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Abstract. For a given numeration system, the successor function maps the representation
of an integer n onto the representation of its successor n+1. In a general setting, the successor
function maps the n-th word of a genealogically ordered language L onto the (n+1)-th word
of L. We show that, if the ratio of the number of elements of length n + 1 over the number
of elements of length n of the language has a limit β > 1, then the amortized cost of the
successor function is equal to β/(β − 1). From this, we deduce the value of the amortized
cost for several classes of numeration systems (integer base systems, canonical numeration
systems associated with a Parry number, abstract numeration systems built on a rational
language, and rational base numeration systems).

1 Introduction

Deeply linked with numeration systems and the representation of numbers (real numbers or inte-
gers), the so-called odometers or “adding machines” play a central role in various fields of math-
ematics and theoretical computer science: in approximation of ergodic systems [20], in symbolic
dynamics (see for instance [8] for two-sided dynamical systems) or in fractal geometry (they
correspond to tiles exchange for the Rauzy fractal [4, 6]). They have also been studied from a
combinatorial and topological point of view (see [13] where the case of linear numeration systems
was first investigated).

From a dynamical point of view, it is natural to consider an odometer as a map acting on
infinite words over a finite alphabet of digits. By putting an infinite sequence of zeroes in front of
any finite word, the set of representations of all the integers is embedded into the set of infinite
words onto which the odometer acts.

We focus in the present paper on the action of the odometer on finite words. The function
acting on finite words representing integers and which maps the representation of an integer n
onto the representation of n+1 is usually called the successor function. In the context of abstract
numeration systems where a language L over a totally ordered alphabet (A, <) is ordered by the
radix order, the successor function maps the n-th word in L onto the (n + 1)-th word.

For positional numeration systems, addition of 1 to compute the successor of the representation
of a non-negative integer n leads to the apparition of a carry which can propagate to the left
(as usual integers are represented most significant digit first). The representation of n + 1 is
obtained when there is no more carry to take into account. The unaffected prefix (if any) of the
representation of n is then copied as prefix of the representation of n+1. For abstract numeration
systems (see Section 9.3), the successor function can simply be seen as a function acting on words
and possibly leaving unchanged the prefix of the argument. It is quite natural to consider two
kinds of questions about the successor function.
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The first one addressed in this paper is concerned with the estimation of the length of the carry
propagation when applying the successor map on the first n integers (or more generally on the first
n elements in a given language). This leads to the notion of (amortized) cost, i.e., the average carry
propagation when applying the successor function. The second question is a computational issue:
estimating the number of operations (in classical terms of Turing machines complexity) required
to compute the representations of the first n integers from the first one by applying n times the
successor function. This leads to the notion of (amortized) complexity, i.e., the average amount of
computations required to obtain the successor of an element.

It turns out that in particular cases, namely, when the successor function can be realized
by a right sequential letter-to-letter finite transducer (see Section 3 fro definitions), cost and
complexity coincide. So realization of the successor by a letter-to-letter finite transducer was part
of the motivation for this work and is discussed in Section 7: the successor function on a rational
language can be realized by a right letter-to-letter finite transducer, which is not sequential in
general.

Let us mention that in [3] this question of complexity was considered in the very special case
of numeration systems built on a linear recurrent sequence of order 2 and it was shown that the
amortized cost was bounded by a constant. It turns out that in general the amortized cost of the
successor function can be obtained thanks to a trie traversal (see Section 6). More precisely we
show that if the ratio of the number of elements of length n + 1 over the number of elements of
length n of the language has a limit β > 1, then the amortized cost of the successor function is
equal to β/(β − 1) (Theorem 1). From this, we deduce in Section 9 the value of the amortized
cost for several classes of numeration systems (integer base systems, canonical numeration systems
associated with a Parry number [16, Chapter 7], abstract numeration systems built on a rational
language whose minimal automaton has primitive components [15], and rational base numeration
systems [1]). We also discuss the differences between cost and complexity based on computational
results from [9] where sequential properties of the successor function for positional numeration
systems were investigated.

2 Preliminaries and notation

2.1 Words

Let (A, <) be a finite alphabet, totally ordered. The empty word is denoted ε. The length of a
word x of A∗ is denoted |x|. The radix order (also called the genealogical order), denoted by ≺, is
defined as follows. Let x and y be two words in A∗; x ≺ y if |x| < |y|, or |x| = |y| and x = pas,
y = pbt with a and b in A, a < b (i.e., for two words of same length, the radix order coincides with
the usual lexicographic order).

In all that follows, L ⊆ A∗ denotes a language ordered by the radix order. Let i be a non-
negative integer; the (i + 1)-th word of L in the radix order is denoted 〈i〉L.

The successor of a word x in L ⊆ A∗ is the unique word y ∈ L such that

(x ≺ y) ∧ (∀z ∈ L) ((x ≺ z) ⇒ ((y = z) ∨ (y ≺ z))).

The successor function on L is the function SuccL : A∗ → A∗ that maps a word w = 〈i〉L of L onto
its successor 〈i + 1〉L in L. The odometer is an extension to infinite words [13, 5] or to bi-infinite
words [8] of the successor function.

A language L is said to be prefix-closed if every prefix of a word of L is in L.
The number of words in L of length n is denoted uL(n) and the number of words in L of length

≤ n is denoted vL(n).

2.2 Tries

The trie TL of a language L ⊆ A∗ is a tree where the edges are labelled by letters from A, and
the nodes are labelled by prefixes of words of L. The root is associated with the empty word ε. If
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w is a prefix of a word of L and a is a letter, there is an edge with label a going from the node
labelled w to the node labelled wa if wa is a prefix of a word of L.

When L is a prefix-closed language ordered by radix order, the first level of the trie contains
all words of L of length 1, the second level contains all words of L of length 2, and so on, in
lexicographic order from left-to-right. Thus a breadth-first traversal of TL gives all the words of L
in radix order.

3 Models of computation

3.1 Automata

We assume that the reader has some basic knowledge in automata theory (see for instance [18]).
The set of rational languages over A is denoted Rat(A∗). A deterministic finite automaton (or
simply DFA) is denoted (Q, q0, A, δ, F ). Let L in Rat(A∗) having M = (Q, q0, A, δ, F ) as a minimal
automaton. We assume that M is trim, i.e., accessible and co-accessible. In particular, this means
that the possible “sink state” has been removed.

For any language K ⊆ A∗, max(K) is the language made up of the largest words of each length
in K for the genealogical ordering induced by the ordering of A, that is to say,

max(K) = {w ∈ K | ∀x ∈ K, |x| = |w| ⇒ x ≺ w}.

It is folklore that if K is rational, max(K) is also rational (see for instance [19]).
Let A and B be two alphabets. A transducer is an automaton A = (Q, I, A∗×B∗, E, F ) where

the edges of E are labelled by couples in A∗ × B∗. It is said to be finite if the set Q of states and
the set E of edges are finite. I is the set of initial states and F is the set of terminal states. A
letter-to-letter automaton is a transducer with labels in A × B. We will use transducers with a
terminal function ω, instead of terminal states, as follows, see [10]. The terminal function ω is a
function from Q to P(A∗ × B∗). The relation realized by A = (Q, I, A∗ × B∗, E, ω) is the set of
(u, v) ∈ A∗ ×B∗ such that there exist u′, u′′ in A∗, and v′, v′′ in B∗, with u′u′′ = u and v′v′′ = v,
an initial state p of I, and a path labelled by (u′, v′) from p to a state q, with (u′′, v′′) ∈ ω(q).

A transducer is said to be (left) sequential is there is only one initial state and if the input
automaton obtained by taking the projection on A is a deterministic automaton.

A relation is said to be synchronized if it is realized by a finite letter-to-letter transducer with
a terminal function taking its value into {(S × {ε}) ∪ ({ε} × T ) | S ∈ Rat(A∗), T ∈ Rat(B∗)}.

A relation R is said to have bounded length differences if there exists a k such that for any
(u, v) in R, the difference between |u| and |v| is less than k.

The automata defined so far work implicitly from left to right. The same notions for a processing
from right to left can be defined accordingly; they are called right automata.

3.2 On-line computability

This notion is traditionally defined for a left-to-right processing, but here we will use the right-
to-left notion. A function ϕ : A∗ → B∗ is said to be right on-line computable with delay δ if there
exists an integer δ ≥ 0 such that when x = xk · · ·x0 ∈ A∗ and y = yℓ · · · y0 ∈ B∗, then y = ϕ(x) if
and only if for any j ≥ 0, there exists a function Φj : Aj+δ+1 → B such that yj = Φj(xj+δ · · ·x0)
(in this definition we assume that if j + δ > k, then x is extended to the left by zeroes or a special
symbol). For instance, the successor function in the Fibonacci numeration system is right on-line
computable with delay 1, see Section 5.

4 Cost and complexity

We recall that L is a language ordered by the radix order. Let x be in L. The cost for computing
SuccL(x) is defined as the length of the carry propagation. It is also equal to half the length of
the path in the trie TL from x to SuccL(x) = y if x is not in max(L), and to |y| else.
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Given two words x and y of the same length, we denote by lcp(x, y) the length of the longuest
common prefix of x and y. If x has length k and y has length ℓ, with ℓ ≥ k, we set

∆(x, y) =

{

ℓ − lcp(x, y) if k = ℓ
ℓ if k < ℓ.

With this notation, the cost for computing SuccL(〈i〉L) is ∆(〈i〉L, 〈i + 1〉L).

Definition 1. The (amortized) cost of SuccL is

Cost(SuccL) = lim
N→∞

1

N

N−1
∑

i=0

∆(〈i〉L, 〈i + 1〉L).

Suppose that P is a program (i.e., a Turing machine) which, for every i ≥ 0, computes
SuccL(〈i〉L) in Op(P, 〈i〉L) operations (i.e., elementary operations of tape reading or writing and
head moves for computing with a Turing machine SuccL(〈i〉L) from 〈i〉L written on its tape).

Definition 2. The (amortized) complexity of P is

comp(P ) = lim
N→∞

1

N

N−1
∑

i=0

Op(P, 〈i〉L).

The (amortized) complexity of SuccL is

Comp(SuccL) = inf{comp(P ) | P computes SuccL}.

5 Example: the Fibonacci numeration system

The Fibonacci numeration system is a positional numeration system defined on the linear recurrent
sequence F = (Fn)n≥0 where F0 = 1, F1 = 2 and Fn+2 = Fn+1 + Fn for all n ≥ 0. Non-
negative integers are represented over {0, 1} in a greedy way as sums of elements of F and these
representations are exactly words where the factor 11 is forbidden and starting with a 1, that
is to say, L(F ) = 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗ ∪ {ε} (see for instance [16, Chapter 7]). The greedy
representation of 0 is the empty word ε, but it is more usual to denote it 0.

As an example, here are the representations of length ≤ 5 and the corresponding cost for
computing Succ.

0 (1) 1(2) 10 (3) 100 (1) 101 (4) 1000 (1)
1001 (2) 1010(5) 10000 (1) 10001 (2) 10010 (3) 10100 (1) 10101 (6)

10000   10001   10010   10100   10101

1000 1001 1010

100 101

1

10

Fig. 1. The trie for the Fibonacci numeration system

The successor function in the Fibonacci numeration system is right sequential and right on-line
computable with delay 1 (see [9]), so it can be realized by a right sequential finite transducer with
delay 1 (see the proof of Proposition 6). In Fig. 2, the doubly circled loop indicates that the words
of the language are simply recopied.
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· |10· |1

1 | ·

0 | ·

0 |0

1 |0

0 |01

Fig. 2. The successor function for the Fibonacci numeration system

6 Traversal of a trie

We first begin with a technical result.

Lemma 1. Let x(n), n ≥ 0, be an increasing sequence of positive integers. Let y(n) =
∑n

i=0 x(i).
Then the following are equivalent:
(i) there exists a number β > 1 such that limn→∞x(n + 1)/x(n) = β
(ii) there exists a number β > 1 such that limn→∞y(n + 1)/y(n) = β
(iii) there exists a number β > 1 such that limn→∞y(n)/x(n) = β/(β − 1).

Proof. (i) implies (ii): from (i) one has x(n + 1) ∼ βx(n), hence
∑n

i=0 x(i + 1) ∼ β
∑n

i=0 x(i), and
(ii) follows.
(ii) implies (i): from (ii) and y(n + 1) = y(n) + x(n + 1), one has x(n + 1) ∼ (β − 1)y(n), and (i)
follows.
(ii) is equivalent to (iii) by noticing that y(n+1)/y(n) = 1+x(n+1)/y(n) = 1+(x(n+1)/x(n)) ·
(x(n)/y(n)), and thus y(n)/x(n) = x(n+1)/x(n)

(y(n+1)/y(n))−1 .

The breadth-first traversal of the trie TL of the prefix-closed language L gives all words of L in
radix order. Let us fix n. The n-th level contains the uL(n) elements of L of length n. We denote
these elements by wi ≺ · · · ≺ wi+k (i and k depend on n) and the first element of length n + 1
by wi+k+1. Let r be the highest branching node (i.e., the highest node having at least two sons)
in the trie, and let k0 be its level. Wet set π(n) as the length of the smallest path going from the
smallest element wi of length n to the smallest element of length n + 1 and passing consecutively
through wi+1, . . . , wi+k. We assume that all branches in TL are infinite.

Then

π(n) = 2(uL(n) + uL(n − 1) + · · · + uL(k0 + 1)) + 1.

Thus the cost for computing the successor of all the words of L of length n, denoted by CL(n), is
equal to half the length of the path from the smallest element of length n to the greatest element
of length n plus (n + 1). So

CL(n) = uL(n) + uL(n − 1) + · · · + uL(k0 + 1) + k0 + 1. (1)

Theorem 1. Let L be a radix order language that is prefix-closed and such that all branches in
TL are infinite. Suppose that limn→∞ uL(n + 1)/uL(n), or limn→∞ vL(n + 1)/vL(n), exists and
is equal to some β > 1. Then

Cost(SuccL) =
β

β − 1
.

Proof. From Equation (1) we get that CL(n) = vL(n) − c0, where c0 is a positive constant. Thus

Cost(SuccL) = lim
n→∞

1

vL(n)

n
∑

i=0

CL(n) =
β

β − 1

by Lemma 1.
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7 Successor function on a rational language

The aim of this section is to show that when the language is rational, the successor function can
be realized by a right letter-to-letter finite transducer.

Before proving the result we need some lemmas, see [18].

Lemma 2. The radix order relation ρ : A∗ → A∗ which maps a word u onto {v ∈ A∗ | u ≺ v} is
a synchronized relation.

· |A+
0 |1

0 |0 , 1 |1

0 |1 , 1 |0

0 |0 , 1 |1 0 |0 , 1 |1

0 |1 , 1 |0

Fig. 3. A synchronized transducer for the radix order relation on A = {0, 1}

Lemma 3. Let L be a rational language. The function ιL : A∗ → A∗ which is the identity on L,
and is undefined outside, is a synchronized function.

Recall two results from [10].

Proposition 1. The composition of synchronized relations is a synchronized relation.

Proposition 2. The family of synchronized relations is an effective Boolean algebra.

We can now prove the following result.

Proposition 3. Let L be a rational language. The successor function SuccL is realized by a (left)
letter-to-letter finite transducer.

Proof. Let S ⊆ A∗, then min(S) = S \ ρ(S). Denote ΓL : A∗ → A∗ the relation that maps a word
u of L onto the set {v ∈ L | u ≺ v}. Then

SuccL(u) = min(ΓL(u))

= min(ιL ◦ ρ ◦ ιL(u))

= ιL ◦ ρ ◦ ιL(u) \ ρ ◦ ιL ◦ ρ ◦ ιL(u)

and the result follows by Propositions 1 and 2.

Corollary 1. On a rational language L the successor function SuccL can be realized by a right
letter-to-letter finite transducer.

Proof. Since every synchronized relation with finite image has bounded-length differences [10], and
since a function has finite image, it follows that the successor function SuccL has bounded length
differences when L is rational, so it is possible to build a right letter-to-letter finite transducer
realizing the function.
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8 Cost and complexity for rational successor functions

A finite automaton can be seen as a program, thus the following results can be deduced from
Corollary 1.

Proposition 4. If L is a rational language then Comp(SuccL) ≥ Cost(SuccL).

Proof. The number of elementary operations to compute the successor SuccL〈i〉L from 〈i〉L is at
least equal to the length of the carry propagation. Indeed, with 〈i〉L on its tape, one has at least
to consider the number of head moves corresponding to propagation carry.

More can be said when the successor function is right sequential:

Proposition 5. If SuccL is realized by a right sequential letter-to-letter finite transducer, then

Comp(SuccL) = Cost(SuccL).

Note that this result does not hold anymore when the successor function is left sequential, and
not right sequential (see Example 1 below).

More generally we have:

Proposition 6. If SuccL is a function which is right on-line computable with delay δ, and is
realized by a right finite transducer, then

Comp(SuccL) = Cost(SuccL) + δ.

Proof. If SuccL is a function which is right on-line computable with delay δ, this means that to
output a letter of the result it is enough to look δ positions ahead on the left of the current position.
Moreover, under these two hypothesis SuccL is realizable by a right sequential finite transducer
with delay δ and of a special form, see [9, 11] (see also Section 5 for the Fibonacci case). So the
result follows.

9 Applications

9.1 Integer base p

The language of the p-expansions of the non-negative integers is Lp = {1, . . . , p − 1}{0, . . . , p −
1}∗ ∪ {0}. The number of words of length ≤ n is vLp

(n) = pn. It is also well known that SuccLp

is realized by a right sequential letter-to-letter finite transducer. Thus from Proposition 5 follows

Proposition 7. In integer base p

Cost(SuccLp
) = Comp(SuccLp

) =
p

p − 1
.

9.2 Beta-numeration

Let V = (vn)n≥0 be a strictly increasing sequence of integers with v0 = 1. By a greedy algorithm [7],
every non-negative integer N is given a V -expansion of the form ak · · · a0, with ai non-negative
digit < vi+1/vi, such that N =

∑k
i=0 aivi. By definition of the greedy expansions, the number of

words of length ≤ n, vL(n), is equal to vn. On the set L(V ) of the greedy V -expansions of the
non-negative integers the successor function is defined as above.

An interesting case is the following one. Let β > 1 be a real number. Any real number z ∈ [0, 1]
can be represented by a greedy algorithm as z =

∑+∞
i=1 ziβ

−i with zi ∈ {0, . . . , ⌈β⌉ − 1} for all
i ≥ 1. The greedy sequence (zi)i≥1 corresponding to a given real number z is the greatest in
the lexicographical order, and is said to be the β-expansion of z, see [17]. If the β-expansion of
1 is finite or eventually periodic then β is said to be a Parry number. If the β-expansion of 1
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is finite β is said to be a simple Parry number. When β is a Parry number a linear recurrent
sequence Vβ = (vn)n≥0 of integers can be canonically associated with β, see [2], [16, Chapter 7]
for details. For instance, the canonical linear numeration system associated with the golden mean
is the Fibonacci numeration system, see Section 5.

When β is a Parry number, the language Lβ = L(Vβ) of the greedy expansions of all the
non-negative integers is rational and the automaton accepting Lβ has a very special form (see for
instance [12]). Note that the language Lβ is prefix-closed.

It is well known that limn→∞ vn+1/vn = β. Note that if L′ = 0∗Lβ then vLβ
(n) = uL′(n).

Then from Theorem 1 follows.

Proposition 8. If β > 1 is a Parry number, the cost of the successor function for the canonical
linear numeration system associated with β is

Cost(SuccLβ
) =

β

β − 1
.

The conditions under which the successor function is right sequential are completely known
[9].

Proposition 9. The successor function for the canonical linear numeration system associated
with β is right sequential if and only if β is a simple Parry number. If the β-expansion of 1 is of
length m, then the successor function is right on-line computable with delay m − 1.

So from Proposition 6 follows

Proposition 10. If β > 1 is a simple Parry number and the β-expansion of 1 is of length m, the
complexity of the successor function for the canonical linear numeration system associated with β
is

Comp(SuccLβ
) =

β

β − 1
+ (m − 1).

We now give two examples where the successor function is not right sequential.

Example 1. Take τ = (3 +
√

5)/2, i.e., the square of the golden ratio. Then the τ -expansion of 1
is equal to 21ω, so τ is a non-simple Parry number. From Proposition 8 we know that

Cost(SuccLτ
) =

τ

τ − 1
≃ 1.61803.

The automaton below recognizes the language L′ = 0∗Lτ .

a b
2

0

0, 1 1

Since the successor function on Lτ is not realizable by a right sequential finite transducer, the
complexity is not equal to the cost.

Denote the conjugate of τ as τ ′ = 3−
√

5
2 . The number of paths of length n going from state a

to a in the automaton is

p(n) =
5 +

√
5

10
τn +

5 −
√

5

10
τ ′n.

The number of words of length n accepted by the automaton is

u(n) =
5 + 3

√
5

10
τn +

5 − 3
√

5

10
τ ′n.
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Two kinds of words of length n need a special attention: those of the form u21i−1, with
|u| = n − i, i = 1, . . . , n, and those of the form u01i−1 with |u| = n − i, i = 2, . . . , n. Indeed,
when a Turing machine has such a word on its tape with the head on the rightmost position,
the machine has to go on the left to read the first 0 or 2 before being able to decide what is the
rightmost digit to output and act accordingly (at least going back to the rightmost position). Let
us say that the number of operations required is 2i for each of these “special” words then, since
all the other words need a computation requiring one unit. The word 1n occurs once amongst the
words of length n, but a single word will not change the asymptotic computation so we do not
take it into account in what follows. So we get the following

Comp(SuccLτ
) = lim

n→+∞

(

n
∑

i=1

p(n − i) 2i

u(n)
+

n
∑

i=2

p(n − i) 2i

u(n)
+

u(n) −∑n
i=2 2p(n − i) − p(n − 1)

u(n)

)

= 2
√

5 − 2 ≃ 2.47214.

Example 2. Take the sequence V = (vn)n≥0 with vn = 2n+1 − 1. Then the successor function on
L(V ) is realizable by a left sequential finite transducer, but it is impossible to do it with a right
sequential one (see [9]). So, the complexity is still greater than the cost, which is equal to 2 since
limn→∞ vn+1/vn = 2.

9.3 Abstract numeration system

An abstract numeration system [15] is a triple S = (L, A, <) where L is a infinite rational language
over a totally alphabet (A, <). The representation of i ≥ 0 in S denoted by 〈i〉L is the (i + 1)-th
word in the radix ordered language L. As already said above, the successor function on a rational
language L is simply the function mapping 〈i〉L onto 〈i + 1〉L.

Various aspects of abstract numeration systems have been studied from [15] and in this frame-
work odometers acting accordingly on infinite words were presented in [5].

Proposition 11. Let S = (L, A, <) be an abstract numeration system built on a rational language
whose trim minimal automaton M is primitive. If β is the dominating eigenvalue of M, then the
cost of the successor function for S is

Cost(SuccL) =
β

β − 1
.

Proof. From Perron’s Theorem, the number of words of L of length n satisfies limn→∞ uL(n +
1)/uL(n) = β.

This result can also be extended to a more general situation.

Proposition 12. Let L be a rational language having a trim minimal automaton M whose each
strongly connected component of is primitive. Let S = (L, A, <) be an abstract numeration system
built on L. If β is the maximal value amongst the dominating eigenvalue of the strongly connected
component of M, then the cost of the successor function for S is

Cost(SuccL) =
β

β − 1
.

Proof. Since each strongly connected component C of M is primitive, one can thanks to Perron’s
Theorem associate with C a unique dominating eigenvalue βC . Let β = maxβC where the maximum
is taken over all the strongly connected components of M. If β occurs exactly in t components
of M, then the number of words of length n in L is such that uL(n) ≍ nt−1βn (see for instance
[14]). Therefore limn→+∞ uL(n + 1)/uL(n) = β hence the conclusion follows.



10

9.4 Rational base numeration systems

This part of the paper is devoted to the study of the successor function in a quite different type of
numeration, where the base is a rational number p

q , where p > q ≥ 1 are two co-prime integers [1].
Let N be any positive integer; let us write N0 = N and, for i ≥ 0, write

qNi = pNi+1 + ai (2)

where ai is the remainder of the division of qNi by p, and thus belongs to A = {0, . . . , p − 1} .
Since Ni+1 is strictly smaller than Ni, the division (2) can be repeated only a finite number of
times, until eventually Nk+1 = 0 for some k. This algorithm produces the digits a0, a1, . . . , ak,
and it holds:

N =

k
∑

i=0

ai

q

(

p

q

)i

.

We will say that the word ak · · · a0 , computed from N from right to left, that is to say, least
significant digit first, is a p

q -expansion of N . It is known that this representation is indeed unique.
When q = 1, we recover the usual p-ary number system.

It is to be stressed that this definition is not the classical one —corresponding to β-expansions
— for the numeration system in base p

q : the digits are not the integers smaller than p
q but rather

the integers whose quotient by q is smaller than p
q .

We recall some results from [1].

Proposition 13. The set L p

q
of the p

q -expansions of elements of N is not a rational language.

Note even that two distinct subtrees of the trie of L p

q
are never isomorphic.

Proposition 14. The successor function on the set L p

q
of the p

q -expansions of elements of N is

realizable by a right sequential letter-to-letter finite transducer.

2 1 0

· |2· |2

2 |1
1 |00 |2

0 |2

0 |0
1 |1
2 |2

2 |1
1 |0

Fig. 4. The successor function for the 3

2
number system

The number vL p
q

(n) of elements of L p

q
of length ≤ n is equal to the number Gn where the

sequence (Gn)n∈N is defined by

G0 = 1 and ∀n ∈ N, Gn+1 =

⌈

p

q
Gn

⌉

.

Thus from Proposition 5 follows

Proposition 15. The cost and the complexity of the successor function on L p

q
are equal to

Cost(SuccL p
q

) = Comp(SuccL p
q

) =

p
q

p
q − 1

.

Proof. Comes from the fact that limn→∞ Gn+1/Gn = p/q.
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Project Numération, contract 04 312.

References

1. S. Akiyama, Ch. Frougny, J. Sakarovitch, Powers of rationals modulo 1 and rational base number
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