppose now that 1 is recognized by a letter-to-letter right subsequential automaton A.
The same construction as in 3) can be used, with the only change on the definition of edges,
that is, Equation (6) is replaced by

Lllm (va--wpm—l) L‘—‘—‘m (q7p17"'7pm—2) €l Pm—1 L> q < E. (7)

One can ask about the converse problem: are properties satisfied by base 3 transferable
to base v = §™7 The answer is well-known for standard number systems: digits are to
be grouped by blocks of length m. More generally, let © = 2, 1Znm—_2---2¢ a word of
length nm in X*. It can be written as 2 = 2["~H...2[ where, for 0 < k < n — 1,
2l = T (kg 1)m—12 (k+1)m—2 * * * Tkm 15 the k-th block of length m of = (from the right). Denote
by 7 (") the value in base 8 of this word, i.e. w(zl*) = x(k+1)m_1ﬁm_1 + - -+ Tgm, and
put & = 7T($[k]). Let X,,, = {n(dy—1---do) | d; € X for 0 < j < m — 1}. Then & € X,,.
Analogously, put yr = ﬂ'(y[k]) €Y,,.

ProprosiTION 10 . Let X and Y be two finite alphabets of digits, and let ¢ : X* = Y™ be
a digit set conversion in base 3. Let v : X — Y.* be a digit set conversion in base v = 3™

defined by

Xn—1"""X0 = ¢(fn—1 .- '50) — Ynm-1°""Yo = 99(96nm—1 . '960)-

o If ¢ is g-local with ¢ = (p— 1)m + 1 then v is p-local.

o If v is computable by a letter-to-letter finite automaton, so is 1.

Proof. 1) Let y = ¢(x), and suppose that ¢ is ¢g-local: then y; is determined by a window
of length ¢. Hence a factor of length m, yr - - - yx—ym+y1, is determined by a window of length
g+ m — 1. 1t is necessary that ¢ + m — 1 be a multiple of m to have ¢ a p-local function for
some p,s0 ¢+ m—1=pm,and ¢g=m(p—1)+ 1.

2) Suppose that ¢ is computable by a letter-to-letter finite automaton B = (Q, X xY, F\ I,T')
We define a letter-to-letter finite automaton A = (Q, X,,,x Yy, E, I,T): let & = w(x—1 -+ - 20) €
X and X = 7(Ym-1---yo) € Yon. Then

q % ¢ €E < ¢ AT g TR L xi%o q € B.
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COROLLARY 3 . If ¢ is computable by an on-line finite automaton with delay mé (resp. is
letter-to-letter right subsequential) and if every element of X,,, has a unique [3-representation
on X, then 1 is computable by an on-line finite automaton with delay & (resp. is letter-to-
letter right subsequential).

In general, the representation on X is ambiguous. However, suppose that on Y every
element has a unique (-representation, and that ¢ is a letter-to-letter right subsequential
function satisfying a relation like Equation (1), then 1 is also letter-to-letter right subse-

quential: suppose that, in B there are two paths of length m

0 /Yo x1/y1 Tm—1/Ym—1
g — @1 — " Qm-1 — q

and
’Uo/wo vl/wl ’Um—l/wm—l /

9 — P1 —* " Pm-1

such that 7(@,—1 - 20) = T(Vm_1---vo) = £ By Equation (1), we get that
Etq=a,m 1" M+t aota=0"¢ + yn1 ST+ + o

and

E+q=vm-1 7+ v+ g = BT+ w1 7T+ o

Since the (-representation on Y is unique, p’ = ¢’, and yo = wo, ..., Ym_1 = W,,_1, hence,
letting x = 7 (Ym—1---Yyo), there is a unique edge in A with input label £

¢ Dy

and A is right subsequential.

6 Applications

Results on base § = iv/b presented in Section 4 are of course a corollary of Theorem 1 with
m = 2 and ¥ = —b. The same results hold true for base —iv/b. Here we consider other roots
than square ones.

6.1 Base f=-1%+:

Let us first recall some results on base § = —b4¢, where b is an integer > 1. It is known ([19],
[28]) that any complex number is representable in base 3 = —b 47 with A = {0,...,b%} for
canonical digit set. Every Gaussian integer has a unique representation of the form ay, - - - ag,
with a; € A. We recall the following result [31]: Addition in base § = —b =+ 4, with digits in
A =1{0,...,b%}, is a letter-to-letter right subsequential function.

Remark that (—144)* = —4, but that for any b > 2, there is no integer k # 0 such that
(b= i)* is an integer.

PROPOSITION 11 . 1) On digit set D = {3,...,3}, addition in base 3 = —1 41 is a 5-local
Sfunction, and it is computable by an on-line finite automaton with delay 4.

2) On digit set D' = {2,...,2}, addition in base 3 = —1 % i is a 9-local function, and it is
computable by an on-line finite automaton with delay 8.
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Proof. 1) It is a consequence of Proposition 3 and of Theorem 1 with v = —4 and m = 4.
2) It is a consequence of Proposition 4 and of Theorem 1. [

Note that, since in Theorem 1 digit sets in base $ and in base v must be the same, we
cannot say anything about addition in base § = —1 £ ¢ on the minimally redundant digit
set {1,0,1}.

REMARK 4 . Conversion in base —1 41 between digit set D = {3,...,3} or D' ={2,...,2}
and A = {0, 1} is not on-line computable, but is computable by a right subsequential automa-
ton.

In [1] it is shown how to obtain the (—14¢)-representation of a Gaussian integer from the
2-representation of its real and imaginary part by means of a right subsequential automaton.

6.2 Base = b

Number representation in base 3 = v/2 has been studied by Kérmendi in [22].

More generally, let b be an integer, [b|] > 2, and let m be a positive integer. Then,
regardless of the problem of which sets can be represented in base 3, the following result is a
simple corollary of Proposition 1, Proposition 2, Proposition 3, Proposition 4 and Theorem 1.

PROPOSITION 12 . Let b in Z such that |b| > 2, and let 3 = ¥/b.

1) Addition in base 3 on {0,...,|b| — 1} is a letter-to-letter right subsequential function.

2) If |b] > 3, let D = {a,...,a} where a = [|b|/2| + 1. Then addition in base 3 on D is a
(m+ 1)-local function. Addition is computable by an on-line finite automaton with delay m.
3) If |b] > 2 is even, let a = |b|/2 and D = {a,...,a}. Then addition in base  on D is a
(2m + 1)-local function. Addition is computable by an on-line finite automaton with delay
2m.

7 Golden ratio base

This section presents results on numeration systems which are of a different kind: there is
no power of the base which is an integer. Nevertheless, we think they might be of interest,
because they give an example where addition is computable by an on-line finite automaton,
but is not local.

Let 3 > 1 be a real number. Any real number 2 € [0, 1] can be represented in base 3 by
the following greedy algorithm [29]:
Let 1 = Bz ] and let r; = {Ba} be the fractional part. Then iterate for k > 2,z = | fri—1]
and rp = {Bre—1}. Thus 2 = S5, 287", where the digits 2 are elements of the canonical
alphabet A = {0,..., 3]} if 5 é N, A ={0,...,3 — 1} otherwise. The sequence (z1)r>1
is called the p-expansion of x. When 3 ¢ N, a number z may have several different 3-
representations on A: this system is naturally redundant. The F-expansion obtained by the
greedy algorithm is the greatest one in the lexicographic ordering.

Here we focus on numbers § which are defined as follows: (3 is the dominant root of an
equation of the form

X™—aX™ ' —aX"? i —aX b
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where @ > b > 1 are integers, and m > 2. Such a root is a real number > 1. The
numeration systems defined by bases of that kind are called confluent numeration systems.
The canonical alphabet is then equal to A = {0,...,a}. The most studied case is the golden
ratio 7 = (14 +/5)/2, with m =2, a =b = 1.

We have proved in [13] that addition on A ={0,...,a} in a confluent numeration system
is left sequential . Moreover it has a bounded delay — it is realized by an automaton having
all its loops letter-to-letter [14] — so by the result of [16] quoted in the introduction, it is
then computable by an on-line finite automaton. We present here a direct construction of

the on-line automaton for base 7.

PROPOSITION 13 . In base T = (1++/5)/2, addition on {0,1} is computable by an on-line

finite automaton with delay 3.

Proof. Input words start with 00. We define an on-line finite automaton £ = (Q, {0, 1,2} x
({0,1}Ue), E,{e}). The transient part of L is of the form
o = 25025 00 and 00 25 000; 00 255 001; 00 25 002.

In the synchronous part of £ edges must satisfy the property
d
518283 £> titats € B <= s17 1 sor 24372 Hdr = er Lty r by Sty (8)

and for any state s15053 € Q, s;7 7! + 59772 453773 € [0, 1[. Edges are the following ones:

o for d € {0,1,2}, 000 % 00d
e 001 % 010; 001 2% 100; 001 2% 101
0/0 - 1/1 2/1
e 002 % 111; 002 22 000; 002 2 001
o for d € {0,1,2}, 100 2% 004
e 101 2% 010: 101 22 100; 101 25 101
0/0 1/0 2/1 -
e 010 2% 100: 010 2% 101; 010 23 012
—_0jo - - 1/0 ~2/0
e 012 X% 011; 012 22 010; 012 2% 100
0/l - - 1/1 —_2/1
o 112 5 017 112 X 010, 172 23 100
e 011 X% 001; 011 22 002; 011 24 112
~ 0/t - 11 —2/1 -
o 111 2 001 111 L 002 111 25 112, .

The on-line automaton £ is not a local automaton, since it has two loops with same input

label
010 22 101 2 010
111 2 002 28 111

In fact, we can prove the following.
ProrosiTION 14 . Addition in base 7 on alphabet {0, 1} is not a local function.

Proof. Let us suppose that addition ¢ : {0,1,2}N — {0,1}N in base 7 is a p-local
function for some p. Thus there exists a function ¢ : {0,1,2} — {0,1} such that if z =
(25)i>1 € {0, 1, 2}N and y = (y;)i>1 € {0, 1}N7 then y = ¢(z) if and only if for every k > 0,
yp = ®(2p - - - 2pyp—1). Since ®(17) can take only value 0 or 1, for n large enough, the image

#The result of addition belongs to the alphabet A, but is not the greedy S-expansion.
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of a factor containing only n ones is in {0,1}*0'{0,1}* or in {0,1}*1/{0, 1}*, for some large
[. Since the word 0001"0“ has no equivalent 7-representation containing a large factor of
zeroes, ®(17) must be equal to 1. On the other hand, the word 0021"20“ has no equivalent
T-representation on {0, 1} with a large factor entirely composed of ones. Therefore addition
in base 7 is not local on {0,1}. ]

Actually, it is possible to show that addition in base 7 is 12-local on the alphabet
{0,1,...,12} (see [7]).

These results are also valid for linear numeration systems defined by a linearly recurrent
sequence U = (u,),>0 of the form

Uptm = QUptm—1 + QUptm—2 + -+ QUpy1 + bun7 n>0

ug =1, ui:(a—l—l)i,lgigm—l

where @ > b > 1 are integers, and m > 2. Every positive integer N has a representation
in this system on the alphabet A = {0,...,a}, meaning that one can write N as N =
dy, + - - -+ doug, with digits di € A, using a greedy algorithm:

Let n such that u, < N < u,41; let d,, be the quotient of the division of N by u,, and let
r, be the remainder: d,, = ¢(N,u,) and r, = r(N,u,). Then iterate dy = q(rr41,ur) and
r = r(reg1, ug) for n — 1 <k <0. The word d,, - --dy € A* is the normal U-representation
of N. As above addition is left subsequential [13] and has a bounded delay, so is computable
by an on-line finite automaton.

For m =2, a = b =1, we get the Fibonacci numeration system.

COROLLARY 4 . Addition on {0,1} in the Fibonacci numeration system is computable by
an on-line finite automaton with delay 3, but is not parallelizable.

Proof. It is the same automaton as in Proposition 13 with a terminal function w defined
by: if s15283 € @, w(s15253) is equal to the Fibonacci representation of the integer sjug +
SoU1 + S3o. |
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