
On-line �nite automata for additionin some numeration systemsChristiane FrougnyUniversit�e Paris 8 and L.I.A.F.A. �To appear in RAIRO Theoretical Informatics and ApplicationsAbstractWe consider numeration systems where the base is a negative integer, or a complexnumber which is a root of a negative integer. We give parallel algorithms for additionin these numeration systems, from which we derive on-line algorithms realized by �niteautomata. A general construction relating addition in base � and addition in base �m isgiven. Results on addition in base � = mpb, where b is a relative integer, follow. We alsoshow that addition in base the golden ratio is computable by an on-line �nite automaton,but is not parallelizable.1 IntroductionA positional numeration system is given by a base and by a set of digits. In the most usualnumeration systems, the base is an integer b � 2 and the digit set is f0; : : : ; b� 1g. In orderto represent complex numbers without separating the real and the imaginary part, one canuse a complex base. For instance, it is known that every complex number can be expressedwith base ip2 and digit set f0; 1g (see [20]). For example, �3=2 � ip2=2 = (101 � 11)ip2.Recently there have been several contributions to complex arithmetic ([18, 10], [26], [15], [2],[31]).Among the complex bases � that have been considered so far, the most studied ones havethe property that there is a power of � which is an integer, namely for base � = ipb, whereb � 2 is an integer, �2 = �b, and for base � = �1� i, �4 = �4 ([19], [28]). In those systems,the digits are integers. We might also mention that some authors have considered numerationsystems with complex digits. For instance, every complex number has a representation inbase 2 using digit set f0; 1; i; 1 + ig [27]. Herreros [18] has studied the representation ofcomplex numbers using base 2 and digit set f0; 1; �; : : : ; �5g, where �6 = 1. Robert [30] hasconsidered base ip3 and digit set f0; 1; (1+ ip3)=2g.In this work, we do not consider the question of the representability of the complexplane, but we focus on the addition process. Addition of two numbers in the classical b-arynumeration system, where b is an integer � 2, has a linear time complexity. In order to save�L.I.A.F.A., Case 7014, 2 place Jussieu, 75251 Paris Cedex 05, France. Email:Christiane.Frougny@liafa.jussieu.fr 1



time, several solutions have been proposed. A celebrated one is the Avizienis signed-digitrepresentation [3], which consists of changing the digit set. Instead of taking digits from thecanonical digit set f0; : : : ; b� 1g, they are taken from a balanced set of the form f�a; : : : ; ag,where �a denotes the digit �a, a being an integer such that b=2 < a � b � 1 (b has to be� 3). Such a numeration system is redundant, that is to say, some numbers may have severalrepresentations. This property allows one to perform addition in constant time in parallel,because there is a limited carry propagation. A similar algorithm for base 2 has been devisedby Chow and Robertson [8] using digit set f�1; 0; 1g. Here addition is realized in parallel witha window of size 3. In terms of automata theory, such functions are called local : a functionis p-local if the value of an output digit is determined through a window of size p.On-line arithmetic is the performing of arithmetic operations in Most Signi�cant DigitFirst (MSDF) mode (that is, from left to right), digit serially after a certain latency delay[12]. This allows the pipelining of di�erent operations such as addition, multiplication anddivision. It is also appropriate for the processing of real numbers having in�nite expansions.It is well known that when multiplying two real numbers, only the left part of the resultis signi�cant. On-line multiplication uses parallel addition, and this allows one to have alinear time algorithm for multiplication. It is then necessary to use a redundant numerationsystem (see [32]).In this paper, the �nite state automata is our model of computability. A function iscomputable by a �nite automaton if it needs only a �nite auxiliary storage memory, inde-pendent of the size of the data. In that setting, one knows that addition of two integersin the classical b-ary system is computable by a �nite automaton but that squaring is not(see [11]). Actually, the natural �nite automaton one designs to perform addition processesnumbers in the Least Signi�cant Digit First (LSDF) mode (that is, from right to left), andis called a right subsequential automaton. Moreover, one input digit gives one output digit.On-line �nite automata have been introduced by Muller [25]. They are sequential �niteautomata processing data in MSDF mode, and such that one input digit gives one outputdigit, after a certain latency delay. They are a special kind of left subsequential automata.The Avizienis and the Chow-Robertson algorithms for parallel addition in integral baselead to the construction of on-line �nite automaton for addition (see [25], [16]). There is ageneral result which says that if a function is p-local, then it is computable by an on-line�nite automaton with delay p � 1. However, in this paper, we will always give an explicitconstruction of an on-line �nite automaton realizing a local function, having less states thanthe general one.Let us recall a result we shall use latter on: a function is said to have a bounded delay ifit is realized by a �nite automaton such that on every loop, the input and the output havesame length. If a function has a bounded delay and if it is left (sub)sequential, then it iscomputable by an on-line �nite automaton [16].Parallel algorithms for addition in bases �2, ip2, 2i and �1 + i have been given in[26]. Results on addition in bases �b, ipb and �1 + i in connexion with automata theoryhave been presented in [15]. Note that in the system de�ned by Herreros, addition can beperformed in parallel [18, 10], and is computable by a right subsequential �nite automaton[31]. In the Robert's system, addition is a right subsequential function [31].In this paper, we �rst consider addition in negative base, and we show that properties2



similar to addition in the standard b-ary system are still satis�ed. We then show howalgorithms for addition in base ipb can be deduced from those in base �b. We give thefull constructions because they explain the general case. We then present a general resultwhich says that if ' and  are two digit set conversions, ' in base � and  in base 
 = �m,then if  is local, resp. computable by an on-line automaton, resp. letter-to-letter rightsubsequential, so is ' (Theorem 1). Conversely, if ' is computable by a letter-to-letter �niteautomaton so is  , but not on the same digit sets (Proposition 10).From that we derive that, if b is an integer, jbj � 2, in base � = mpb, addition onf0; : : : ; jbj � 1g is a right subsequential function. If jbj � 3, let D = f�a; : : : ; ag where a =bjbj=2c+1. Then addition in base � on D is a (m+1)-local function and it is computable byan on-line �nite automaton with delaym. If jbj � 2 is even, let a = jbj=2 and D0 = f�a; : : : ; ag.Then addition in base � on D0 is a (2m+1)-local function and it is computable by an on-line�nite automaton with delay 2m. This applies in particular to base � = �1� i.We then consider a base which is not a root of an integer, namely base � , where � is thegolden ratio. We give the explicit on-line �nite automaton with delay 3 realizing additionin base � and digit set f0; 1g. The same construction is valid for the Fibonacci numerationsystem. Note that addition in those systems is not computable in parallel.2 Preliminaries2.1 Number representationsLet � be a real or complex number such that j�j > 1, and let A be a �nite set of real orcomplex digits. A �-representation of x with digits in A is a �nite or a right in�nite sequence(xk)k�n with xk 2 A such that x =P�1k=n xk�k. It is denoted by(xn � � �x0 � x�1x�2 � � �)� :We will present the results for �nite words, if the expansions are in�nite the constructionsare similar. To perform addition in a given numeration system with base � and digit set A,the process will always be the same: take two numbers x = xn�1 � � �x0 and y = yn�1 � � �y0such that x = Pn�1k=0 xk�k , y = Pn�1k=0 yk�k, with xk and yk in A. In parallel, compute zk =xk + yk . Then zk is an element of B = fc+ d j c; d 2 Ag, and x+ y =Pn�1k=0 zk�k. Additionconsists of transforming the representation zn�1 � � �z0 of x + y on B into an equivalent onesn�1+l � � �s0, such that x+ y =Pn�1+lk=0 sk�k, with sk 2 A.2.2 Words and automataLet us recall some de�nitions. More details can be found in [11]. An alphabet A is a �niteset. A �nite sequence of elements of A is called a word, and the set of words on A is the freemonoid A�. The empty word is denoted by ". A factor of a word w is a word f such thatthere exist words w0 and w00 with w = w0fw00. When w0 = ", f is said to be a pre�x of w, andwhen w00 = ", f is said to be a su�x of w. The pre�x (resp. su�x) is strict when it is notequal to the entire word w. The length of a word w = w1 � � �wn with wi in A for 1 � i � nis denoted by jwj and is equal to n. By wn is denoted the word obtained by concatenatingw n times to itself. The set of words of length n (resp. � n) of A� is denoted by An (resp.A�n). 3



The set of in�nite sequences or in�nite words on A is denoted by AN. The in�nite wordvvv � � � is denoted by v!.An automaton over A, A = (Q;A;E; I; T ), is a directed graph labelled by elements of A;Q is the set of states, I � Q is the set of initial states, T � Q is the set of terminal statesand E � Q � A � Q is the set of labelled edges. If (p; a; q) 2 E, we write p a�! q. Theautomaton is �nite if Q is �nite. The automaton A is deterministic if E is the graph of a(partial) function from Q�A into Q, and if there is a unique initial state. A subset H of A�is said to be recognizable by a �nite automaton if there exists a �nite automaton A such thatH is equal to the set of labels of paths starting in an initial state and ending in a terminalstate. A subset K of AN is said to be recognizable by a �nite automaton if there exists a�nite automaton A such that K is equal to the set of labels of in�nite paths starting in aninitial state and going in�nitely often through a terminal state (B�uchi acceptance condition,see [11]).Let X and Y be two alphabets. A 2-tape automaton is an automaton over the non-freemonoid X� � Y � : A = (Q;X� � Y �; E; I; T ) is a directed graph the edges of which arelabelled by elements of X� � Y �. Words of X� are referred to as input words, words of Y �are referred to as output words. If (p; (f; g); q) 2 E, we write p f=g�! q. The automaton is�nite if the set of edges E is �nite (and thus Q is �nite). These �nite 2-tape automata arealso known as transducers. A relation R of X� � Y � is said to be computable by a �nite2-tape automaton if there exists a �nite 2-tape automaton A such that R is equal to the setof labels of paths starting in an initial state and ending in a terminal state. It is equivalentto saying that R is a rational subset of X��Y �. A function is computable by a �nite 2-tapeautomaton if its graph is computable by a �nite 2-tape automaton. These de�nitions extendto relations and functions of in�nite words as above.A 2-tape automaton A is said to be left sequential if edges are labelled by elementsof X � Y �, if the underlying input automaton obtained by taking the projection over Xof the label of every edge is deterministic and if every state is terminal (see [5]). A leftsubsequential 2-tape automaton is a left sequential automaton A = (Q;X � Y �; E; fq0g; !),where ! is the terminal function ! : Q �! Y �, whose value is concatenated to the outputword corresponding to a computation in A.A 2-tape automaton A is said to be letter-to-letter if the edges are labelled by couples ofletters, that is, by elements of X � Y .An on-line �nite automaton with delay � is a particular left subsequential automaton(see [16]): it is composed of a transient part, in which every path of length � starting in theinitial state i0 is of the form i0 a1="�! i1 a2="�! � � � a�="�! i�;where ai 2 X , for 1 � i � �, and the only edge arriving in a state i0, . . . , i��1 is as above,and of a synchronous part where edges are labelled by elements of X � Y . This means thatthe automaton starts reading words of length � � outputting nothing, and after that delay,outputs serially one digit for each input digit.The same de�nition works for functions of in�nite words, considering in�nite paths in A,but there is no terminal function ! in that case.All the automata considered so far work implicitly from left to right, that is to say, wordsare processed from left to right, but one can de�ne similarly right automata processing wordsfrom right to left. 4



2.3 Local functions and on-line automataThe notion of local function comes from symbolic dynamics (see [4], [23]), where it is de�nedon biin�nite words and often called a sliding block code. The de�nition on in�nite words isthe following one. A function ' : XN ! YN is said to be p-local if there exist a positiveinteger p, a function � from Xp to Y such that if x = (xi)i�0 2 XN and y = (yi)i�0 2 YN,then y = '(x) if and only if for every i � 0, yi = �(xi � � �xi+p�1). This means that the imageof x by ' is obtained through a sliding window of length p. The following result is folklore.Fact 1 . A p-local function is computable by an on-line �nite automaton with delay p� 1.Proof. Let the set of states be Q = X�p�1 and the initial state be ". Edges are of the form:for a 2 X , set " a="�! a, for d1 � � �di 2 Q with 1 � i � p� 2 set d1 � � �di a="�! d1 � � �dia; and ford1 � � �dp�1 2 Q, set d1 � � �dp�1 a=�(d1���dp�1a)�! d2 � � �dp�1a:In this paper the constructions of on-line automata associated with p-local functionswe give are di�erent. Using the redundancy of representations, we can construct on-lineautomata with the same delay p� 1, but having less states.It is known that the underlying input automaton of any sequential automaton realizinga p-local function is a p-local automaton, that is, the arrival state of any path of length p isentirely determined by the label of the path (see [4]).One can de�ne local functions of �nite words (see [6], [33]). A function ' : X� ! Y �is said to be p-local if there exist nonnegative integer l and r such that r + l + 1 = p, anda function � from Xp to Y such that if x = x1 � � �xm 2 X� and y = y1 � � �yn 2 Y �, theny = '(x) if and only if for every 1 � i � n, yi = �(xi�l � � �xi+r), with the convention that,if at the borders xi�l, . . . , xk�1 are not de�ned, �(xk � � �xi+r) = �(" � � �"xk � � �xi+r), andsimilarly, if xj+1; : : : ; xi+r are not de�ned, �(xi�l � � �xj) = �(xi�l � � �xj" � � �"). A p-localfunction can be computed in parallel with a window of length p. It is both left and rightsubsequential (see [33]).Note that, when dealing with representation of numbers, one can always assume that arepresentation is pre�xed or su�xed by an adequate number of zeros. In the sequel, we willalways consider functions such that input and output have the same length.2.4 Standard b-ary number systemLet us recall some results on addition base b, where b is an integer � 2.Proposition 1 . 1) Addition in base � = b, b � 2, with digits in A = f0; : : : ; b� 1g, is aletter-to-letter right subsequential function.2) Suppose that b � 3, and let D = f�a; : : : ; ag where a = bb=2c+ 1. Then base b addition onD is a 2-local function, and is computable by an on-line �nite automaton with delay 1.3) Suppose that b = 2a, a being an integer � 1, and let D = f�a; : : : ; ag. Then base b additionon D is a 3-local function, and is computable by an on-line �nite automaton with delay 2.1) The fact that addition is a right subsequential function can be found in [11].2) That addition is a 2-local function is due to Avizienis [3]. For the on-line �nite automatonrealizing addition in that case, see [25].3) That addition for b = 2 is a 3-local function is in Chow and Robertson [8]. For theconstruction of the on-line automaton, see [25] and [16].5



3 Negative base numeration systemsLet � = �b, where b is an integer � 2. It is well known (see [20, 21], [24]) that any realnumber can be represented without a sign in base �b with digits from the canonical digitset A = f0; : : : ; b� 1g. Integers have a unique representation of the form dk � � �d0. We showthat properties satis�ed by base b addition are also valid for base �b.Proposition 2 . Addition in base � = �b, b � 2, with digits in A = f0; : : : ; b� 1g, is aletter-to-letter right subsequential function.Proof. As explained above in Section 2.1, we have to convert representations over B =f0; : : : ; 2b�2g into equivalent representations over A. Number representations are processedfrom right to left. We construct a right subsequential automaton A = (Q;B�A;E; fq0g; !)as follows. The set of states is Q = f�1; 0; 1g. The name of a state indicates the value of thecarry. The initial state is q0 = 0.Let q be in Q and let z be in B. By the Euclidean division of q + z by � = �b, thereexist unique s 2 A and q0 such that q + z = �bq0 + s. Since �1 � q + z � 2b � 1,�2 < q0 = (s� (q + z))=b � 1 and thus q0 2 Q. Hence one de�nes an edgeq z=s�! q0 2 E () q + z = �q0 + s: (1)The terminal function ! is de�ned by !(0) = ", !(1) = 1 and !(�1) = 1(b� 1).Let zn�1 � � �z0 2 B� and N = Pn�1k=0 zk�k. Starting in initial state q0 = 0, and readingfrom right to left, we take the unique path0 z0=a0�! q1 z1=a1�! � � �qn�1 zn=an�! qn:Since, for 0 � k � n�1, qk+zk = �qk+1+ak , we get N = a0+a1�+ � � �+an�1�n�1+qn�n.Thus the �-representation of N is !(qn)an�1 � � �a0 2 A�.Example 1 . Let � = �2 and A = f0; 1g. Here is the right subsequential automatonrealizing addition in this system.1 �1���� 0�����1���� s1=0; 2=1k 2=0�0=1�1=0; 2=1 �0=1 /0=0; 1=1
Let x = 11001, y = 11101, thus x+ y = 22102. In the automaton, from right to left,0 2=0�! �1 0=1�! 1 1=0�! �1 2=1�! 0 2=0�! �1and !(�1) = 11, thus x + y = 22102 = 1101010. 21I thank Paul Gastin for his set of macros Autograph.6



Remark 1 . Addition in base �b with digits in A is not left subsequential.Proof. Let us consider b = 2 and A = f0; 1g. Let d be the left-distance de�ned byd(v; w) = jvj+ jwj � 2 j v ^ w jwhere v ^ w denotes the longest common pre�x to v and w.Let v = (01)n02 and w = (01)n+1. Then d(v; w) = 4. The conversion of v on A isv0 = 1(10)n+1, and that of w is w0 = w. We have d(v0; w0) = 4n + 5, thus the left-distancebetween v0 and w0 becomes unbounded when n goes to in�nity, as the distance between v andw is bounded. There is a result in [9] which says that, if a function ' is left subsequential,then it has the following property: 8k � 0; 9K � 0; d(v; w) � k ) d('(v); '(w)) � K. Itimplies that addition on A cannot be realized by a left subsequential 2-tape automaton.We introduce another set of digits in order to obtain a redundant numeration system,analogous to the Avizienis signed-digit representation [3]. Let a such that b=2 � a � b� 1and let D = f�a; : : :; ag. Then every real number has a representation in base �b with digitsin D. The system is redundant because jDj = 2a+1 > b. We consider the smallest balanceddigit sets allowing one to perform addition in parallel.Proposition 3 . Let � = �b, where b is an integer � 3, and let D = f�a; : : : ; ag wherea = bb=2c + 1. Then base �b addition is a 2-local function. Addition is computable by anon-line �nite automaton with delay 1.Proof. 1) Let x + y = Pn�1k=0 zk�k, with zk 2 C = f(2a); : : : ; (2a)g. Write zk on the formzk = �ck+1 + rk, with the following rules: if a � zk � 2a, let ck+1 = �1 and rk = zk � b; if�2a � zk � �a, let ck+1 = 1 and rk = b+ zk. If jzk j � a� 1, let ck+1 = 0 and rk = zk . Putsk = rk + ck for 0 � k � n� 1 and sn = cn. Thus x+ y =Pnk=0 sk�k.If a � zk � 2a, then a � b � rk � 2a� b and a � b� 1 � sk � 2a� b+ 1. Since a � b� 1,sk � a, and since 2a � b+1, sk � �a, hence sk 2 D. The case �2a � zk � �a is symmetric,and the case jzkj � a � 1 is trivial. Thus sk 2 D for 0 � k � n. Hence sk is a function ofzkzk�1, and addition is 2-local.2) To avoid over
ow, we assume that input words begin with a 0. Let z = zk 2 Cand let �(z) = (c; r) = (ck+1; rk) as determined in the above algorithm. We construct anon-line automaton L = (Q;C � (D [ "); E; fq0g; !) with delay 1 realizing addition. LetK = f�a+ 1; : : : ; a� 1g. The set of states of the automaton is Q = f"g [K, and the initialstate is q0 = ". Synchronous edges are de�ned by: for any q 2 K and for any z 2 C, q z=c+q�! rin E, with (c; r) = �(z). Since jcj � 1 and jqj � a � 1, c + q 2 D and r 2 K. There is atransient edge " 0="�! 0.All edges of L satisfy the following conditionq z=d�! r 2 E () �q + z = �d+ r; (2)that is to say, the two words qz and dr have the same numerical value in base �. Theterminal function is de�ned by !(q) = q for any q 2 Q.Let zn�1 � � �z0 2 C� and N = Pn�1k=0 zk�k. Starting in initial state q0 = ", and readingfrom left to right, we take the unique path" 0="�! 0 zn�1=an�! q1 zn�2=an�1�! � � �qn�1 z0=a1�! qn:7



Let !(qn) = a0. By (2) we get Pn�1k=0 zk�k = Pnk=0 ak�k , with ak 2 D, and addition isrealized by L.Note that the automaton L has 2a states, compare with the on-line automaton con-structed in Fact 1 which has jCj+ 1 = 4a+ 2 states.Example 2 . Let � = �3 and let D = f�2; : : : ; 2g. Below is the on-line �nite automatonwith delay 1 realizing addition in this system."����- 0���� 1�����1����/
0=0; 3=�1; �3=1
72=�2; �1=�1; �4=0

/1=1; �2=2; 4=0-0=" ?�1=0; �2=�1; �4=1 s1=0; 2=1; 4=�1k0=1; 3=0; �3=2� 2=0; �1=1; �4=210=�1; 3=�2; �3=0 M1=�1; 4=�2; �2=0Take x = 020�2 and y = 02�1�2. Then x+ y = 04�1�4. We have in the automaton" 0="�! 0 4=�1�! 1 �1=1�! �1 �4=0�! �1and !(�1) = �1, thus x+ y = �110�1. 2In the case that � = �2, the previous algorithm does not apply. We give an algorithm forthat case as well as for any even b, which is analogous to the Chow and Robertson algorithmfor base 2.Proposition 4 . Let � = �b, where b = 2a, a being an integer � 1, and let D = f�a; : : :; ag.Then base �b addition is a 3-local function and is computable by an on-line �nite automatonwith delay 2.Proof. 1) Let x + y = Pn�1k=0 zk�k , with zk 2 C = f�b; � � � ; bg, and let zk = �ck+1 + rk bede�ned by:If a + 1 � zk � b, let ck+1 = �1 and rk = zk � b; if �b � zk � �a � 1, let ck+1 = 1 andrk = b+ zk.If zk = a and if zk�1 < 0 then let ck+1 = �1 and rk = �a, else let ck+1 = 0 and rk = a.If zk = �a and if zk�1 > 0 then let ck+1 = 1 and rk = a, else let ck+1 = 0 and rk = �a.If jzkj � a� 1, let ck+1 = 0 and rk = zk .Let sk = rk + ck for 0 � k � n � 1 and sn = cn. Clearly x + y = Pnk=0 sk�k. We have toshow that sk 2 D. When a+ 1 � jzkj � b, whatever the value of zk�1 is, we get jrkj � a� 1and jckj � 1, thus jskj � a.If zk = a, and if zk�1 < 0 then rk = �a and ck = 0 or 1, thus sk = �a or �a + 1 and thus8



belongs to D. If zk = a and zk�1 � 0, then rk = a and ck = �1 or 0, and so sk = a � 1 ora. The case zk = �a is symmetric.If jzkj � a � 1, rk = zk and jckj � 1, thus sk 2 D. Since sk is a function of zkzk�1zk�2,addition is a 3-local function.2) We construct an on-line �nite automaton L = (Q;C � (D [ "); E; fq0g; !) with delay2 realizing addition. Input words begin with a 0. If z = zk 2 C is such that a+ 1 � jzk j � bor jzkj � a� 1, we de�ne �(z) = (c; r) = (ck+1; rk) as in the above algorithm. If jzj = a weput �(z) = (c; r) = (0; z).Let K = f(d; e) 2 D�D j if d = a then e � 0 and if d = �a then e � 0g n f(1; a); (�1; �a)g.These two couples are removed because they are equivalent to (0; �a) and (0; a) respectively,since b = 2a. The set of states of the automaton is Q = f("; "); ("; 0)g[K. The initial stateis q0 = ("; "). The synchronous part of L is de�ned this way: let (d; e) 2 K.� If jej � a� 1, then for each z 2 C, there is an edge (d; e) z=d�! (c+ e; r) where (c; r) = �(z).Since jej � a � 1, jc + ej � a. If c + e = a, then e = a � 1 and c = 1, thus r � 0, and(c+ e; r) 2 K (the symmetric case is similar).� If e = a and z < 0, put (d; a) z=d�1�! (c � a; r) where (c; r) = �(z). Since z < 0, c = 0 or1, and c � a 2 D. We know that d 6= �a, thus d � 1 2 D. If c = 0, then r = z < 0, thus(c� a; r) 2 K.� If e = a and z � 0, put (d; a) z=d�! (c+ a; r) where (c; r) = �(z). In that case c = 0 or �1,and thus c+ a 2 D. If c = 0 then r = z � 0, thus (c+ a; r) 2 K.� The case e = �a is symmetric: if z > 0, put (d; a) z=d+1�! (c+ a; r) where (c; r) = �(z). Ifz � 0, put (d; a) z=d�! (c� a; r) where (c; r) = �(z).The transient part of L is de�ned by :� ("; ") 0="�! ("; 0), and for z 2 C, there is an edge ("; 0) z="�! (c; r) where (c; r) = �(z).Hence, for any edge in L(d; f) z=x�! (e; g) 2 E () �2d+ �f + z = �2x+ �e + g (3)i.e. the two words dfz and xeg have the same numerical value in base �. The terminalfunction is de�ned by !((d; e)) = de for (d; e) 2 Q.Let zn�1 � � �z0 2 C� and N = Pn�1k=0 zk�k . Starting in initial state q0 = ("; "), we takethe unique path("; ") 0="�! ("; 0) zn�1="�! (d1; f1) zn�2=an�! � � �(dn�1; fn�1) z0=a2�! (dn; fn):Let !((dn; fn)) = a1a0. By (3), Pn�1k=0 zk�k = Pnk=0 ak�k, with ak 2 D, and addition inbase �b with digit set D is realized by the on-line automaton L, with 4a2 + 1 states. Theconstruction of Fact 1 gives an automaton with 16a2 + 12a+ 3 states.Corollary 1 . The digit set conversion in base �b between numbers written with digitsin the canonical digit set A = f0; : : : ; b � 1g into their representation with digits in D =f�a; : : : ; ag, with a = bb=2c+ 1, or b = 2a, is computable in parallel in constant time.Proof. Since A � C, the result follows.Remark 2 . The inverse conversion, from D to A, cannot be computed on-line, but is rightsubsequential. 9



In the same spirit, in [1] it is shown that conversion between numbers written in baseb, b integer � 2, with digit set A = f0; : : : ; b� 1g into their representation in base �b withthe same digit set is right subsequential. We now show how to convert directly a classicalexpansion in base b with digit set A = f0; : : : ; b � 1g into an equivalent representation inbase �b and digit set D = f�a; : : : ; ag, where a+ 1 � b � 2a.Proposition 5 . Let b be an integer � 2. The conversion from base b and digit setA = f0; : : : ; b� 1g into base �b and digit set D = f�a; : : : ; ag, with b=2 � a � b� 1, is a rightsubsequential function.Proof. The set of states of the automaton is Q = f"; 0; 1; �1g. The initial state is ". Letz 2 A. Edges are de�ned by:if 0 � z � a, let " z=z�! 0; if a + 1 � z � b� 1, let " z=z�b�! �1;if 0 � z � a, let 0 z=�z�! "; if a+ 1 � z � b� 1, let 0 z=b�z�! 1;if 0 � z � a� 1, let 1 z=z+1�! 0; if a � z � b� 1, let 1 z=z�b+1�! �1;if 0 � z � a� 1, let �1 z=�z�1�! "; if a � z � b� 1, let �1 z=�z�1�! 1.The terminal function ! is given by !(") = !(0) = ", !(1) = 1, and !(�1) = �1. It isstraightforward to check that, since a+ 1 � b � 2a, the output is in D.Note that the inverse conversion is also right subsequential.4 Base � = ipbThe interest of choosing a complex base and integral digits to represent complex numbersis that computations are handled in a compact way, as when using an integral base for realnumber computations.Let � = ipb, where b is an integer � 2. Any complex number is representable in base �with digits in the canonical digit set A = f0; : : : ; b � 1g (see [20], [19], [17]). If b = c2 is asquare then every Gaussian integer has a unique �nite representation of the form ak � � �a0�a�1,ai 2 A.Let j be an integer � 0, possibly in�nite, and let n � 0. Since �2 = �b, we have(a2n � � �a0�a�1 � � �a�2j)� = (a2na2n�2 � � �a0�a�2 � � �a�2j)�b+ipb(a2n�1a2n�3 � � �a1�a�1 � � �a�2j+1)�b:Thus, if z = x + iy 2 C, x and y in R, the �-representation of z can be obtained byintertwinning the �b-representation of x and the �b-representation of y=pb.Base � = �ipb satis�es the same properties. We treat only the case � = ipb. Moststudied cases are � = 2i and A = f0; : : : ; 3g, strongly related to base �4, and � = ip2 andA = f0; 1g ([20, 21], [26], [15]).We now show how properties satis�ed by base �b addition can be extended to base ipb.Proposition 6 . Addition in base � = ipb, b � 2, with digits in A = f0; : : : ; b� 1g is aletter-to-letter right subsequential function.Proof. Since �2 = �b, the automaton will be deduced from the right subsequential au-tomaton A = (Q;B �A;E; fq0g; !) realizing addition in base �b (Proposition 2).10



Let B = (S;B �A; F; fs0g; �) be de�ned as follows. The set of states is S = Q�Q and theinitial state is s0 = (q0; q0). The set of edges F is de�ned byF = f(p; q) z=s�! (q0; p) j q z=s�! q0 2 E; p 2 Qg:The terminal function in a state (p; q) is de�ned by the �-expansion of �p + q, that isto say, �((0; 0)) = ", �((0; 1)) = 1, �((1; 0)) = 10, �((1; 1)) = 11, �((1; �1)) = 11(b � 1),�((�1; 1)) = 10(b� 1)1, �((�1; �1)) = 11(b� 1)(b� 1).The automaton B is right subsequential (and letter-to-letter). Take a word z2n�1 � � �z0 2B� and let Z =P2n�1k=0 zk�k. There is a path in B(q0; q0) z0=a0�! (q1; q0) z1=a1�! (p1; q1) z2=a2�! � � �(pn�1; qn�1) z2n�2=a2n�2�! (qn; pn�1) z2n�1=a2n�1�! (pn; qn)if and only if there is in A a pathq0 z0=a0�! q1 z2=a2�! q2 z4=a4�! � � �qn�1 z2n�2=a2n�2�! qnand a path q0 z1=a1�! p1 z3=a3�! p2 z5=a5�! � � �pn�1 z2n�1=a2n�1�! pn:Since qna2n�2a2n�4 � � �a2a0 is the�b-expansion ofPn�1k=0 z2k(�b)k and pna2n�1a2n�3 � � �a3a1is the �b-expansion of Pn�1k=0 z2k+1(�b)k, and �((pn; qn)) = �pn + qn, we get thatpnqna2n�1a2n�2 � � �a1a0 is the �-expansion of Z. Thus the right subsequential automaton Brealizes addition in base � = ipb.Addition in base ipb and digit set A cannot be computed on-line: consider (0001)n0002and (0001)n0001 (see Remark 1). Similarly to negative base �b, we consider digit sets forwhich addition can be parallelizable.Proposition 7 . Let � = ipb, where b is an integer � 3, let a = bb=2c + 1 and letD = f�a; � � � ; ag. Then base � = ipb addition is a 3-local function. Addition is computableby an on-line �nite automaton with delay 2.Proof. 1) Let zk 2 C = f(2a); � � � ; (2a)g and write zk = �2ck+2 + rk = (�b)ck+2 + rk, as inProposition 3:if a � zk � 2a, let ck+2 = �1 and rk = zk � b, if �2a � zk � �a, let ck+2 = 1 and rk = b+ zk ,if jzkj � a� 1, let ck+2 = 0 and rk = zk. In any case, jckj � 1 and jrkj � b� a � a� 1.Let sk = rk + ck for 0 � k � n � 1, sn = cn, sn+1 = cn+1, and sn+2 = cn+2. We havex+ y =Pn+2i=0 sk�k with jskj � a. Since sk is a function of zk and zk�2, addition is 3-local.2) To avoid over
ow, input words begin with 00. Recall that the on-line automatonL = (K [ "; C� (D[ "); E; f"g; !), where K = f�a+1; : : : ; a� 1g, realizes addition in base�b with digit set D, see Proposition 3.We construct an on-line automaton with delay 2, M = (S;C � (D [ "); F; fs0g; �) asfollows. Let the set of states be S = f("; "); ("; 0)g[ (K�K), the initial state be s0 = ("; ").The synchronous transitions of M are de�ned this way: for any p and q in K,(q; p) z=q+c�! (p; r) 2 F () q z=q+c�! r 2 E:11



The transient part is ("; ") 0="�! ("; 0) and ("; 0) 0="�! (0; 0). The terminal function is �(q; p) =qp for (q; p) 2 S. Note that for any edge in M(q; p) z=x�! (q0; p0) 2 F () �2q + �p + z = �2x+ �q0 + p0 (4)i.e. the two words qpz and xq0p0 have the same numerical value in base �.Let z2n�1 � � �z0 2 C� and Z =P2n�1k=0 zk�k . There is a path in M("; ") 0="�! ("; 0) 0="�! (0; 0) z2n�1=a2n+1�! (0; q1) z2n�2=a2n�! � � � (pn�1; qn�1) z1=a3�! (qn�1; pn) z0=a2�! (pn; qn)if and only if there is in L a path" 0="�! 0 z2n�2=a2n�! q1 z2n�4=a2n�2�! � � �qn�1 z0=a2�! qnand a path " 0="�! 0 z2n�1=a2n+1�! p1 z2n�3=a2n�1�! � � �pn�1 z1=a3�! pn:Letting a0 = qn and a1 = pn, we have that Pn�1k=0 z2k(�b)k =Pnk=0 a2k(�b)k,Pn�1k=0 z2k+1(�b)k =Pnk=0 a2k+1(�b)k and thus the representation of Z on the alphabet D isa2n+2a2n+1 � � �a1a0.We now consider the case where b is even.Proposition 8 . Let � = ipb, where b � 2 is even, let a = b=2 and let D = f�a; : : :; ag.Then base � = ipb addition is a 5-local function. Addition is computable by an on-line �niteautomaton with delay 4.Proof. 1) For zk 2 C = f�b; : : : ; bg let zk = �2ck+2+rk = (�b)ck+2+rk, as in Proposition 4:if a+ 1 � zk � 2a, let ck+2 = �1 and rk = zk � b,if �2a � zk � �a� 1, let ck+2 = 1 and rk = b+ zk ,if zk = a and if zk�2 < 0, let ck+2 = �1 and rk = �a else let ck+2 = 0 and rk = a,if zk = �a and if zk�2 > 0, let ck+2 = 1 and rk = a else let ck+2 = 0 and rk = �a,if jzkj � a� 1, let ck+2 = 0 and rk = zk.Let sk = rk + ck for 0 � k � n � 1, sn = cn, and sn+1 = cn+1. Then x + y = Pn+1i=0 sk�k .That sk belongs to D is proved in Proposition 4. Since sk is a function of zk , zk�2 and zk�4,addition is a 5-local function.2) Consider words with digits in C, beginning with 00. Let L = (Q;C�(D["); E; f("; ")g; !)be the on-line �nite automaton with delay 2 realizing addition on D in base �b withK = f(d; e) 2 D � D j if d = a then e � 0 and if d = �a then e � 0g n f(1; a); (�1; �a)gand Q = f("; "); ("; 0)g[K (Proposition 4). We construct an on-line automaton with delay4, M = (S;C � (D [ "); F; fs0g; �) as follows.Let us de�ne the shu�e of two words by (d; f) (e; g) = (d; e; f; g). Note that this isnot the general shu�e product, but the internal shu�e product (see [11]). Let K K =f(d; f) (e; g) j (d; f) 2 K; (e; g) 2 Kg. Let the set of states be S = f("; ") ("; "); ("; ")("; 0); ("; 0) ("; 0)g [ f("; 0) (c; r) j (c; r) 2 f�1; 0; 1g �Dg [ (K K) and the initialstate be s0 = ("; ") ("; "). The synchronous transitions of M are de�ned this way: let(d; f) (e; g) 2 K K,(d; f) (e; g) z=y�! (e; g) (d0; f 0) 2 F () (d; f) z=y�! (d0; f 0) 2 E12



The transient part ofM is: ("; ") ("; ") 0="�! ("; ") ("; 0) and ("; ") ("; 0) 0="�! ("; 0)("; 0). For z 2 C, let �(z) = (c; r) 2 f�1; 0; 1g�D such that z = �2c + r. We de�ne edges("; 0) ("; 0) z="�! ("; 0) (c; r) where (c; r) = �(z); for z0 2 C, ("; 0) (c; r) z0="�! (c; r)(c0; r0) where (c0; r0) = �(z0).Note that for any edge in M(d; f) (e; g) z=x�! (d0; f 0) (e0; g0) 2 F () �4d+�3e+�2f+�g+z = �4x+�3d0+�2e0+�f 0+g0(5)i.e. the two words defgz and xd0e0f 0g0 have the same numerical value in base �.The terminal function is �((d; f) (e; g)) = defg for (d; f) (e; g) 2 S.Let z2n�1 � � �z0 2 C� and Z =P2n�1k=0 zk�k . There is a path in M("; ") ("; ") 0="�! ("; ") ("; 0) 0="�! ("; 0) ("; 0) z2n�1="�! ("; 0) (d1; f1) z2n�2="�!(d1; f1) (e1; g1) z2n�3=a2n+1�! (e1; g1) (d2; f2) z2n�4=a2n�! � � �(en�1; gn�1) (dn�1; fn�1) z1=a5�! (dn�1; fn�1) (en; gn) z0=a4�! (en; gn) (dn; fn)if and only if there is in L a path("; ") 0="�! ("; 0) z2n�2="�! (d1; f1) z2n�4=a2n�! � � �(dn�1; fn�1) z0=a4�! (dn; fn)and a path("; ") 0="�! ("; 0) z2n�1="�! (e1; g1) z2n�3=a2n+1�! � � � (en�1; gn�1) z1=a5�! (en; gn):Letting a3 = en, a2 = dn, a1 = gn and a0 = fn, we have that Pn�1k=0 z2k(�b)k =Pnk=0 a2k(�b)k, Pn�1k=0 z2k+1(�b)k = Pnk=0 a2k+1(�b)k and thus the representation of Z onthe alphabet D is a2n+1a2n � � �a1a0.Corollary 2 . The digit set conversion in base � = ipb between numbers written withdigits in the canonical digit set A = f0; : : : ; b � 1g into their representation with digits inD = f�a; : : :; ag, whith a = bb=2c+ 1, or b = 2a, is computable in parallel in constant time.Remark 3 . The inverse conversion, from D to A cannot be computed on-line, but it is aright subsequential function.5 A generalizationWe now consider two complex bases � and 
 with the property that, for some naturalm > 0, �m = 
. Let x = (xnm�1xnm�2 � � �x0)� be a representation in base � on a certainalphabet X of digits of a number Z = P0�k�nm�1 xk�k (it is always possible to supposethat representations have length a multiple of m by padding with some zeroes). Let, for 0 �j � m � 1, x(j) = (xmk+j)0�k�n�1. Then obviously x = m (x(m�1); x(m�2); : : : ; x(1); x(0))where m denotes them-shu�e2 ofm words of same length. Hence (xnm�1xnm�2 � � �x0)� =�m�1(x(m�1))
 + �m�2(x(m�2))
 + � � �+ �(x(1))
 + (x(0))
 .2In section 4, p q stands for 2 (p; q). 13



First we show a result on automata, which is more or less folklore, but we will use latteron the construction given in its proof. Let L � A�, and denote by L m the set of m-shu�esof elements of L of same lengthL m = f m (v00v01 � � �v0n�1; v10v11 � � �v1n�1; : : : ; vm�10 vm�11 � � �vm�1n�1 ) =v00v10 � � �vm�10 v01v11 � � �v0n�1v1n�1 � � �vm�1n�1 j n � 0; vj0vj1 � � �vjn�1 2 L for 0 � j � m� 1g:Proposition 9 . If L is recognizable by a �nite automaton, so is L m.Proof. LetA = (Q;A;E; I; T) be a �nite automaton recognizing L, and let B = (S;A; F; J; U)as follows: S = Q m , J = I m , U = T m , and there is an edgem (p0; : : : ; pm�1) a�! m (p1; : : : ; pm�1; q) 2 F () p0 a�! q 2 E: (6)So there exist a path in Bm (q00; : : : ; qm�10 ) v00�! m (q10; : : : ; qm�10 ; q01) v10�! m (q20; : : : ; qm�10 ; q01; q11)� � � m (qjk�1; : : : ; qm�1k�1 ; q0k; : : : ; qj�1k ) vjk�1�! m (qj+1k�1; : : : ; qm�1k�1 ; q0k; : : : ; qjk)� � � m (qm�1n�1 ; q0n; : : : ; qm�2n ) vm�1n�1�! m (q0n; : : : ; qm�1n )if and only if for each 0 � j � m� 1 there is a path in Aqj0 vj0�! qj1 vj1�! � � �qjn�1 vjn�1�! qjn:Hence L m is recognized by B.Recall the notations: let x = xnm�1 � � �x0 be a �-representation onX of Z =P0�k�nm�1 xk�k ,and let, for 0 � j � m�1, x(j) = (xmk+j)0�k�n�1. Let y = ynm�1 � � �y0 be a �-representationon Y of Z, and let, for 0 � j � m� 1, y(j) = (ymk+j)0�k�n�1.Theorem 1 . Let X and Y be two �nite alphabets of digits. Let ' : X� ! Y � be a digitset conversion in base � and let  : X�! Y � be a digit set conversion in base 
 = �m suchthat y = '(x) () y(j) =  (x(j)); for 0 � j � m� 1:� If  is p-local then ' is (p� 1)m+ 1-local.� If  is computable by a letter-to-letter �nite automaton, so is '.� If  is computable by an on-line �nite automaton with delay �, then ' is computable by anon-line �nite automaton with delay m�.� If  is letter-to-letter right subsequential, so is '.Proof. 1) Suppose that is p-local: there exist l and r such that p = l+r+1 and 	 : Xp ! Ysuch that for each 0 � j � m�1 and 0 � k � n�1, ymk+j = 	(xm(k+l)+jxm(k+l+1)+j � � �xm(k�r)+j).Hence ymk+j is determined through a window containing xm(k+l)+j � � �xm(k�r)+j of length(p� 1)m+ 1, and ' is a (p� 1)m+ 1-local function.2) Suppose that  is computable by a letter-to-letter �nite automatonA = (Q;X�Y;E; I; T ).By the same construction as in the proof of Proposition 9, we de�ne a letter-to-letter �nite14



automaton B = (S;X � Y; F; J; U), with S = Q m , J = I m , U = T m , and edges arede�ned as in Equation (6).Let x = xnm�1 � � �x0 2 X� and y = '(x) = ynm�1 � � �y0 2 Y �. Since y(j) =  (x(j)) for0 � j � m � 1, (x(j); y(j)) is the label of a path recognized by A. That B recognizes ' isproved as in Proposition 9.3) Suppose that  is computable by an on-line �nite automatonA = (Q;X�(Y ["); E; q0; !)with delay �, where ! : Q ! Y � is a partial terminal function. By the same constructionas above, we de�ne a letter-to-letter �nite automaton B = (S;X � (Y [ "); F; s0; �), withS = Q m , s0 = m (q0; : : : ; q0), �( m (p0; : : : ; pm�1)) = m (!(p0); : : : ; !(pm�1)) for statespj 2 Q such that !(pj) is de�ned. Edges are de�ned as in Equation (6). Clearly, B is leftsubsequential. Moreover, if A has delay �, every path of length m� in B is labelled by couplesbelonging to X � ", so B is on-line with delay m�.4) Suppose now that  is recognized by a letter-to-letter right subsequential automaton A.The same construction as in 3) can be used, with the only change on the de�nition of edges,that is, Equation (6) is replaced bym (p0; : : : ; pm�1) a�! m (q; p1; : : : ; pm�2) 2 F () pm�1 a�! q 2 E: (7)One can ask about the converse problem: are properties satis�ed by base � transferableto base 
 = �m? The answer is well-known for standard number systems: digits are tobe grouped by blocks of length m. More generally, let x = xnm�1xnm�2 � � �x0 a word oflength nm in X�. It can be written as x = x[n�1] � � �x[0], where, for 0 � k � n � 1,x[k] = x(k+1)m�1x(k+1)m�2 � � �xkm is the k-th block of length m of x (from the right). Denoteby �(x[k]) the value in base � of this word, i.e. �(x[k]) = x(k+1)m�1�m�1 + � � �+ xkm, andput �k = �(x[k]). Let Xm = f�(dm�1 � � �d0) j dj 2 X for 0 � j � m � 1g. Then �k 2 Xm.Analogously, put �k = �(y[k]) 2 Ym.Proposition 10 . Let X and Y be two �nite alphabets of digits, and let ' : X� ! Y � bea digit set conversion in base �. Let  : X�m ! Y �m be a digit set conversion in base 
 = �mde�ned by �n�1 � � ��0 =  (�n�1 � � ��0) () ynm�1 � � �y0 = '(xnm�1 � � �x0):� If ' is q-local with q = (p� 1)m+ 1 then  is p-local.� If ' is computable by a letter-to-letter �nite automaton, so is  .Proof. 1) Let y = '(x), and suppose that ' is q-local: then yk is determined by a windowof length q. Hence a factor of length m, yk � � �yk�m+1, is determined by a window of lengthq +m� 1. It is necessary that q +m� 1 be a multiple of m to have  a p-local function forsome p, so q +m� 1 = pm, and q = m(p� 1) + 1.2) Suppose that ' is computable by a letter-to-letter �nite automaton B = (Q;X�Y; F; I; T)We de�ne a letter-to-letter �nite automatonA = (Q;Xm�Ym; E; I; T): let � = �(xm�1 � � �x0) 2Xm and � = �(ym�1 � � �y0) 2 Ym. Thenq �=��! q0 2 E () q xm�1=ym�1�! q1 xm�2=ym�2�! � � �qm�1 x0=y0�! q0 2 B:15



Corollary 3 . If ' is computable by an on-line �nite automaton with delay m� (resp. isletter-to-letter right subsequential) and if every element of Xm has a unique �-representationon X, then  is computable by an on-line �nite automaton with delay � (resp. is letter-to-letter right subsequential).In general, the representation on X is ambiguous. However, suppose that on Y everyelement has a unique �-representation, and that ' is a letter-to-letter right subsequentialfunction satisfying a relation like Equation (1), then  is also letter-to-letter right subse-quential: suppose that, in B there are two paths of length mq x0=y0�! q1 x1=y1�! � � �qm�1 xm�1=ym�1�! q0and q v0=w0�! p1 v1=w1�! � � �pm�1 vm�1=wm�1�! p0such that �(xm�1 � � �x0) = �(vm�1 � � �v0) = �. By Equation (1), we get that� + q = xm�1�m�1 + � � �+ x0 + q = �mq0 + ym�1�m�1 + � � �+ y0and � + q = vm�1�m�1 + � � �+ v0 + q = �mp0 + wm�1�m�1 + � � �+ w0:Since the �-representation on Y is unique, p0 = q0, and y0 = w0, . . . , ym�1 = wm�1, hence,letting � = �(ym�1 � � �y0), there is a unique edge in A with input label �q �=��! q0and A is right subsequential.6 ApplicationsResults on base � = ipb presented in Section 4 are of course a corollary of Theorem 1 withm = 2 and 
 = �b. The same results hold true for base �ipb. Here we consider other rootsthan square ones.6.1 Base � = �1 � iLet us �rst recall some results on base � = �b�i, where b is an integer � 1. It is known ([19],[28]) that any complex number is representable in base � = �b� i with A = f0; : : : ; b2g forcanonical digit set. Every Gaussian integer has a unique representation of the form ak � � �a0,with ai 2 A. We recall the following result [31]: Addition in base � = �b� i, with digits inA = f0; : : : ; b2g, is a letter-to-letter right subsequential function.Remark that (�1� i)4 = �4, but that for any b � 2, there is no integer k 6= 0 such that(�b� i)k is an integer.Proposition 11 . 1) On digit set D = f�3; : : : ; 3g, addition in base � = �1� i is a 5-localfunction, and it is computable by an on-line �nite automaton with delay 4.2) On digit set D0 = f�2; : : : ; 2g, addition in base � = �1 � i is a 9-local function, and it iscomputable by an on-line �nite automaton with delay 8.16



Proof. 1) It is a consequence of Proposition 3 and of Theorem 1 with 
 = �4 and m = 4.2) It is a consequence of Proposition 4 and of Theorem 1.Note that, since in Theorem 1 digit sets in base � and in base 
 must be the same, wecannot say anything about addition in base � = �1 � i on the minimally redundant digitset f�1; 0; 1g.Remark 4 . Conversion in base �1� i between digit set D = f�3; : : : ; 3g or D0 = f�2; : : : ; 2gand A = f0; 1g is not on-line computable, but is computable by a right subsequential automa-ton.In [1] it is shown how to obtain the (�1+i)-representation of a Gaussian integer from the2-representation of its real and imaginary part by means of a right subsequential automaton.6.2 Base � = mpbNumber representation in base � = 3p2 has been studied by K�ormendi in [22].More generally, let b be an integer, jbj � 2, and let m be a positive integer. Then,regardless of the problem of which sets can be represented in base �, the following result is asimple corollary of Proposition 1, Proposition 2, Proposition 3, Proposition 4 and Theorem 1.Proposition 12 . Let b in Z such that jbj � 2, and let � = mpb.1) Addition in base � on f0; : : : ; jbj � 1g is a letter-to-letter right subsequential function.2) If jbj � 3, let D = f�a; : : : ; ag where a = bjbj=2c+ 1. Then addition in base � on D is a(m+ 1)-local function. Addition is computable by an on-line �nite automaton with delay m.3) If jbj � 2 is even, let a = jbj=2 and D = f�a; : : : ; ag. Then addition in base � on D is a(2m + 1)-local function. Addition is computable by an on-line �nite automaton with delay2m.7 Golden ratio baseThis section presents results on numeration systems which are of a di�erent kind: there isno power of the base which is an integer. Nevertheless, we think they might be of interest,because they give an example where addition is computable by an on-line �nite automaton,but is not local.Let � > 1 be a real number. Any real number x 2 [0; 1] can be represented in base � bythe following greedy algorithm [29]:Let x1 = b�xc and let r1 = f�xg be the fractional part. Then iterate for k � 2, xk = b�rk�1cand rk = f�rk�1g. Thus x =Pk�1 xk��k , where the digits xk are elements of the canonicalalphabet A = f0; : : : ; b�cg if � =2 N, A = f0; : : : ; � � 1g otherwise. The sequence (xk)k�1is called the �-expansion of x. When � =2 N, a number x may have several di�erent �-representations on A: this system is naturally redundant. The �-expansion obtained by thegreedy algorithm is the greatest one in the lexicographic ordering.Here we focus on numbers � which are de�ned as follows: � is the dominant root of anequation of the form Xm � aXm�1 � aXm�2 � � � � � aX � b17



where a � b � 1 are integers, and m � 2. Such a root is a real number > 1. Thenumeration systems de�ned by bases of that kind are called con
uent numeration systems.The canonical alphabet is then equal to A = f0; : : : ; ag. The most studied case is the goldenratio � = (1 +p5)=2, with m = 2, a = b = 1.We have proved in [13] that addition on A = f0; : : : ; ag in a con
uent numeration systemis left sequential 3. Moreover it has a bounded delay | it is realized by an automaton havingall its loops letter-to-letter [14] | so by the result of [16] quoted in the introduction, it isthen computable by an on-line �nite automaton. We present here a direct construction ofthe on-line automaton for base � .Proposition 13 . In base � = (1 +p5)=2, addition on f0; 1g is computable by an on-line�nite automaton with delay 3.Proof. Input words start with 00. We de�ne an on-line �nite automaton L = (Q; f0; 1; 2g�(f0; 1g [ "); E; f"g). The transient part of L is of the form� " 0="�! 0 0="�! 00 and 00 0="�! 000; 00 1="�! 001; 00 2="�! 002.In the synchronous part of L edges must satisfy the propertys1s2s3 d=e�! t1t2t3 2 E () s1��1+s2��2+s3��3+d��4 = e��1+t1��2+t2��3+t3��4 (8)and for any state s1s2s3 2 Q, s1��1 + s2��2 + s3��3 2 [0; 1[. Edges are the following ones:� for d 2 f0; 1; 2g, 000 d=0�! 00d� 001 0=0�! 010; 001 1=0�! 100; 001 2=0�! 101� 002 0=0�! 11�1; 002 1=1�! 000; 002 2=1�! 001� for d 2 f0; 1; 2g, 100 d=1�! 00d� 101 0=1�! 010; 101 1=1�! 100; 101 2=1�! 101� 010 0=0�! 100; 010 1=0�! 101; 010 2=1�! 0�12� 0�12 0=0�! 01�1; 0�12 1=0�! 010; 0�12 2=0�! 100� 1�12 0=1�! 01�1; 1�12 1=1�! 010; 1�12 2=1�! 100� 01�1 0=0�! 001; 01�1 1=0�! 002; 01�1 2=0�! 1�12� 11�1 0=1�! 001; 11�1 1=1�! 002; 11�1 2=1�! 1�12.The on-line automaton L is not a local automaton, since it has two loops with same inputlabel 010 1=0�! 101 0=1�! 01011�1 1=1�! 002 0=0�! 11�1:In fact, we can prove the following.Proposition 14 . Addition in base � on alphabet f0; 1g is not a local function.Proof. Let us suppose that addition ' : f0; 1; 2gN ! f0; 1gN in base � is a p-localfunction for some p. Thus there exists a function � : f0; 1; 2gp ! f0; 1g such that if x =(xi)i�1 2 f0; 1; 2gN and y = (yi)i�1 2 f0; 1gN, then y = '(x) if and only if for every k � 0,yk = �(xk � � �xk+p�1). Since �(1p) can take only value 0 or 1, for n large enough, the image3The result of addition belongs to the alphabet A, but is not the greedy �-expansion.18



of a factor containing only n ones is in f0; 1g�0lf0; 1g� or in f0; 1g�1lf0; 1g�, for some largel. Since the word 0001n0! has no equivalent � -representation containing a large factor ofzeroes, �(1p) must be equal to 1. On the other hand, the word 0021n20! has no equivalent� -representation on f0; 1g with a large factor entirely composed of ones. Therefore additionin base � is not local on f0; 1g.Actually, it is possible to show that addition in base � is 12-local on the alphabetf0; 1; : : : ; 12g (see [7]).These results are also valid for linear numeration systems de�ned by a linearly recurrentsequence U = (un)n�0 of the formun+m = aun+m�1 + aun+m�2 + � � �+ aun+1 + bun; n � 0u0 = 1; ui = (a+ 1)i; 1 � i � m� 1where a � b � 1 are integers, and m � 2. Every positive integer N has a representationin this system on the alphabet A = f0; : : : ; ag, meaning that one can write N as N =dnun + � � �+ d0u0, with digits dk 2 A, using a greedy algorithm:Let n such that un � N < un+1; let dn be the quotient of the division of N by un, and letrn be the remainder: dn = q(N; un) and rn = r(N; un). Then iterate dk = q(rk+1; uk) andrk = r(rk+1; uk) for n � 1 � k � 0. The word dn � � �d0 2 A� is the normal U -representationof N . As above addition is left subsequential [13] and has a bounded delay, so is computableby an on-line �nite automaton.For m = 2, a = b = 1, we get the Fibonacci numeration system.Corollary 4 . Addition on f0; 1g in the Fibonacci numeration system is computable byan on-line �nite automaton with delay 3, but is not parallelizable.Proof. It is the same automaton as in Proposition 13 with a terminal function ! de�nedby: if s1s2s3 2 Q, !(s1s2s3) is equal to the Fibonacci representation of the integer s1u2 +s2u1 + s3u0.References[1] J.-P. Allouche, E. Cateland, W.J. Gilbert, H.-O. Peitgen, J.O. Shallit, G. Skordev,Automatic Maps in Exotic Numeration Systems. Theory of Computing Systems 30(1997), 285{331.[2] T. Aoki, H. Amada, and T. Higuchi, Real/complex recon�gurable arithmetic usingredundant complex number systems. Proc. 13th Symposium on Computer Arithmetic(1997), 200{207.[3] A. Avizienis, Signed-digit number representations for fast parallel arithmetic. IRETransactions on electronic computers 10 (1961), 389{400.[4] M. P. B�eal, Codage symbolique, Masson, 1993.[5] J. Berstel, Transductions and Context-free Languages. Teubner, 1979.19
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