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Abstract

Let 8 > 1 be a non-integral real number such that the #-expansion of every positive
integer is finite. If the set of #-expansions of all the positive integers is a context-free

language, then # must be a quadratic Pisot unit.

Résumé

Soit # > 1 un nombre réel non entier tel que le #-développement de tout entier
positif soit fini. Sil’on suppose que ’ensemble des #-développements des entiers positifs

forme un langage algébrique, alors € doit étre un nombre de Pisot quadratique unitaire.

In [1], to which this note is an addendum, it was proved (Theorem 2) that, if 6 is
a quadratic Pisot unit, then there exists a letter-to-letter finite two-tape automaton that
maps the representation of any integer in a linear numeration system canonically associated
with @ onto the “folded” #-expansion of that integer (we refer to [1] for definitions and

references).

As an immediate consequence ([1, Corollary 4]), it follows that, if # is a quadratic
Pisot unit, then the set of #-expansions of all the positive integers is a linear context-free

language. The purpose of this note is to establish the converse of that statement.

Let @ be a real number greater than 1. By a greedy algorithm every nonnegative
real number x can be expanded as an infinite sum of powers of 8, i.e. © may be written

as ¢ = Zk x,0", where the x,, are digits of a canonical alphabet Ay given by the

n=—0oo

*Université Paris 8 and Laboratoire Informatique Algorithmique: Fondements et Applications, Univer-
sité Paris 7 and C. N. R. S.

"Department of Mathematics GN-50, University of Washington, Seattle, Washington 98195, USA. Sup-
ported in part by USNSFEF Grant 9201369.



. in an issue dedicated to Marcel-Paul Schitzenberger

algorithm. Such a @-expansion of z is denoted by 2 = ap -+ -2g.x_12_5 -+, with a radix

point.

A Perron number is an algebraic integer # > 1 such that any other root of its minimal
polynomial is strictly smaller in modulus than 8. A Pisot number is an algebraic integer
# > 1 such that any other root of its minimal polynomial has modulus < 1. A Salem
number is an algebraic integer # > 1 such that any other root of its minimal polynomial
has modulus < 1, with at least one root of modulus 1. A unit is an algebraic integer such
that the constant term of its minimal polynomial is equal to 1. When # is a quadratic

Pisot unit, then the #-expansion of every integer is finite ([2]).

We can now state:

THEOREM 1 Latex 2e Let & > 1 be a non-integral real number such that the 6-
expansion of every positive integer is finite, and let Ag = {0,...,|0|} be the canonical
alphabet. Let Ry C Aj.Aj be the set of 6-expansions of all the positive integers. If Ry is

a context-free language, then 8 must be a quadratic Pisot unit.

Proof. From [2] it is known that if the @-expansion of every positive integer is finite,
then # must be a Pisot or a Salem number. Now, if Ry is a context-free language, by
the pumping lemma (Bar Hillel, Perles, Shamir theorem, see [3]), there exists a constant
N (Ryg) such that if w € Ry and |w| > N(Ry), then we may write w = a f3¢v such that

i) [fgl > 1
i) | fBg] < N(Rq)
iii) Yn > 0, af"8¢™y € Ry.

Let us introduce the following notation. If h = hy - - - hy, then w(h) = hi@F 1 4. hy
and 7(h) = h 0" + -+ hp 075,

When N has a f-expansion of the form w = w’.w”, the word w’ to the left of the radix
point is said to be the “integral part” of N, and the word w” to the right of the radix
point is said to be the “fractional part” of V.

Claim 1 The radix point in w cannot belong to f or g.
For otherwise one would get, by the pumping lemma, a word not in Rg.
Claim 2 The radix point in w cannot belong to «.
For, if @ = /., then
Yn >0, () + 7" f"Bg"y) = K, €N .

Thus K,+1 — K, is an integer between —1 and 1, and hence 0, which is impossible.
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Claim 3 The radix point in w cannot belong to .

Indeed, if v = +'.4" then the equation
Vn>0,  af'Bg"y" € Ry,

holds, which means that there exist infinitely many integers having the same “fractional

part”. And this is shown to be impossible by the following lemma.

LeMMA 1 Let & > 1 be a non-integral Pisot or Salem number and let z = Zf:_p 0
be a finite §-representation of an integer z, with ¢; € Z. Let ¢ = max|¢;]|, and 6; be an

algebraic conjugate of § of smallest modulus (< 1). Then
log(|2]e~(1 — 16;1))

log(16;]71)
B 0 B 9°
Proof. We have z =377 ¢0' andalsoz=3 "  ¢p#’, so
N i 617"
A<e 30 Il = e 2
i==p
and the result follows. ]

Thus, the fractional part of K,, = 7w(af"8g"y’) + 7(¥") cannot be the same for all n,

since, from the lemma, |y”| must increase with K. This proves Claim 3.

So w is of the form w = af3.3"¢gvy. Note that if f = ¢, then Vn > 0, af'.03"¢"~ € Ry,
and this is impossible by the same method as in Claim 2. Similarly, if ¢ = ¢, then
afri.f"y € Ry, ¥n > 0, and the same argument as in Claim 3 shows this is impossible.
So both f and ¢ are non-empty.

Let |[fl =i, |g| =1 |#'| = a, |8"| = d, and 2 = 7(af) —7(a) # 0,y = 7(g7) —7(y) # 0.
Let K, = w(af"3") + 7(8"g"y) € N. Thus

V>0, Kppy — K, =042 4079 1"y = A, € Z.

LEMMA 2 Let 8 be a non-integral Perron number. Suppose that for some integers

1,1,a,d and for some nonzero reals z, y,
gt g 49l = A, € Z, n>0. (1)

Then 1 = [ and 0 is a quadratic Pisot unit.

Proof. Since # is an algebraic integer, ' is an algebraic integer as well. Let P(X) =
X™ —fy X™ ' — .. — k,, in Z[X] be the minimal polynomial for #°. Then the sequence

{691z}, satisfies the linear recurrence relation

Up4m = klun—l—m—l +---+ kmun (2)
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Claim. The sequence {A,},>o satisfies the recurrence relation (2) for n sufficiently large
(n > K). Indeed,

En = Apim — k1 Ayt — - — kA, = [e—d—l(n+m) _ fypdmilntm=1) kmg—d—ln]‘

Since # > 1, the sequence ¢, tends to zero as n — oco. But €, € Z, so there exists K such

that e, = 0, n > K, which proves the claim.

Let ay = 6, and a, ... , a,, be the other zeros of P(X). Since P(X) is irreducible, all

a; are distinct and every linear recurrent sequence satisfying (2) is a linear combination

of geometric progressions {a?}nzo. Thus, for some complex numbers cq,..., ¢,
m
A, = Zc]a?, n > K. (3)
i=1

Moreover, all ¢; are nonzero. (Indeed, if ¢, = 0 and ¢, # 0, consider an automorphism of
the splitting field of P(X) which sends a, to a,. Applying this automorphism to (3) we
get a contradiction.) Next we use the following standard result from linear algebra which

is proved using the Vandermonde determinant.

Fact 1 Let (q,...,(, be distinct complex numbers such that
p
Y B =0, n>K.
j=1

Then B; =0, j <p.

Applying this to (1) and (3) we obtain that ¢; = 6%, 67' = «, for some s > 2,
6=y = ¢, and c; = 0 for j # 1,s. Since all ¢; must be nonzero, we get that m = 2. Thus,
P(X) is quadratic with zeros 6" and 8='. Then 6°~! = —ky € Z. Let us show that i = [.
In fact, ¢ > [, since # > 1, and i — [ # 1, since 6 is not an integer. If ¢ — [ > 2, we get that
6 is the (¢ — [)-th root of an integer, so it is either an integer, which we forbid, or it has
at least one conjugate of modulus # which contradicts the assumption that € is Perron.
Thus, 7 = and ks = —1.

In order to prove that # itself is a quadratic Pisot unit, we consider the polynomial
P(X"). It has @ as a zero, so all the conjugates of § must be its zeros as well. But
the polynomial P(X?) has ¢ zeros of modulus # and ¢ zeros of modulus #~'. Since 6 is
Perron, its conjugates must have modulus less than @, so they all have modulus §=!. But
the product of @ and all its conjugates is at least 1 in modulus, so there is exactly one
conjugate. This conjugate is real, so it is either =1 or —#~!. This means that 8 is a

quadratic Pisot unit. [

The proof of Theorem 1 is thus complete. [
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