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Abstract. The purpose of this survey is to present the main conceptsesudis in

non-standard number representation, and to give some éasuiipractical appli-
cations. This domain lies at the interface between disargtthematics (dynami-
cal systems, number theory, combinatorics) and compuienese (computer arith-
metic, cryptography, coding theory, algorithms). It aldayp an important role in
the modelization of physical structures like quasicngstal
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1. Introduction

Non-standard number representation is emerging as a nearobsfield, with many
difficult open questions, and several important applicetiorhe notions presented in
this contribution are strongly related to the chapters @f¥blume written by Akiyama,
Pelantova and Masakova, and Sakarovitch.

Our purpose is to explain how the simplest way of represgmtirmbers — an inte-
ger basej and a canonical set of digi{$), 1, ..., 3 — 1} — is not sufficient for solving
some problems.

In computer arithmetic, the challenge is to perform faghanetic. We will see how
this task can be achieved by using a different set of digités Will also allow on-line
arithmetic, where it is possible to pipe-line additionshtsactions, multiplications and
divisions.

Beta-numeration consists in the use of a hasehich is an irrational number. This
field is closely related to symbolic dynamics, as the set-ekpansions of real numbers
of the unit interval forms a dynamical system. In this surweg will present results
connected with finite automata theory. Pisot numbers, waieralgebraic integers with
Galois conjugates lying inside the open unit disk, play a tag, as they generalize
nicely the integers.

1Correspondence to: Christiane Frougny, LIAFA UMR 7089 CNR$lace Jussieu, 75251 Paris cedex 05,
France. E-mail: Christiane.Frougny@liafa.jussieu.fr.
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Quasicrystals are a kind of solid in which the atoms are gedrin a seemingly reg-
ular, but non-repeating structure. The first one, obseryeghechtman in 1982, presents
a five-fold symmetry, which is forbidden in classical crjfstgraphy. In a quasicrystal,
the pattern of atoms is only quasiperiodic. The first obsouesicrystal is strongly re-
lated to the golden mean, and in this theory also, Pisot ntsrdre deeply rooted. | will
explain how beta-numeration is an adequate tool for the fimadi®n of quasi-crystals.

2. Preliminaries

We refer the reader to [17] and to [42]. AtphabetA is a finite set. A finite sequence
of elements ofA is called aword, and the set of words oA is the free monoidd*.
The empty wordis denoted by. The set of infinite sequences or infinite words 4n
is denoted byA". Let v be a word of4*, denote bys™ the concatenation af to itself

n times, and by* the infinite concatenatiomvv - - -. A word is said to beeventually
periodicif it is of the form uv®.

An automatonover, A = (Q, A, E, 1,T), is adirected graph labelled by elements
of A. The set of vertices, traditionally callediates is denoted by), I C @ is the set
of initial states, I’ C @ is the set oterminalstates andt C @ x A x @ is the set of
labellededges|f (p,a,q) € E, we notep %~ ¢. The automaton ifinite if Q is finite.
The automatomd is deterministicif E is the graph of a (partial) function fro x A
into @, and if there is a unique initial state. A subgéof A* is said to beecognizable
by a finite automatoif there exists a finite automato# such thatH is equal to the set
of labels of paths starting in an initial state and ending teraninal state. A subset’
of AN is said to baecognizable by a finite automatdfrthere exists a finite automaton
A such thatK is equal to the set of labels of infinite paths starting in atiaihstate and
going infinitely often through a terminal state (B{ichi gu@mce condition, see [17]).

We are also interested in 2-tape automata or transducetrsi bad B be two al-
phabets. Atransduceris an automaton over the non-free monold x B* : A =
(Q,A* x B*, E,I,T) is a directed graph the edges of which are labelled by eleyént
A* x B*. Words ofA* are referred to amput words as words ofB* are referred to as

output wordslf (p, (f,9),q) € E, we notep s, g. The transducer is finite  and F
are finite.

ArelationR of A* x B* is said to beeomputable by a finite transducéthere exists
a finite transduced such thatR is equal to the set of labels of paths starting in an initial
state and ending in a terminal state. A function is compethlyl a finite transducer if
its graph is computable by a finite transducer. These defirstextend to relations and
functions of infinite words as above.

A left sequentiakransducer is a finite transducer where edges are labelledeby
ments ofA x B*, and such that thenderlying input automatoabtained by taking the
projection overA of the label of every edge is deterministic. For finite wotttigre is a
terminalpartial functionw : @ — B*, whose value is concatenated to the output word
corresponding to a computation.ii The same definition works for functions of infinite
words, considering infinite paths id, but there is no terminal functian in that case.
The notion of aight sequential transducer is defined similarly.
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3. Computer arithmetic

Computer arithmetic is the field which gathers techniquebuitd fast, efficient and
robust arithmetic processors and algorithms. In what fmlove focus on the problems
concerning hnumber representation.

3.1. Standard number representation

We consider here only positional number systems, defineddaygas and a set ofligits
Ag. In the standard number representatigiis an integer greater than ong> 1, and
Az =4{0,1,...,8 — 1} is also called theanonical alphabeof digits.

A p-representatiorof a positive integelV is a sequence of digits froms, that is to
say aword ay, - - - ag on Ag, such thatV = Zf:o a; 3. Itis denoted N)s = ay, - - - a,
most significant digit first. This representation is uniqo@lednormal) if a; # 0.

A (-representatiorof a numberz in [0, 1] is an infinite sequence (word):;)i>1
of elements ofdg such thatr = .., z;37% Itis denoted(z)s = .x1x9--- This
representation is unique if it does not end ih— 1), in which case it is said to be the
(p-expansiorof x. By shifting, any reak > 1 can be given a representation.

We now recall some properties satisfied by the standard nusyséem, see [31]
for the proofs. LetC' be an alphabet of positive or negative digits containiyg =
{0,...,8 — 1}. The numerical valuein baseg is the fonctionmg : C* — Z such
that ms(ck - -~ o) = Zf:o c;3*. Define thedigit-set conversioron C' as the function
xg:C* — A; such thatyg(ck - - - co) = ap - - - ag, Wherea,, - - - ag iS af-representation
on Ag of the numbetrg(cy - - - co).

PROPOSITIONL [17] For any alphabelC the digit-set conversion o@' is a right se-
guential function.

Addition can be seen as a digit-set conversion on the alpHabe. ., 2(5 — 1)}, sub-
traction is a digit-set conversion dn-(8 — 1),...,(8 — 1)}, and multiplication by a
fixed positive integern is a digit-set conversion of0, m, ..., m(3 — 1)}. Notice that
arbitrary multiplication of two integers is not computablea finite automaton.

Figure 1. Addition of integers in basg

On the contrary, division by a fixed positive integetis a left sequential function.

As mentioned above, the representation of the real numbeciunique, since, for
0<d<p—2,thewordsi(f — 1) and(d + 1)0“ have the same value.



4 Ch. Frougny / Non-standard number representation

PROPOSITION2 The normalization function : Ag‘ — Ag‘ which transforms improper
representations ending it — 1) into normal expansions ending @ is computable
by a finite transducer.

The picture on Fig. 2 shows a transducer for the normalinatiase2. Infinitely
repeated states are indicated by double circles.

Figure 2. Normalization of real numbers in bage

Notice that this transducer is not left sequential.
3.2. Redundant representations
Redundant representations are popular in computer arithrhet us take for alphabet

of digitsasetC = {c,c+1,...,c+h—1}.Fixn to be the number of positions, that is to
say the length of the representations of the integers. Theefotlowing result is folklore.

THEOREM1 Let] = [cZ=F, (c+ h— 1) 2.
If |C| < 8 some integers id have no representation in bagewith n positions.
If |C| = 8 every integer i/ has a unique representation.

If |C| > /3, every integer il has a representation, non necessarily unique.

The same result has a real number version, Wwith [cﬁ, (c+h— 1)%].

When|C| > S, the system is said to iedundant Cauchy [12] already considered
the cased = 10 andC' = {—5,—4,...,4,5}. In computer arithmetic, the most interest-
ing cases ar6 = 10 andC = {—6, ..., 6}, introduced by Avizienis [3], an@d = 2 with
C ={-1,0,1}, see Chow et Robertson [13].

In a redundant number system, it is possible to design fgstithms for addition.
More precisely, take an integer> 1 and letC = {—a,—a+1,...,a} be a signed digit
alphabet. Since the alphabet is symmetric, the oppositenofigber is simply obtained
by taking opposite digits. From the result above, theredsinelancy whefa > 3. To be
able to determine the sign of a number represented as aiyoxd - - ¢y only by looking
at the sign of the most significant digif,_;, we must takez < 5 — 1. Under these
hypotheses, it is possible to perform addition in consiam tn parallel, since there is no
propagation of the carry. The idea is the following. Firghpose thati/2 < o« < 5 — 1.
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Take two representations, 1 ---cg andd,,_1 - - - dg on C, of the numbers\/ and N
respectively. Fof < i <n — 1 setz; = ¢; + d;. Then,

1. ifa <z <2a,setr;;; =1lands; = z; —
2. if—2a <z < —a,setr;y; = —1lands; = z; + 3
3.if—a+1<2z <a-1,setr;;; =0ands; = z.

Thensetg = 0, and, for0 < ¢ <n-—1,¢; = ¢; +1;, ande,, = ¢,. Thuse,, ...egis a
p-representation af/ + N, with all the digitse; belonging toC.

A slightly more complicated algorithm works in the case= 2a, where a window
is used to look at the sign of the right neighbour of the curpasition:

1l ifa+1< z; < 2a, setr; 1 = 1 andsi = z; —ﬁ

2. if—2a<z <—-a-1,setr;;; =—lands;, =z, + 0

3.if—a+1<2z <a-1,setr,;; =0ands; = z;

4. if z; = athenifz;_; <0setr;;; = 0ands; = z;; if z;_1 > 0setr;;; =1and

$i =z — [
5. if Zi = —aQ then ifZi_l >0, setrjy1 = 0 andsi = Zi if 2i-1 <0 setr;11 = -1
ands; = z; + (.

Special representations in base 2 with digit{et, 0,1} such that the number of
non-zero digits is minimal where considered by Booth [10is & right-to-left recoding
of a standard representation: every factor of féxifi, with n > 2, is transformed into
10"~!1, wherel denotes the signed digit1. The Booth recoding is a right sequential
function from{0,1}* to {—1, 0, 1}* realized by the transducer depicted on Fig. 3.

Figure 3. Booth right sequential recoding

The applications of the Booth normal form are multiplicatimternal representation
for dividers in base 4 with digits if—3, ..., 3}, and computations on elliptic curves,
see [33].

Another widely used representation is the so-catiady-saverepresentation. Here
the base i$ = 2, and the alphabet of digits i3 = {0, 1, 2}. Addition of a representation
with digits in D and a representation with digits {9, 1} with result onD can be done
in constant time in parallel. This has important applicasidor the design of internal
adders in multipliers, see [30,20].
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3.3. On-line computability

In computer arithmetic, on-line computation consists affgning arithmetic opera-
tions in Most Significant Digit First (MSDF) mode, digit selly after a certain latency
delay. This allows the pipelining of different operationgk as addition, multiplication
and division. It is also appropriate for the processing af rimbers having infinite ex-
pansions. It is well known that when multiplying two real noens, only the left part of
the result is significant. To be able to perform on-line additit is necessary to use a
redundant number system (see [44], [19]).

We now give a formal definition of on-line computability. Latand B be two finite
digit sets. Let

o: AN - BY
(aj)j=1+ (bj)j>1

The functiony is said to beon-line computable with delay if there exists a natural
numberd such that, for eachi > 1 there exists a functio®; : At . B such
thatb; = ®; (a1 ---a;s), whereA7+° denotes the set of sequences of length ¢ of
elements ofd. This definition extends readily to functions of severalahles.

Recall that a distance can be defined oY as follows: letv = (v;);>1 and
w = (w;);>1 be in AN, setp(v,w) = 27" wherer = min{j | v; # w;} if v # w,
p(v,w) = 0 otherwise. The setl™ is then a compact metric space. This topology is
equivalent to the product topology. Then any function frdfto BY which is on-line
computable with delay is 2°-Lipschitz, and is thus uniformly continuous [23].

It is well known that some functions are not on-line compigabke addition in
the standard binary system with canonical digit f&t1}. When the representation is
redundant, addition and multiplication can be computedim®-More precisely, in inte-
ger base3, addition on the alphabédt-a, ..., a} is on-line computable with delay 1 if
8/2 < a < -1, andwith delay 2 if3 = 2a.

Multiplication of two numbers represented in integer bgse- 1 with digits in
C={-a,...,a}, /2 <a< @ —1,is computable by an on-line algorithm with delay
0, whered is the smallest positive integer such that

p, 2 1

2 PE-n T
Thus for current cases, the delay is as followsi = 2 anda = 1,6 = 2. If 3 = 3 and
a=2,0=2.1f3=2a>4thend =2.If 8 >4andifa > |5/2] + 1,5 = 1.

A left on-line finite automators a particular left sequential transducer, which is
defined as follows:
e there is a transient part; during a timéhe delay) the automaton reads without writing
e and there is a synchronous part where the transitions aee-tetletter.

The following result follows easily from the properties aled above.

PROPOSITION3 Let3 > 1 be an integer. Every affine function with rational coeffitgen
is computable in basg by a left on-line finite automaton afi = {—a, —a + 1,...,a},
with /2 <a < (- 1.
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The following result which is a kind of a converse has beewgddy Muller [35].
Again leta such that3/2 < a < 38— 1, and takeD = {—d,...,d} with d > a. Set
I=[-a/(B-1),a/(B-1)],J =[-d/(B—-1),d/(B—1)]. Letx be a function such
that there exists a functioggk making the following diagram to commute

DN X BN

”l lm

J — T
XR

The functionyy is called theeal interpretationof the functiony.

PROPOSITION4 Let x be a function as above. Suppose thas computed by a left on-
line finite automaton. If the second derivatiyg is piecewise continuous, then, in each
interval whereyg, is continuousyr is affine with rational coefficients.

3.4. Complex base

To represent complex numbers, complex bases have beedun#&d in order to handle
a complex number as a sequence of integer digits.

3.4.1. Knuth number system

Knuth [29] used basg = iv/b, with b integer> 2 and digit setd; = {0,...,b—1}.In
this system every complex number has a representation.

If b = ¢2, every Gaussian integer has a unique finite representatitimecform
ag -+ - ag-a—1.-

ExaMPLE 1 Letg = 2i,thends = {0,...,3} andz = 4+iisrepresented d$)310.2.
[l

The following results are derived from the ones valid in geebase. Onlz addition in
base3 = iv/b is right sequential. O = {—a, —a+1,...,a} withb/2 < a < b — 1},
addition is computable in constant time in parallel, andizahle by an on-line finite
automaton, see [36,23,43].

3.4.2. Penney number system

In this complex number system, the base is of the férea —b + ¢, with b integer> 1,
and digit setdg = {0, ...,b?}. The casé = 1 was introduced by Penney [39].

We summarize the main results. Every complex number hasrasemtation. Every
Gaussian integer has a unique integer representation tdrtimezy, - - - ag € Aj. OnAg
addition in bas¢g = —b + i is right subsequential [41].

The cased = —1 + i andAz = {0,1} has received a lot of attention in computer
arithmetics for implementation in arithmetic process@sC = {—a,—a+1,--- ,a},
with @ = 1, 2 or 3, addition in base-1 + i is computable in constant time in parallel,
and realizable by an on-line finite automaton, see [15,3633
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3.5. Real basis

Muller in [34] introduced an original way of representingkaumbers, for application to
the CORDIC algorithms for computation of elementary fuoiet. LetU = (u,, ), >0 be
a decreasing sequence of positive real numbers, summadtlistd be a finite alphabet
of integer digits. Under certain conditions a real numbean be represented as

T = Zdnun

n>0

with d,, € D by a greedy algorithm.
For instance, take,, = log(1 + 27"), andD = {0, 1}. Then every positive real
number has a representationzlt= - dy, log(1 +277") then

et = H log(1 4 27 ™)dn
n>0

is obtained with no computation.

4. Beta-numeration

When the basg is not an integer, numbers may have more than one representetis
natural redundancy raises questions on the problem of dizatian. Here we focus on
computations by finite automata. For more details on théioglswith symbolic dynam-
ics, see [31] and [1]. There is a nice survey by Berthé andeb[8fon the connections
with tilings.

4.1. Beta-expansions

Let 8 > 1 be areal number and |2 be an alphabet of digits. A-representatioron D

of a number: of [0, 1] is an infinite sequend@; ) j>1 of D" suchthad” ., d;3~7 = =.
Any real number: € [0, 1] can be represented in ba8eby the following greedy

algorithm [40]:

Denote by|.| and by{.} the integral part and the fractional part of a number.det

|Bx] and letr; = {Bz}. Then iterate foy > 2, z; = |Br;—1] andr; = {Br;_1}.

Thusz =} .., z;877, where the digits; are elements of theanonicalalphabetd; =
{0,...,18]}if B¢ N, A3 ={0,...,5 — 1} otherwise. The sequenc¢e;) ;> of Ag is
called thes-expansiorf . Wheng is an integer, it is the standafdary number system.
Wheng is not an integer, a numbemay have several differetrepresentations aAg:
this system is naturally redundant. Thexpansion obtained by the greedy algorithm is
the greatest one in the lexicographic order. Whehrapresentation ends with infinitely
many zeroes, it is said to bimite, and thed’s are omitted.

Letdg(1l) = (t;);>1 be thes-expansionof 1. Ifiz(1) is finite,dg(1) = ¢ - - - tn, S€t
dy(1) = (t1---ty—1(ty — 1))“, otherwise seti;(1) = dg(1). We recall the following
result of Parry [37]. An infinite word = (s;);>1 is the3-expansion of a number of
[0,1[if and only if for everyp > 1, s,s,4+1 - - - is smaller in the lexicographic order than

d5(1).
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EXAMPLE 2 Consider the goldenratio= (1++/5)/2. ThenA, = {0,1},d,(1) = 11
andd:(1) = (10)*. The number: = 3 — /5 has for greedy-expansion(z), = 1001.
Otherr-representations af are0111, 100(01)«, 011(01)%, ...

It is easily seen that the factat is forbidden in the greedy expansi@n). for any
T. (I

A number( such thatig(1) is eventually periodic is calledRarry number|f dz(1)
is finite it is asimple Parry numbenf g is a Parry number the set gfexpansions of
numbers of0, 1] is recognizable by a finite automaton.

A Pisot numbeis an algebraic integer 1 such that all its algebraic conjugates are
smaller thanl in modulus. The natural integers and the golden ratio aret Rismbers.
Recall that if3 is a Pisot number then it is a Parry number [9].

Let D be a digit set. Thaumerical valuén bases on D is the functionrg : DY —

R such thaﬁﬁ((dj)jzﬂ = ZjZl djﬁij.

Thenormalizationon D is the functiorvp : DY — Ag which maps any sequence
(dj)j>1 € DY wherez = 73((d;);>1) belongs tdo, 1] onto the3-expansion of:.

A digit set conversioin bases from D to A is a functiony : DV — A} such
that for each sequend€;);>; € D" wherex = 73((d;);>1) belongs to[0, 1], there
exists a sequendg;);>1 € AE such thatr = m3((a;);>1). Remark that the image
x((d;);>1) belongs taA}}, but need not be the greedyexpansion of:.

Some of the results which hold true in the case witkigean integer can be extended
to the case wherg is not an integer.

Let D = {0,...,d} be a digit set containing s, thatis,d > | 3].

THEOREM2 [24] There exists a digit set conversign DY — Ag in bases which is
on-line computable with delay; wheres is the smallest positive integer such that

B4 d < B8] +1).

If 5 is a Pisot number then the digit set conversjois computable by a left on-line finite
automaton.

Note that multiplication in real basgis also on-line computable [26].

We now consider the problem of normalization, see [22,7,25]

THEOREM3 If 3 is a Pisot number then for every alphabBtof non-negative digits
normalizationvp on D is computable by a finite transducer.

Conversely, if3 is not a Pisot number, then for any alphaligtof non-negative digits,
D 2 {0,...,|8], 8] + 1}, the normalizatiorvp on D is not computable by a finite
transducer.

The transducer realizing normalization cannot be seqaienti
4.2. U-representations

Let U = (un)n>0 be a strictly increasing sequence of integers with= 1. A U-
representatiorof an integerN > 0 is a finite sequence of integefé;)x>;>0 such that
N = Zf:o d;u;. Iltis denoted N)y = dy, - - - dp.
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A normalor greedyU -representatiorof NV is obtained by the following greedy al-
gorithm [21]: denotey(m,p) andr(m,p) the quotient and the remainder of the Eu-
clidean division ofm by p. Let k such thatuy, < N < ugy1 . Putdy = ¢(N,ux) and
ry = r(N,ux), and, fork — 1 > i > 0, d; = q(riy1,u;) andr; = r(r;41,u;). Then
N = diuy + -+ - + doug. The worddy, - - - dg is called thenormal U-representatiorof
N, and is denotedN )y = dy, - - - dp. Each digitd; is element of the canonical alphabet
Ay.

ExampPLE 3 LetU = {1,2,3,5,8,...} be the set of Fibonacci numbers. Thép =
{0,1} and(6)y = 1001. O

The results in this domain are linked to thoseexpansions. Le(U) be the set
of greedy or normal/-representations of all the non-negative integer#! i linearly
recurrent such that its characteristic polynomial is dyabe minimal polynomial of a
Pisot number thed?(U) is recognizable by a finite automaton. Under the same hypoth-
esis, normalization on every alphabet is computable by tefiransducer, see [31].

AsetS C Nis said to bé/-recognizableif the s€t< n >y| n € S} is recognizable
by a finite automaton.

Recall the beautiful theorem of Cobham [14] in standard nemsfstems. Two hum-
bersp > 1 andq > 1 are said to benultiplicatively dependerit there exist positive
integersk and/ such thap”® = ¢¢. If a setS is bothp- andg-recognizable, wherg and
q are multiplicatively independent, thehis a finite union of arithmetic progressions.

A generalization of Cobham theorem is the following: feind~ two multiplica-
tively independent Pisot numbers. LIétandY two linear sequences with characteristic
polynomial equal to the minimal polynomial ¢f and~ respectively. The only sets of
integers that are botti-recognizable and -recognizable are unions of arithmetic pro-
gressions [6]. A generalization of Cobham theorem for stultisins was given in [16].

5. Quasicrystals

For definitions and more results see the survey by Pelantwddkasakova in this vol-
ume. We are interested here with the connexion with betaenation.

A setX c R<is uniformly discretef there exists a positive realsuch that for any
x € R?, the open ball of center and radius- contains at most one point of. A set
X c R isrelatively denséf there exists a positive redt such that for any € R?, the
open ball of centex and radiusk contains at least one point &f. A Delaunay seis a
set which is both uniformly discrete and relatively dense.

A set X of R? is aMeyer seff it is a Delaunay seand if there exists a finite sét
such that the set of differencés— X is a subset o + F'. Meyer [32] shown that ifX
is a Meyer set and i > 1 is a real number such thgtX ¢ X thenS must be a Pisot
or a Salem numbét Conversely for eacti and for each Pisot or Salem numiggithere
exists a Meyer seX C R¢ such tha3X c X.

1A Salem numbeis an algebraic integer such that every conjugate has meduohaller than or equal th
and at least one of them has modulus
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5.1. Beta-integers

Let 5 > 1 be areal number. The sBp of 5-integersis the set of real numbers such that
the g-expansion of their absolute value has no fractional plaat, its,

Zg ={z eR|(|z)p = k- 2o}
Then
Blp CZs, Lp = —ZLp
DenoteZ} the set of non-negativé-integers, and.; = —(Z}).
PROPOSITIONS [11] If 5 is a Pisot number thefig is a Meyer set.
EXAMPLE 4 Let 7 be the golden ratio.
Z; =2F U(-Z])
={0,1, 7, 7, 7 +1, .. }U{-1, -7, =7, =77 -1, ...}
The setZ is generated by the Fibonacci substitution

L— LS
S+— L
andZ. is obtained by symmetry for the negative part.

7., is a Meyer set which is not a model set, see [38] for the dedimiti
Ther-expansions of elements @f" are exactly the expansions in the Fibonacci nu-
meration system of the non-negative integers, that is to{8ay, 10, 100, 101, 1000, . . .}.
O

It is an open problem to characterize the minimal finite getsuch thatZg — Zz C
Zg + F, see in particular [11,28,2] for partial answers.

5.2. Cyclotomic Pisot numbers

Bravais lattices are used as mathematical models for ¢sygtdBravais lattice is an in-
finite discrete point-set such that the neighborhoods ofiat @we the same whichever
point of the set is considered. Geometrically, a Bravaiicktis characterized by all
Euclidean transformations (translations and possiblgtias) that transform the lattice
into itself. The conditior2 cos (27/N) € Z, which implies thatvV = 1,2,3,4, 6, char-
acterizes Bravais lattices which are invariant under imtadf 27 /N, the N-fold Bravais
lattices, inR? (and inIR3). For these valuesy is said to becrystallographic

Letus set] = e, Thecyclotomicring of orderN in the plane is th&-module:
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27 27
Z|(| = Z|2 cos —| + Z|2 cos —
[¢) = Z[2cos 5] + Z[2 cos T,

This N-fold structure is generically dense( except precisely for the crystallographic
cases. Indeeld[(] = Z for N = 1 or 2, Z[{] = Z + Zi for N = 4 (square lattice), and
7[¢] = 7 + Ze'3 for the triangular and hexagonal casés= 3 and N = 6. Note that a
Bravais lattice is a Meyer set such thHat= {0}.

For a general non-crystallographig the numbee cos QW” is an algebraic integer of
degreen = p(N)/2 < |(N — 1)/2| whereyp is the Euler function.
A cyclotomic Pisot numbewith symmetry of ordetV is a Pisot numbe#f such that

2m
Z[2 cos W] =Z[3].

What is striking is the fact that, up to now, all the quasitaisreally obtained by
the physicists are linked to cyclotomic quadratic PisotsiNore precisely, denotk/s
the minimal polynomial of3. Then

e N=50rN=10:=255 —2cos T, Ms(X) = X2 - X — 1

e N=83=1+V2=1+2cosF, Mg(X)=X?-2X -1

e N=12:13=2+3=2+2cos %, Mg(X)=X?—4X +1.
Other cyclotomic Pisot units are

e N=T70rN =14:=1+2cos F, Mp(X) = X* —2X?> - X +1
e N=90rN =18 3=1+2cos %, Mg(X) = X* - 3X?+1.

A complete classification of cyclotomic Pisot numbers ofréeg< 4 was given by
Bell and Hare in [5].

5.3. Beta-lattices in the plane

Let 3 be a cyclotomic Pisot number with ord&rsymmetry. ThetZ[¢] = Z[5] + Z[3]¢,
with ¢ = €%, is a ring invariant under rotation of ordf (see [4]). This ring is the
natural framework for two-dimensional structures havihas scaling factor, angir /N
as rotational symmetry.

Generically, let3 be a Pisot number; laeta-latticeis a point set

d
T=Y Zge,
i=1

where(e;) is a basis oR“. Such a set is a Meyer set with self-similarity fagioObserve
that 8-lattices are based gfrintegers as lattices are based on integers3-&aitices are
good frames for the study of quasiperiodic point-sets dirdj, see [18].

Examples of beta-lattices in the plane are point-sets oficime

U4(B) = Zp + Z¢7
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with G a cyclotomic Pisot unit of ordelv, for 1 < ¢ < N — 1. Note that the latter are
not rotationally invariant. Examples of rotationally imant point-sets based on beta-
integers are

N-1
Aq*UFq(6)<77 1SQSN—1,
7=0
and
N-1
Zs(Cl= ), ZpC’
j=0
All these sets are Meyer sets.
ya
/
e
7
e
7
/
prd
7
Z
e
7
/
/
7
/
7
/
pd
7

-

Figure 4. The r-lattice I'; (7) with points (left), and its trivial tiling made by joining s along the hori-
zontal axis, and along the direction defined¢y

In the particular case whergis a quadratic Pisot unit, the set @fintegersZs can
be equipped with an internal additive law, which gives it Belan group structure [11].
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