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Abstract

Univoque numbers are real numbers A > 1 such that the num-
ber 1 admits a unique expansion in base A, i.e., a unique expansion
1 =730 a; AU with a; € {0,1,...,[\] — 1} for every j > 0.
A variation of this definition was studied in 2002 by Komornik and
Loreti, together with sequences called admissible sequences. We show
how a 1983 study of the first author gives both a result of Ko-
mornik and Loreti on the smallest admissible sequence on the set
{0,1,...,b}, and a result of de Vries and Komornik (2007) on the
smallest univoque number belonging to the interval (b, b+ 1), where
b is any positive integer. We also prove that this last number is
transcendental. An avatar of the Thue-Morse sequence, namely the
fixed point beginning in 3 of the morphism 3 — 31, 2 — 30, 1 — 03,
0 — 02, occurs in a “universal” manner.

2000 Math. Subject Classification. 11A63, 11B83, 11B85, 68R15,
11J81.

Keywords. Beta-expansion, univoque numbers, iteration of continu-
ous functions, Thue-Morse sequence, uniform morphism, automatic
sequence, transcendence.

1 Introduction

Komornik and Loreti determined in [18] the smallest univoque real number
in the interval (1,2), i.e., the smallest number A € (1,2) such that 1 has
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a unique expansion 1 = > ga;/N*™ with a; € {0,1} for every j > 0.
The word “univoque” in this context seems to have been introduced (with
a slightly different meaning) by Dardczy and Katai in [12, 13], while char-
acterizing unique expansions of the real number 1 was done by Erdés, Jod,
and Komornik in [15]. The first author and Cosnard showed in [4] how the
result of [18] parallels (and can be deduced from) their study of a certain
set of binary sequences arising in the iteration of unimodal continous func-
tions of the unit interval that was done in [11, 2, 1]. The relevant sets of

binary sequences occurring in references [2, 1], resp. in reference [18], can
be defined by

r = {Ae{0,1}N, VE>0, A<oFA < A}

Dorice = {A€{0,1}N, VE>1, A< oA < A}

where o is the shift on sequences and the bar operation replaces 0’s by 1’s and
s by 07s, i.e., if A= (A,)n>0, then oA := (a,11)n>0, and A := (1 — an)n>0;
furthermore < denotes the lexicographical order on sequences induced by
0 < 1, the notation A < B meaning as usual that A < B and A # B. The
smallest univoque number in (1,2) and the smallest nonperiodic sequence
of the set I both involve the Thue-Morse sequence (see for example [6] for

more on this sequence).

It is tempting to generalize these sets to alphabets with more than 2
letters.

Definition 1 For b a positive integer, we will say that the real number
A>1is{0,1,...,b}-univoque if the number 1 has a unique expansion as 1 =
> 50 a;A"UTYD where a; belongs to {0, ...,b} for all j > 0. Furthermore, if
A>1is{0,1,...,[\] — 1}-univoque, we will simply say that A is univoque.

Remark 1 If A > 1is {0,1,...,b}-univoque for some positive integer b,
then A < b+ 1. Also note that any integer ¢ > 2 is univoque, since there is
exactly one expansion of Las 1=}, a;q"U*Y with a; € {0,1,...,q—1},
namely 1 =" o(¢ — 1)g U+,

Komornik and Loreti studied in [19] the reals A belonging to the interval
(1,b+ 1] that are {0,1,...,b}-univoque. For their study, they introduced
admissible sequences on the alphabet {0,1,...,b}. Denote, as above, by
o the shift on sequences, and by bar the operation that replaces every
t€{0,1,...,b} by b—t, ie., if A= (a,)n>0, then A := (b — a,)pn>0. Also
denote by < the lexicographical order on sequences induced by the natural



order on {0,1,...,b}. Then, a sequence A = (a,)n>o on {0,1,...,b} is
admissible if

Vk > 0 such that a, < b, oA < A,
Vk > 0 such that a;, >0, o"'A > A

(Note that our notation is not exactly the notation of [19], since our se-
quences are indexed by N and not N\ {0}.) These sequences have the
following property: the map that associates with a real A € (1,b+ 1] the
sequence of coefficients (a;);>0 € {0,1,...,b} of the greedy (i.e., the lexico-
graphically largest) expansion of 1, 1 =3¢ a;A"UtY s a bijection from
the set of {0,1,...,b}-univoque \’s to the set of admissible sequences on
{0,1,...,b} (see [19]).

Now there are two possible generalizations of the result of [18] about
the smallest univoque number in (1,2), i.e., the smallest admissible binary
sequence. One is to look at the smallest (if any) admissible sequence on the
alphabet {0,1,...,b}, as did Komornik and Loreti in [19], the other is to
look at the smallest (if any) univoque number in (b, b+ 1), as did de Vries
and Komornik in [14].

It happens that the first author already studied a generalization of the
set I' to the case of more than 2 letters (see [1, Part 3]). Interestingly
enough this study was not related to the iteration of continuous functions
as was the study of I', but only introduced as a tempting formal arithmetico-
combinatorial generalization of the study of the set of binary sequences I

to a similar set of sequences with more than two values.

The purpose of the present paper is threefold:

1) to show how the 1983 study [1, Part 3, p. 63-90] gives both the
result of Komornik and Loreti in [19] on the smallest admissible sequence
on {0,1,...,b}, and the result of de Vries and Komornik in [14] on the
smallest number univoque number X belonging to (b,b + 1) where b is any
positive integer;

2) to bring to light a universal morphism that governs the smallest ele-
ments in 1) above, and to show that the infinite sequence generated by this
morphism is an avatar of the Thue-Morse sequence;

3) to prove that the smallest univoque number belonging to (b,b + 1)
(where b is any positive integer) is transcendental.

The paper consists of five sections. In Section 2 below we recall some
results of [1, Part 3, p. 63-90] on the generalization of the set I" to a (b+1)-
letter alphabet. Then we give some properties of the lexicographically least
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nonperiodic sequence of this set, completing results of [1, Part 3, p. 63—
90]. In Section 3 we give two corollaries of the properties of this least
sequence: one gives the result in [19], the other gives the result in [14]. The

transcendence results are proven in the last section.

2 The generalized I' and 'y, sets

Definition 2 Let b be a positive integer, and A be a finite ordered set with
b+ 1 elements. Let ap < ay < ... < oy be the elements of A. The bar
operation is defined on A by a; = o,_;. We extend this operation to A"
by (an)n>0 := (@n)n>0- Let o be the shift on AN, defined by o((a,)n>0) :=

(an—l—l)nZO-

We define the sets I'(A) and [gpice(A) by:
I'(A) = {A = (an)ns0 € AY, a9 = max A, Vk >0, A <oFA < A},

Carict(A) == {A = (an)n>0 € AY, ap = max A, Vk > 1, A <orA < A}

Remark 2 The set I'(A) was introduced by the first author in [1, Part 3,
p. 63-90]. Note that there is a misprint in the definition given on p. 66 in
[1]: ag_; should be changed into ag_;_; as confirmed by the rest of the text.

Remark 3 A sequence belongs to I'y.ii(A) if and only if it belongs to
I'(A) and is nonperiodic. Namely, oA = A if and only if A is k-periodic;
if 0¥ A = A, then 0?* A = A, and the sequence A is 2k-periodic.

Remark 4 If the set A is given by A := {i,i+ 1,...,i + z} where ¢ and
z are integers, equipped with the natural order, then for any x € A, we
have ¥ = 2i 4+ z — x. Namely, following Definition 2 above, we write o :=
i,ap :=1+1,... 0, := i+ z. Hence, for any j € [0, z|, we have @; = a,_;,
which can be rewritten i +j = i + 2z — j, i.e., for any x in A, we have
T=i+z—(x—i)=2i+2z—uz.

A first result is that the sets ['g0t(A) are closely linked to the set of
admissible sequences whose definition was recalled in the introduction.

Proposition 1 Let A = (a,)n>0 be a sequence in {0,1,... b}, such that
ap =t € [0,b]. Suppose that the sequence A is not equal to bbb ... Then
the sequence A is admissible if and only if 2t > b and A belongs to the set
Caricc({0—t,b—t + 1,...,t}). (The order on {b—t,b—t+1,... t} is
induced by the order on N. From Remark 4 the bar operation is given by
j=b—j.)



Proof. Let A = (a,)n>0 be a sequence belonging to {0,1,...,b}" such that
ap =1t € [0,b— 1], and such that A#bbb...

« First suppose that 2t > b and A belongs to Igpic({b — t,0 — t +
1,...,t}). Then, for all k > 1, A < 0*A < A, which clearly implies that A
is admissible.

x Now suppose that A is admissible. We thus have

Vk > 1 such that a_, < b, oFA < A,
Vk > 1 such that a;_, >0, oFA > A.

We first prove that, if the sequence A is not a constant sequence, then
VE>1, A< oA < A

We only prove the inequalities ¥4 < A. The remaining inequalities are
proved in a similar way. If a;_; < b, the inequality c*A < A holds. If
ap—1 = b, there are two cases:

e cither ap = a; = ... = a;_1 = b, then, if ap < b we clearly have
oA < A; if a;, = b, then the sequence o* A begins with some block of
b’s followed by a letter < b, thus it begins with a block of 0’s shorter
than the initial block of b’s of the sequence A itself, hence ¥ A < A;

e or there exists an index ¢ with 1 < ¢ < k, such that a,_; < b, and
ap = Gyp1 = ... = ap_, = b. As A is admissible, we have 0‘A < A.
It thus suffices to prove that o*A < ¢A. This is clearly the case if
aj < b. On the other hand, if a; = b, the sequence o*A begins with a
block of b’s which is shorter than the initial block of b’s of the sequence
o' A, hence 0¥ A < o’ A.

Now, since ap = t and 0*A < A for all k > 1, we have a;, < t for all
k > 0. Similarly, since 0*A > A for all k > 1, we have a; > b — t for all
k > 1. Finally A > A implies that ¢t = a9 > b —t. We thus have that
2t > b and A belongs to I'({b —t,b—t+1,...,t}). Now, if b = 2t, then
{b—t,b—t+1,....,t} = {t} and ¢t = ¢t. This implies that A=t ¢ ¢ ..., which
is not an admissible sequence. [

Remark 5 For b = 1, this (easy) result is noted without proof in [15] and
proved in [4].

We need another definition from [1].

Definition 3 Let b be a positive integer, and A be a finite ordered set with
b+ 1 elements. Let ay < a; < ... < ay be the elements of A. We suppose
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that A is equipped with a bar operation as in Definition 2. Let A = (a,)n>0
be a periodic sequence of smallest period T, and such ar_; < max.A. Let
ar—1 = «a; (thus j < b). Then the sequence ®(A) is defined as the 27-

periodic sequence beginning with ag a; ... ar—2 ajy1 aGo @y ... ar—3 ap—;_1,
ie.,

0o .__ —_— P — 00
q)((&o a ... ar—o Oéj) = (ao ap ... ar—2 Q41 Qo Ay ... Qr—2 Oéb,jfl) .

We first prove the following easy claim.

Proposition 2 The smallest element of I'({b—t,0—t+1,...,t}) (where
2t > b) is the 2-periodic sequence (t (b—1))® =t (b—t)t (b—1t)t ...).

Proof. Since any sequence A = (a,),>0 belonging to I'({b—t,b—t+1,...,t})
begins in ¢, and satisfies A > A, then it must satisfy ap = ¢ and a; > b—t.
Now if a sequence A belonging to I'({b —t,b —t + 1,...,t}) is such that
ap = t and a; = (b — t), then it must be equal to the 2-periodic sequence
(t (b—1))> ([1, Lemma 2, b, p. 73]). Since this periodic sequence trivially
belongs to I'({b—t,b—t +1,...,t}), it is its smallest element. [

Denoting as usual by ®° the s-th iterate of ®, we state the following
theorem which is a particular case of the theorem on pages 72-73 of [1]
about the smallest elements in certain subintervals of I'({0, 1,...,b}), and

of the definition of g-mirror sequences given in [1, Section II, 1, p. 67] (here
q=2).

Theorem 1 ([1]) Define P := (t (b—t)>* = (t (b—t)t (b—1t)t ...).
The smallest nonperiodic sequence in the set T({b—t,b—t+1,...,t}) (i.e.,
the smallest element of Ugprict({b —t,0 —t 4+ 1,...,t})) is the sequence M
defined by

M = lim ®*(P),

S§—00
that actually takes the (not necessarily distinct) values b—t, b—t+1, t —1,
t. Furthermore, this sequence M = (my)p>0o =t b—t+1 b—t t b—
t t—1 ... can be recursively defined by

Vk Z 0, Mo2k_1 = t,
Vk Z 0, Mo2k+1_1 = b+ 1 — t,
Vk 2 0, VJ c [O,2k+1 — 2], m2k+1+]’ - m_J

It was proven in [1] that the sequence lim, . ®*((t (b — t))> is 2-
automatic (for more about automatic sequences, see [7]). The second author
noted that this sequence is actually a fixed point of a uniform morphism of
length 2 as soon as the cardinality of the set {b —¢,b—t+1,...,b} is at



least equal to 4, i.e., 2t > b+ 3. (Recall that we always have ¢t > b —t, i.e.,
2t > b.) More precisely we have Theorem 2 below, where the Thue-Morse
sequence pops up, as in [1] and in [19], but also as in [2] and [18]. Before
stating this theorem we give a definition.

Definition 4 The “universal” morphism © is defined on {ey, €1, €9, e3} by
@(63) = €3€1, @(62) = €3€p, @(61) = €p€3, @(60) = €p€a.
Note that this morphism has an infinite fixed point beginning in eg

O (e3) = ]}Lrgo@k(eg) =e3 €1 €y €3 € €2 €3€E1 €E....

Theorem 2 Let (£,,),>0 be the Thue-Morse sequence, defined by ey = 0 and
for all k > 0, eop = € and €911 = 1 — €. Then the smallest nonperiodic
sequence M = (my)n>o belonging to T'({b—t,b—t+1,...,t}) satisfies

Vn >0, m,=¢epy1 —(2t—b—1)g, +t— 1.
Using the morphism © introduced in Definition 4 above we thus have

e if 2t > b+ 3, then the sequence M 1is the fixed point beginning in t
of the morphism deduced from © by renaming eq, e1, €2, €3 respectively
b—t,b—t+1,t—1,t (note that the condition 2t > b+ 3 implies that
these four numbers are distinct);

o if2t = b+2 (thusb—t+1 = t—1), then the sequence M is the pointwise
image of the fixed point beginning in ez of the morphism © by the map
g defined by g(es) :==t, g(e2) = gle1) ==t — 1, g(eo) :==b —t;

o if2t =b+1 (thusb—t =t—1 and b—t+1 =t ), then the sequence M is
the pointwise image of the fixed point beginning in ez of the morphism

© by the map h defined by h(es) = h(ey) :==t, h(ea) = h(eg) :=1t — 1.

Proof. Let us first prove that the sequence M = (my,)n>0 is equal to the
sequence (Up)n>0, Where u, = €,41 — (2t — b — 1)g,, +t — 1. It suffices
to prove that the sequence (uy,),>o satisfies the recursive relations defining
(my,)n>0 that are given in Theorem 1. Recall that the sequence (&,),>0 has
the property that ¢, is equal to the parity of the sum of the binary digits
of the integer n (see [6] for example). Hence, for all & > 0, ep2e_; = 0,
Eyar+1_7 = 1, and e92r = 92641 = 1. This implies that for all £ > 0,
Ug2k_q = t and ugeer1_; = b+ 1 — t. Furthermore, for all £ > 0, and for all
j €10,2 — 2], we have eger1y; =1 —¢; and g1y = 1 — ;41. Hence

U2k+1+j = b — U/J = U/_J



To show how the “universal” morphism © enters the picture, we study
the sequence (v,,),>o with values in {0,1}? defined by: for all n > 0, v, :=
(€n,Eng1). Since we have, for all n > 0, ve, = (g,,1 — ,) and vo, 11 =

(1 —epn,ent1), we clearly have

if v, =(0,0), then wvy, = (0,1) and ws,1 = (1,0),
if v, =(0,1), then wvy, =(0,1) and w9,+1 = (1,1),
if v, =(1,0), then wvy, = (1,0) and w9,4+1 = (0,0),
if v, =(1,1), then vy, = (1,0) and wo,4+1 = (0,1).

This exactly means that the sequence (vy,),>0 is the fixed point beginning
in (0,1) of the 2-morphism

I A

We may define ¢y := (1,0), e; := (1,1), e := (0,0), e3 := (0,1). Then the

above morphism can be written
€3 — €361, €2 — €3€0, €1 — €p€3, €9 — €oC2

which is the morphism ©. The above construction shows that the sequence
(Un)n>0 is a fixed point of O.

Now, define the map w on {0,1}? by
w(z,y)=y—2t—b—1)x+t— 1.
We have w(v,) = m,, for all n > 0. Thus

e if 2t > b+ 3, the sequence (m,,),>o takes exactly four distinct values,
namely b —t,b—t+ 1,¢ — 1,¢. This implies that (m,,),>o is the fixed
point beginning in ¢ of the morphism obtained from © by renaming
the letters, i.e., e3 = t,e0 — (t —1),e1 — (b—t+ 1), 9 — (b—1).
The morphism can thus be writen t — ¢ (b—t+1), (t—1) — ¢ (b—1),
b—t+1)—=b—-t)t,(b—t) = (b—1t) (t—1);

o if 2t = b+ 2 (resp. 2t = b+ 1) the sequence (m,,)n>o takes exactly
three (resp. two) values, namely b—¢,t —1,¢ (resp. t —1,¢). It is still
the pointwise image by © of the sequence (vy,),>0. Renaming © as g
(resp. h) as in the statement of Theorem 2 only takes into account
that the integers b —¢,b —t + 1,¢t — 1,¢ are not distinct. [



Remark 6 The reason for the choice of indexes for es, s, €1, €g is that the
order of indexes is the same as the natural order on the integers ¢t,t —1,b—
t+ 1,b —t to which they correspond when 2t > b+ 3. In particular if
b = t = 3, the morphism reads: 3 — 31, 2 — 30, 1 — 03, 0 — 02.
Interestingly enough, though not surprisingly, this morphism also occurs
(up to renaming once more the letters) in the study of infinite square-
free sequences on a 3-letter alphabet. Namely, in the paper [9], Berstel
proves that the square-free Istrail sequence [16], originally defined (with
no mention of the Thue-Morse sequence) as the fixed point of the (non-
uniform) morphism 0 — 12, 1 — 102, 2 — 0, is actually the pointwise
image of the fixed point beginning in 1 of a 2-morphism ©" on the 4-letter
alphabet {0, 1,2,3} by themap 0 — 0,1 — 1,2 — 2,3 — 0. The morphism
©’ is given by

©'(0) =12, ©'(1) =13, ©'(2) = 20, ©'(3) = 21.

The reader will note immediately that ©' is another avatar of © obtained by
renaming letters as follows: 0 — 2,1 — 3,2 — 0,3 — 1. This, in particular,
shows that the sequence (my)n>0, in the case where 2t = b+ 2, is the fized
point of the non-uniform morphismt —t (t—1) (b—t), (t—1) =t (b—1),
(b—t) — (t—1), i.e., an avatar of Istrail’s square-free sequence. Furthermore
it results from [9] that this sequence on three letters cannot be the fized point
of a uniform morphism. A last remark is that the square-free Braunholtz
sequence on three letters given in [10] (see also [9, p. 18-07]) is exactly our
sequence (Mmy,)n>0 whent = b= 2, i.e., thesequence 210201210120 ...

3 Small admissible sequences and small uni-
voque numbers with given integer part

3.1 Small admissible sequences with values in the set
{0,1,...,b}

In [19] the authors are interested in the smallest admissible sequence with
values in the set {0,1,...,b}, where b is an integer > 1. They prove in
particular the following result, which is an immediate corollary of our The-

orem 2.

Corollary 1 (Theorems 4.3 and 5.1 of [19]) Let b be an integer > 1.
The smallest admissible sequence with values in {0, 1,...,b} is the sequence
(24 ens1)ns0 ifb=22+1, and (z + €p41 — €pn)n>0 if b = 22.



Proof. Let A = (an)n>0 be the smallest (non-constant) admissible sequence
with values in {0,1,...,b}. Since A > A, we must have ag > @5 = b — ao.

Thus, if b = 22 + 1 we have ag > z + 1. We also have, for all i > 0,
ap < a; < ap. Now the smallest element of the set I'({b — 2z — 1,b —
Z,...,z—1,z+1}) is the smallest admissible sequence on {0, 1, ..., b} that
begins in z + 1. Hence this is the smallest admissible sequence with values
in {0,1,...,b}. Theorem 2 gives that this sequence is (my,),>o with, for all
n>0,m, =¢cpt1+ 2.

If b = 2z, we have ag > z. But if ag = z, then ay = z, and the conditions
of admissibility implies that a,, = z for all n > 0 and (a,)n>0 would be the
constant sequence (z z z...). Hence we must have ay > z + 1. Now the
smallest element of the set I'({b—z—1,b—2z,...,2—1,2+1}) is the smallest
admissible sequence on {0, 1,...,b} that begins in z + 1. Hence this is the
smallest admissible sequence with values in {0,1,...,b}. Theorem 2 gives
that this sequence is (my,),>0 with, for all n >0, m, =41 —ep+ 2. O

3.2 Small univoque numbers with given integer part

We are interested here in the univoque numbers A in an interval (b, b + 1]
with b a positive integer. This set was studied in [17], where it was proven of
Lebesgue measure 0. Since 1 = . a; A", X € (b,b+1] and ag < b, the
fact that the expansion of 1 is unique, hence equal to the greedy expansion,
implies that ayg = b. In other words, we study the admissible sequences
with values in {0, 1,...,b} that begin in b, i.e., the set Igiee({0, 1, ..., b}).
We prove here, as a corollary of Theorem 2, that, for any positive integer
b, there exists a smallest univoque number belonging to (b,b + 1]. This
result was obtained in [14] (see the penultimate remark in that paper); it
generalizes the result obtained for b =1 in [18].

Corollary 2 For any positive integer b, there exists a smallest univoque
number in the interval (b, b+ 1]. This number is the solution of the equation
1 =3 _od A1, where the sequence (dy,)n>0 is given by, for all n > 0,
dy = pp1— (b—1)en +b— 1.

Proof. 1t suffices to apply Theorem 2 with ¢t =b. [

4 Transcendence results

We prove here, mimicking the proof given in [3], that numbers such that the
expansion of 1 is given by the sequence (m,,),>o are transcendental. This
generalizes the transcendence results of [3] and [19].
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Theorem 3 Let b be an integer > 1 and t € [0,b] be an integer such that
2t > b+ 1. Define the sequence (my)n>o as in Theorem 2 by, for alln >0,
My, = Epy1 — (2t —b— 1)e, +t — 1, thus the sequence (my,),>o begins with
t b—t+1 b—t t b—t t—1 ... Then the number X\ belonging to
(1,b+ 1) defined by 1 = > _ maA"""1 is transcendental.

Proof. Define the £1 Thue-Morse sequence (r,) by r, = (—=1)". We
clearly have r, = 1 —2¢,, (recall that e, is 0 or 1). It is also immediate that
the function F' defined for the complex numbers X such that |X| < 1 by
F(X) =3 X" satisfies F(X) = [[,2(1 = X2*) (sce, e.g., [6]). Since

2m, =26,41 — 22t —b—1)e, + 2t —2=b—rp 1+ (2t —b—1)r,
we have, for |X| < 1,

QXZmnX” =(2t—b—1)X-1)F(X)+1+ 16_%
n>0

Taking X = 1/X where 1 =37 - m,A™""", we get the equation

b
2=(2t—b—DAX ' =DF(1/A)+1+ T
Now, if A were algebraic, then this equation shows that F'(1/\) would be an
algebraic number. But, since 1/A would be an algebraic number in (0, 1),
the quantity F'(1/\) would be transcendental from a result of Mahler [20],
giving a contradiction. [J

Remark 7 In particular the {0,1, ..., b}-univoque number corresponding
to the smallest admissible sequence with values in {0, 1,...,b} is transcen-
dental, as proved in [19] (Theorems 4.3 and 5.9). Also the smallest univoque
number belonging to (b,b + 1) is transcendental.

5 Conclusion

There are many papers dealing with univoque numbers. We will just men-
tion here the study of univoque Pisot numbers. The authors together with
K. G. Hare determined in [5] the smallest univoque Pisot number, which
happens to have algebraic degree 14. Note that the number corresponding
to the sequence of Proposition 2 is the larger real root of the polynomial
X? —tX — (b—t+ 1), hence a Pisot number (which is unitary if ¢ = b).
Also note that for any b > 2, the real number § such that the -expansion
of 1 is b1* is a univoque Pisot number belonging to the interval (b, b+ 1).
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It would be interesting to determine the smallest univoque Pisot number
belonging to (b,b+ 1): the case b = 1 was addressed in [5], but the proof
uses heavily the fine structure of Pisot numbers in the interval (1,2) (see
8, 21, 22]). A similar study of Pisot numbers in (b, b + 1) would certainly
help.

Acknowledgments. The authors thank M. de Vries and V. Komornik for

their remarks on a previous version of this paper.
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