
Book Title
Book Editors
IOS Press, 2003

1

Non-standard number representation:
computer arithmetic, beta-numeration and

quasicrystals

Christiane Frougnya,1,
a LIAFA UMR 7089 CNRS, and Université Paris 8

Abstract. The purpose of this survey is to present the main concepts andresults in
non-standard number representation, and to give some examples of practical appli-
cations. This domain lies at the interface between discretemathematics (dynami-
cal systems, number theory, combinatorics) and computer science (computer arith-
metic, cryptography, coding theory, algorithms). It also plays an important role in
the modelization of physical structures like quasicrystals.
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1. Introduction

Non-standard number representation is emerging as a new research field, with many
difficult open questions, and several important applications. The notions presented in
this contribution are strongly related to the chapters of this volume written by Akiyama,
Pelantová and Masáková, and Sakarovitch.

Our purpose is to explain how the simplest way of representing numbers — an inte-
ger baseβ and a canonical set of digits{0, 1, . . . , β − 1} — is not sufficient for solving
some problems.

In computer arithmetic, the challenge is to perform fast arithmetic. We will see how
this task can be achieved by using a different set of digits. This will also allow on-line
arithmetic, where it is possible to pipe-line additions, subtractions, multiplications and
divisions.

Beta-numeration consists in the use of a baseβ which is an irrational number. This
field is closely related to symbolic dynamics, as the set ofβ-expansions of real numbers
of the unit interval forms a dynamical system. In this survey, we will present results
connected with finite automata theory. Pisot numbers, whichare algebraic integers with
Galois conjugates lying inside the open unit disk, play a keyrole, as they generalize
nicely the integers.

1Correspondence to: Christiane Frougny, LIAFA UMR 7089 CNRS, 2 place Jussieu, 75251 Paris cedex 05,
France. E-mail: Christiane.Frougny@liafa.jussieu.fr.
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Quasicrystals are a kind of solid in which the atoms are arranged in a seemingly reg-
ular, but non-repeating structure. The first one, observed by Shechtman in 1982, presents
a five-fold symmetry, which is forbidden in classical crystallography. In a quasicrystal,
the pattern of atoms is only quasiperiodic. The first observed quasicrystal is strongly re-
lated to the golden mean, and in this theory also, Pisot numbers are deeply rooted. I will
explain how beta-numeration is an adequate tool for the modelization of quasi-crystals.

2. Preliminaries

We refer the reader to [17] and to [42]. AnalphabetA is a finite set. A finite sequence
of elements ofA is called aword, and the set of words onA is the free monoidA∗.
The empty wordis denoted byε. The set of infinite sequences or infinite words onA

is denoted byAN. Let v be a word ofA∗, denote byvn the concatenation ofv to itself
n times, and byvω the infinite concatenationvvv · · · . A word is said to beeventually
periodicif it is of the formuvω.

An automaton overA,A = (Q, A, E, I, T ), is a directed graph labelled by elements
of A. The set of vertices, traditionally calledstates, is denoted byQ, I ⊂ Q is the set
of initial states,T ⊂ Q is the set ofterminalstates andE ⊂ Q × A × Q is the set of
labellededges. If (p, a, q) ∈ E, we notep

a−→ q. The automaton isfinite if Q is finite.
The automatonA is deterministicif E is the graph of a (partial) function fromQ × A

into Q, and if there is a unique initial state. A subsetH of A∗ is said to berecognizable
by a finite automatonif there exists a finite automatonA such thatH is equal to the set
of labels of paths starting in an initial state and ending in aterminal state. A subsetK
of AN is said to berecognizable by a finite automatonif there exists a finite automaton
A such thatK is equal to the set of labels of infinite paths starting in an initial state and
going infinitely often through a terminal state (Bűchi acceptance condition, see [17]).

We are also interested in 2-tape automata or transducers. Let A andB be two al-
phabets. Atransduceris an automaton over the non-free monoidA∗ × B∗ : A =

(Q, A∗ ×B∗, E, I, T ) is a directed graph the edges of which are labelled by elements of
A∗ × B∗. Words ofA∗ are referred to asinput words, as words ofB∗ are referred to as

output words. If (p, (f, g), q) ∈ E, we notep
f |g−→ q. The transducer is finite ifQ andE

are finite.
A relationR of A∗×B∗ is said to becomputable by a finite transducerif there exists

a finite transducerA such thatR is equal to the set of labels of paths starting in an initial
state and ending in a terminal state. A function is computable by a finite transducer if
its graph is computable by a finite transducer. These definitions extend to relations and
functions of infinite words as above.

A left sequentialtransducer is a finite transducer where edges are labelled byele-
ments ofA × B∗, and such that theunderlying input automatonobtained by taking the
projection overA of the label of every edge is deterministic. For finite words,there is a
terminalpartial functionω : Q −→ B∗, whose value is concatenated to the output word
corresponding to a computation inA. The same definition works for functions of infinite
words, considering infinite paths inA, but there is no terminal functionω in that case.
The notion of aright sequential transducer is defined similarly.
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3. Computer arithmetic

Computer arithmetic is the field which gathers techniques tobuild fast, efficient and
robust arithmetic processors and algorithms. In what follows, we focus on the problems
concerning number representation.

3.1. Standard number representation

We consider here only positional number systems, defined by abaseβ and a set ofdigits
Aβ . In the standard number representation,β is an integer greater than one,β > 1, and
Aβ = {0, 1, . . . , β − 1} is also called thecanonical alphabetof digits.

A β-representationof a positive integerN is a sequence of digits fromAβ , that is to
say aword ak · · · a0 on Aβ , such thatN =

∑k

i=0
aiβ

i. It is denoted〈N〉β = ak · · ·a0,
most significant digit first. This representation is unique (callednormal) if ak 6= 0.

A β-representationof a numberx in [0, 1] is an infinite sequence (word)(xi)i≥1

of elements ofAβ such thatx =
∑

i≥1
xiβ

−i. It is denoted〈x〉β = .x1x2 · · · This
representation is unique if it does not end in(β − 1)ω, in which case it is said to be the
β-expansionof x. By shifting, any realx > 1 can be given a representation.

We now recall some properties satisfied by the standard number system, see [31]
for the proofs. LetC be an alphabet of positive or negative digits containingAβ =
{0, . . . , β − 1}. The numerical valuein baseβ is the fonctionπβ : C∗ → Z such
that πβ(ck · · · c0) =

∑k
i=0

ciβ
i. Define thedigit-set conversionon C as the function

χβ : C∗ → A∗
β such thatχβ(ck · · · c0) = an · · ·a0, wherean · · ·a0 is aβ-representation

onAβ of the numberπβ(ck · · · c0).

PROPOSITION1 [17] For any alphabetC the digit-set conversion onC is a right se-
quential function.

Addition can be seen as a digit-set conversion on the alphabet {0, . . . , 2(β − 1)}, sub-
traction is a digit-set conversion on{−(β − 1), . . . , (β − 1)}, and multiplication by a
fixed positive integerm is a digit-set conversion on{0, m, . . . , m(β − 1)}. Notice that
arbitrary multiplication of two integers is not computableby a finite automaton.
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0|1
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2|0

/

1|0, 2|1

/

0|0, 1|1

Figure 1. Addition of integers in base2

On the contrary, division by a fixed positive integerm is a left sequential function.

As mentioned above, the representation of the real numbers is not unique, since, for
0 ≤ d ≤ β − 2, the wordsd(β − 1)ω and(d + 1)0ω have the same value.
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PROPOSITION2 The normalization functionν : AN

β −→ AN

β which transforms improper
representations ending in(β − 1)ω into normal expansions ending in0ω is computable
by a finite transducer.

The picture on Fig. 2 shows a transducer for the normalization base2. Infinitely
repeated states are indicated by double circles.
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0|0
Figure 2. Normalization of real numbers in base2

Notice that this transducer is not left sequential.

3.2. Redundant representations

Redundant representations are popular in computer arithmetic. Let us take for alphabet
of digits a setC = {c, c+1, . . . , c+h−1}. Fix n to be the number of positions, that is to
say the length of the representations of the integers. Then the following result is folklore.

THEOREM 1 Let I = [cβn−1

β−1
, (c + h − 1)βn−1

β−1
].

If |C| < β some integers inI have no representation in baseβ with n positions.
If |C| = β every integer inI has a unique representation.
If |C| > β, every integer inI has a representation, non necessarily unique.

The same result has a real number version, withI = [c 1

β−1
, (c + h − 1) 1

β−1
].

When|C| > β, the system is said to beredundant. Cauchy [12] already considered
the caseβ = 10 andC = {−5,−4, . . . , 4, 5}. In computer arithmetic, the most interest-
ing cases areβ = 10 andC = {−6, . . . , 6}, introduced by Avizienis [3], andβ = 2 with
C = {−1, 0, 1}, see Chow et Robertson [13].

In a redundant number system, it is possible to design fast algorithms for addition.
More precisely, take an integera ≥ 1 and letC = {−a,−a+1, . . . , a} be a signed digit
alphabet. Since the alphabet is symmetric, the opposite of anumber is simply obtained
by taking opposite digits. From the result above, there is redundancy when2a ≥ β. To be
able to determine the sign of a number represented as a wordcn−1 · · · c0 only by looking
at the sign of the most significant digitcn−1, we must takea ≤ β − 1. Under these
hypotheses, it is possible to perform addition in constant time in parallel, since there is no
propagation of the carry. The idea is the following. First suppose thatβ/2 < a ≤ β − 1.
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Take two representationscn−1 · · · c0 anddn−1 · · · d0 on C, of the numbersM andN

respectively. For0 ≤ i ≤ n − 1 setzi = ci + di. Then,

1. if a ≤ zi ≤ 2a, setri+1 = 1 andsi = zi − β

2. if −2a ≤ zi ≤ −a, setri+1 = −1 andsi = zi + β

3. if −a + 1 ≤ zi ≤ a − 1, setri+1 = 0 andsi = zi.

Then setr0 = 0, and, for0 ≤ i ≤ n − 1, ei = ci + ri, anden = cn. Thusen . . . e0 is a
β-representation ofM + N , with all the digitsei belonging toC.

A slightly more complicated algorithm works in the caseβ = 2a, where a window
is used to look at the sign of the right neighbour of the current position:

1. if a + 1 ≤ zi ≤ 2a, setri+1 = 1 andsi = zi − β

2. if −2a ≤ zi ≤ −a − 1, setri+1 = −1 andsi = zi + β

3. if −a + 1 ≤ zi ≤ a − 1, setri+1 = 0 andsi = zi

4. if zi = a then ifzi−1 ≤ 0 setri+1 = 0 andsi = zi; if zi−1 > 0 setri+1 = 1 and
si = zi − β

5. if zi = −a then ifzi−1 ≥ 0, setri+1 = 0 andsi = zi; if zi−1 < 0 setri+1 = −1

andsi = zi + β.

Special representations in base 2 with digit-set{−1, 0, 1} such that the number of
non-zero digits is minimal where considered by Booth [10]. It is a right-to-left recoding
of a standard representation: every factor of form01n, with n ≥ 2, is transformed into
10n−11̄, where1̄ denotes the signed digit−1. The Booth recoding is a right sequential
function from{0, 1}∗ to {−1, 0, 1}∗ realized by the transducer depicted on Fig. 3.
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Figure 3. Booth right sequential recoding

The applications of the Booth normal form are multiplication, internal representation
for dividers in base 4 with digits in{−3, . . . , 3}, and computations on elliptic curves,
see [33].

Another widely used representation is the so-calledcarry-saverepresentation. Here
the base isβ = 2, and the alphabet of digits isD = {0, 1, 2}. Addition of a representation
with digits in D and a representation with digits in{0, 1} with result onD can be done
in constant time in parallel. This has important applications for the design of internal
adders in multipliers, see [30,20].



6 Ch. Frougny / Non-standard number representation

3.3. On-line computability

In computer arithmetic, on-line computation consists of performing arithmetic opera-
tions in Most Significant Digit First (MSDF) mode, digit serially after a certain latency
delay. This allows the pipelining of different operations such as addition, multiplication
and division. It is also appropriate for the processing of real numbers having infinite ex-
pansions. It is well known that when multiplying two real numbers, only the left part of
the result is significant. To be able to perform on-line addition, it is necessary to use a
redundant number system (see [44], [19]).

We now give a formal definition of on-line computability. LetA andB be two finite
digit sets. Let

ϕ : AN → BN

(aj)j≥1 7→ (bj)j≥1

The functionϕ is said to beon-line computable with delayδ if there exists a natural
numberδ such that, for eachj ≥ 1 there exists a functionΦj : Aj+δ → B such
thatbj = Φj(a1 · · · aj+δ), whereAj+δ denotes the set of sequences of lengthj + δ of
elements ofA. This definition extends readily to functions of several variables.

Recall that a distanceρ can be defined onAN as follows: letv = (vj)j≥1 and
w = (wj)j≥1 be inAN, setρ(v, w) = 2−r wherer = min{j | vj 6= wj} if v 6= w,
ρ(v, w) = 0 otherwise. The setAN is then a compact metric space. This topology is
equivalent to the product topology. Then any function fromAN to BN which is on-line
computable with delayδ is 2δ-Lipschitz, and is thus uniformly continuous [23].

It is well known that some functions are not on-line computable, like addition in
the standard binary system with canonical digit set{0, 1}. When the representation is
redundant, addition and multiplication can be computed on-line. More precisely, in inte-
ger baseβ, addition on the alphabet{−a, . . . , a} is on-line computable with delay 1 if
β/2 < a ≤ β − 1, and with delay 2 ifβ = 2a.

Multiplication of two numbers represented in integer baseβ > 1 with digits in
C = {−a, . . . , a}, β/2 ≤ a ≤ β − 1, is computable by an on-line algorithm with delay
δ, whereδ is the smallest positive integer such that

β

2
+

2a2

βδ(β − 1)
≤ a +

1

2
.

Thus for current cases, the delay is as follows. Ifβ = 2 anda = 1, δ = 2. If β = 3 and
a = 2, δ = 2. If β = 2a ≥ 4 thenδ = 2. If β ≥ 4 and ifa ≥ ⌊β/2⌋ + 1, δ = 1.

A left on-line finite automatonis a particular left sequential transducer, which is
defined as follows:
• there is a transient part: during a timeδ (the delay) the automaton reads without writing
• and there is a synchronous part where the transitions are letter-to-letter.

The following result follows easily from the properties recalled above.

PROPOSITION3 Letβ > 1 be an integer. Every affine function with rational coefficients
is computable in baseβ by a left on-line finite automaton onC = {−a,−a + 1, . . . , a},
with β/2 ≤ a ≤ β − 1.
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The following result which is a kind of a converse has been proved by Muller [35].
Again leta such thatβ/2 ≤ a ≤ β − 1, and takeD = {−d, . . . , d} with d ≥ a. Set
I = [−a/(β − 1), a/(β − 1)], J = [−d/(β − 1), d/(β − 1)]. Let χ be a function such
that there exists a functionχR making the following diagram to commute

DN
χ−−−−→ BN

πβ





y





y

πβ

J −−−−→
χR

I

The functionχR is called thereal interpretationof the functionχ.

PROPOSITION4 Letχ be a function as above. Suppose thatχ is computed by a left on-
line finite automaton. If the second derivativeχ”

R
is piecewise continuous, then, in each

interval whereχ”
R

is continuous,χR is affine with rational coefficients.

3.4. Complex base

To represent complex numbers, complex bases have been introduced in order to handle
a complex number as a sequence of integer digits.

3.4.1. Knuth number system

Knuth [29] used baseβ = i
√

b, with b integer≥ 2 and digit setAβ = {0, . . . , b− 1}. In
this system every complex number has a representation.

If b = c2, every Gaussian integer has a unique finite representation of the form
ak · · · a0.a−1.

EXAMPLE 1 Letβ = 2i, thenAβ = {0, . . . , 3} andz = 4+i is represented as10310.2.
�

The following results are derived from the ones valid in integer base. OnAβ addition in
baseβ = i

√
b is right sequential. OnC = {−a,−a + 1, . . . , a} with b/2 ≤ a ≤ b− 1},

addition is computable in constant time in parallel, and realizable by an on-line finite
automaton, see [36,23,43].

3.4.2. Penney number system

In this complex number system, the base is of the formβ = −b + i, with b integer≥ 1,
and digit setAβ = {0, . . . , b2}. The caseb = 1 was introduced by Penney [39].

We summarize the main results. Every complex number has a representation. Every
Gaussian integer has a unique integer representation of theform ak · · · a0 ∈ A∗

β . OnAβ

addition in baseβ = −b + i is right subsequential [41].
The caseβ = −1 + i andAβ = {0, 1} has received a lot of attention in computer

arithmetics for implementation in arithmetic processors.OnC = {−a,−a + 1, · · · , a},
with a = 1, 2 or 3, addition in base−1 + i is computable in constant time in parallel,
and realizable by an on-line finite automaton, see [15,36,23,43].
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3.5. Real basis

Muller in [34] introduced an original way of representing real numbers, for application to
the CORDIC algorithms for computation of elementary functions. LetU = (un)n≥0 be
a decreasing sequence of positive real numbers, summable, and letD be a finite alphabet
of integer digits. Under certain conditions a real numberx can be represented as

x =
∑

n≥0

dnun

with dn ∈ D by a greedy algorithm.
For instance, takeun = log(1 + 2−n), andD = {0, 1}. Then every positive real

number has a representation. Ifx =
∑

n≥0
dn log(1 + 2−n) then

ex =
∏

n≥0

log(1 + 2−n)dn

is obtained with no computation.

4. Beta-numeration

When the baseβ is not an integer, numbers may have more than one representation. This
natural redundancy raises questions on the problem of normalization. Here we focus on
computations by finite automata. For more details on the relations with symbolic dynam-
ics, see [31] and [1]. There is a nice survey by Berthé and Siegel [8] on the connections
with tilings.

4.1. Beta-expansions

Let β > 1 be a real number and letD be an alphabet of digits. Aβ-representationonD
of a numberx of [0, 1] is an infinite sequence(dj)j≥1 of DN such that

∑

j≥1
djβ

−j = x.
Any real numberx ∈ [0, 1] can be represented in baseβ by the following greedy

algorithm [40]:
Denote by⌊.⌋ and by{.} the integral part and the fractional part of a number. Letx1 =
⌊βx⌋ and letr1 = {βx}. Then iterate forj ≥ 2, xj = ⌊βrj−1⌋ andrj = {βrj−1}.
Thusx =

∑

j≥1
xjβ

−j , where the digitsxj are elements of thecanonicalalphabetAβ =

{0, . . . , ⌊β⌋} if β /∈ N, Aβ = {0, . . . , β − 1} otherwise. The sequence(xj)j≥1 of AN

β is
called theβ-expansionof x. Whenβ is an integer, it is the standardβ-ary number system.
Whenβ is not an integer, a numberx may have several differentβ-representations onAβ :
this system is naturally redundant. Theβ-expansion obtained by the greedy algorithm is
the greatest one in the lexicographic order. When aβ-representation ends with infinitely
many zeroes, it is said to befinite, and the0’s are omitted.

Letdβ(1) = (tj)j≥1 be theβ-expansion of 1. Ifdβ(1) is finite,dβ(1) = t1 · · · tN , set
d∗β(1) = (t1 · · · tN−1(tN − 1))ω, otherwise setd∗β(1) = dβ(1). We recall the following
result of Parry [37]. An infinite words = (sj)j≥1 is theβ-expansion of a numberx of
[0, 1[ if and only if for everyp ≥ 1, spsp+1 · · · is smaller in the lexicographic order than
d∗β(1).
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EXAMPLE 2 Consider the golden ratioτ = (1+
√

5)/2. ThenAτ = {0, 1}, dτ (1) = 11
andd∗τ (1) = (10)ω. The numberx = 3 −

√
5 has for greedyτ -expansion〈x〉τ = 1001.

Otherτ -representations ofx are0111, 100(01)ω, 011(01)ω, . . .
It is easily seen that the factor11 is forbidden in the greedy expansion〈x〉τ for any

x. �

A numberβ such thatdβ(1) is eventually periodic is called aParry number. If dβ(1)
is finite it is asimple Parry number. If β is a Parry number the set ofβ-expansions of
numbers of[0, 1] is recognizable by a finite automaton.

A Pisot numberis an algebraic integer> 1 such that all its algebraic conjugates are
smaller than1 in modulus. The natural integers and the golden ratio are Pisot numbers.
Recall that ifβ is a Pisot number then it is a Parry number [9].

LetD be a digit set. Thenumerical valuein baseβ onD is the functionπβ : DN −→
R such thatπβ((dj)j≥1) =

∑

j≥1
djβ

−j .
ThenormalizationonD is the functionνD : DN −→ AN

β which maps any sequence
(dj)j≥1 ∈ DN wherex = πβ((dj)j≥1) belongs to[0, 1] onto theβ-expansion ofx.

A digit set conversionin baseβ from D to Aβ is a functionχ : DN −→ AN

β such
that for each sequence(dj)j≥1 ∈ DN wherex = πβ((dj)j≥1) belongs to[0, 1], there
exists a sequence(aj)j≥1 ∈ AN

β such thatx = πβ((aj)j≥1). Remark that the image
χ((dj)j≥1) belongs toAN

β , but need not be the greedyβ-expansion ofx.
Some of the results which hold true in the case whereβ is an integer can be extended

to the case whereβ is not an integer.
Let D = {0, . . . , d} be a digit set containingAβ , that is,d ≥ ⌊β⌋.

THEOREM 2 [24] There exists a digit set conversionχ : DN −→ AN

β in baseβ which is
on-line computable with delayδ, whereδ is the smallest positive integer such that

βδ+1 + d ≤ βδ(⌊β⌋ + 1).

If β is a Pisot number then the digit set conversionχ is computable by a left on-line finite
automaton.

Note that multiplication in real baseβ is also on-line computable [26].

We now consider the problem of normalization, see [22,7,25].

THEOREM 3 If β is a Pisot number then for every alphabetD of non-negative digits
normalizationνD onD is computable by a finite transducer.
Conversely, ifβ is not a Pisot number, then for any alphabetD of non-negative digits,
D ⊇ {0, . . . , ⌊β⌋, ⌊β⌋ + 1}, the normalizationνD on D is not computable by a finite
transducer.

The transducer realizing normalization cannot be sequential.

4.2. U -representations

Let U = (un)n≥0 be a strictly increasing sequence of integers withu0 = 1. A U -
representationof an integerN ≥ 0 is a finite sequence of integers(di)k≥i≥0 such that
N =

∑k
i=0

diui. It is denoted(N)U = dk · · · d0.



10 Ch. Frougny / Non-standard number representation

A normalor greedyU -representationof N is obtained by the following greedy al-
gorithm [21]: denoteq(m, p) and r(m, p) the quotient and the remainder of the Eu-
clidean division ofm by p. Let k such thatuk ≤ N < uk+1 . Putdk = q(N, uk) and
rk = r(N, uk), and, fork − 1 ≥ i ≥ 0, di = q(ri+1, ui) andri = r(ri+1, ui). Then
N = dkuk + · · · + d0u0. The worddk · · · d0 is called thenormalU -representationof
N , and is denoted〈N〉U = dk · · · d0. Each digitdi is element of the canonical alphabet
AU .

EXAMPLE 3 Let U = {1, 2, 3, 5, 8, . . .} be the set of Fibonacci numbers. ThenAU =
{0, 1} and〈6〉U = 1001. �

The results in this domain are linked to those onβ-expansions. LetG(U) be the set
of greedy or normalU -representations of all the non-negative integers. IfU is linearly
recurrent such that its characteristic polynomial is exactly the minimal polynomial of a
Pisot number thenG(U) is recognizable by a finite automaton. Under the same hypoth-
esis, normalization on every alphabet is computable by a finite transducer, see [31].

A setS ⊂ N is said to beU -recognizable if the set{< n >U | n ∈ S} is recognizable
by a finite automaton.

Recall the beautiful theorem of Cobham [14] in standard number systems. Two num-
bersp > 1 andq > 1 are said to bemultiplicatively dependentif there exist positive
integersk andℓ such thatpk = qℓ. If a setS is bothp- andq-recognizable, wherep and
q are multiplicatively independent, thenS is a finite union of arithmetic progressions.

A generalization of Cobham theorem is the following: letβ andγ two multiplica-
tively independent Pisot numbers. LetU andY two linear sequences with characteristic
polynomial equal to the minimal polynomial ofβ andγ respectively. The only sets of
integers that are bothU -recognizable andY -recognizable are unions of arithmetic pro-
gressions [6]. A generalization of Cobham theorem for substitutions was given in [16].

5. Quasicrystals

For definitions and more results see the survey by Pelantová and Masáková in this vol-
ume. We are interested here with the connexion with beta-numeration.

A setX ⊂ Rd is uniformly discreteif there exists a positive realr such that for any
x ∈ Rd, the open ball of centerx and radiusr contains at most one point ofX . A set
X ⊂ R

d is relatively denseif there exists a positive realR such that for anyx ∈ R
d, the

open ball of centerx and radiusR contains at least one point ofX . A Delaunay setis a
set which is both uniformly discrete and relatively dense.

A setX of Rd is aMeyer setif it is a Delaunay setand if there exists a finite setF
such that the set of differencesX −X is a subset ofX +F . Meyer [32] shown that ifX
is a Meyer set and ifβ > 1 is a real number such thatβX ⊂ X thenβ must be a Pisot
or a Salem number1. Conversely for eachd and for each Pisot or Salem numberβ, there
exists a Meyer setX ⊂ Rd such thatβX ⊂ X .

1A Salem numberis an algebraic integer such that every conjugate has modulus smaller than or equal to1,
and at least one of them has modulus1.
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5.1. Beta-integers

Let β > 1 be a real number. The setZβ of β-integersis the set of real numbers such that
theβ-expansion of their absolute value has no fractional part, that is,

Zβ = {x ∈ R | 〈|x|〉β = xk · · ·x0}.

Then

βZβ ⊂ Zβ , Zβ = −Zβ

DenoteZ
+

β the set of non-negativeβ-integers, andZ−
β = −(Z+

β ).

PROPOSITION5 [11] If β is a Pisot number thenZβ is a Meyer set.

EXAMPLE 4 Let τ be the golden ratio.

Zτ = Z
+
τ ∪ (−Z

+
τ )

= {0, 1, τ, τ2, τ2 + 1, . . .} ∪ {−1, −τ, −τ2, −τ2 − 1, . . .}

The setZ+
τ is generated by the Fibonacci substitution

L 7→ LS

S 7→ L

andZτ is obtained by symmetry for the negative part.

• •

L
•

S

0 1 τ

•

L

τ
2

•

L

τ
2

+ 1

•

S
•

L
•

S

-1−τ

•

L

−τ
2

•

L

−τ
2
− 1

•

S

Zτ is a Meyer set which is not a model set, see [38] for the definition.
Theτ -expansions of elements ofZ+

τ are exactly the expansions in the Fibonacci nu-
meration system of the non-negative integers, that is to say,{0, 1, 10, 100, 101, 1000, . . .}.
�

It is an open problem to characterize the minimal finite setsF such thatZβ − Zβ ⊂
Zβ + F , see in particular [11,28,2] for partial answers.

5.2. Cyclotomic Pisot numbers

Bravais lattices are used as mathematical models for crystals. A Bravais lattice is an in-
finite discrete point-set such that the neighborhoods of a point are the same whichever
point of the set is considered. Geometrically, a Bravais lattice is characterized by all
Euclidean transformations (translations and possibly rotations) that transform the lattice
into itself. The condition2 cos (2π/N) ∈ Z, which implies thatN = 1, 2, 3, 4, 6, char-
acterizes Bravais lattices which are invariant under rotation of 2π/N , theN -fold Bravais
lattices, inR2 (and inR3). For these values,N is said to becrystallographic.

Let us setζ = ei 2π
N . Thecyclotomicring of orderN in the plane is theZ-module:
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Z[ζ] = Z[2 cos
2π

N
] + Z[2 cos

2π

N
]ζ,

ThisN -fold structure is generically dense inC, except precisely for the crystallographic
cases. IndeedZ[ζ] = Z for N = 1 or 2, Z[ζ] = Z + Zi for N = 4 (square lattice), and
Z[ζ] = Z + Zei π

3 for the triangular and hexagonal casesN = 3 andN = 6. Note that a
Bravais lattice is a Meyer set such thatF = {0}.

For a general non-crystallographicN , the number2 cos 2π
N

is an algebraic integer of
degreem = ϕ(N)/2 ≤ ⌊(N − 1)/2⌋ whereϕ is the Euler function.

A cyclotomic Pisot numberwith symmetry of orderN is a Pisot numberβ such that

Z[2 cos
2π

N
] = Z[β].

What is striking is the fact that, up to now, all the quasicrystals really obtained by
the physicists are linked to cyclotomic quadratic Pisot units. More precisely, denoteMβ

the minimal polynomial ofβ. Then

• N = 5 or N = 10: β = 1+
√

5

2
= 2 cos π

5
, Mβ(X) = X2 − X − 1

• N = 8: β = 1 +
√

2 = 1 + 2 cos π
4

, Mβ(X) = X2 − 2X − 1

• N = 12: β = 2 +
√

3 = 2 + 2 cos π
6

, Mβ(X) = X2 − 4X + 1.

Other cyclotomic Pisot units are

• N = 7 or N = 14: β = 1 + 2 cos π
7
, Mβ(X) = X3 − 2X2 − X + 1

• N = 9 or N = 18: β = 1 + 2 cos π
9
, Mβ(X) = X3 − 3X2 + 1.

A complete classification of cyclotomic Pisot numbers of degree≤ 4 was given by
Bell and Hare in [5].

5.3. Beta-lattices in the plane

Let β be a cyclotomic Pisot number with orderN symmetry. ThenZ[ζ] = Z[β]+Z[β]ζ,
with ζ = ei 2π

N , is a ring invariant under rotation of orderN (see [4]). This ring is the
natural framework for two-dimensional structures havingβ as scaling factor, and2π/N
as rotational symmetry.

Generically, letβ be a Pisot number; abeta-latticeis a point set

Γ =
d

∑

i=1

Zβei

where(ei) is a basis ofRd. Such a set is a Meyer set with self-similarity factorβ. Observe
thatβ-lattices are based onβ-integers as lattices are based on integers. Soβ-lattices are
good frames for the study of quasiperiodic point-sets and tilings, see [18].

Examples of beta-lattices in the plane are point-sets of theform

Γq(β) = Zβ + Zβζq ,
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with β a cyclotomic Pisot unit of orderN , for 1 ≤ q ≤ N − 1. Note that the latter are
not rotationally invariant. Examples of rotationally invariant point-sets based on beta-
integers are

Λq=

N−1
⋃

j=0

Γq(β)ζj , 1 ≤ q ≤ N − 1 ,

and

Zβ [ζ]=

N−1
∑

j=0

Zβζj .

All these sets are Meyer sets.

Figure 4. Theτ -lattice Γ1(τ) with points (left), and its trivial tiling made by joining points along the hori-
zontal axis, and along the direction defined byζ.

In the particular case whereβ is a quadratic Pisot unit, the set ofβ-integersZβ can
be equipped with an internal additive law, which gives it an abelian group structure [11].
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