# Voronoi Cells of Beta-Integers

Avi Elkharrat<sup>1</sup> and Christiane Frougny<sup>2</sup>

 LPTMC, Université Paris 7, France kharrat@ccr.jussieu.fr
 LIAFA, CNRS & Université Paris 7, and Université Paris 8, France Christiane.Frougny@liafa.jussieu.fr

**Abstract.** In this paper are considered one-dimensional tilings arising from some Pisot numbers encountered in quasicrystallography as the quadratic Pisot units and the cubic Pisot unit associated with 7-fold symmetry, and also the Tribonacci number. We give characterizations of the Voronoi cells of such tilings, using word combinatorics and substitutions.

# 1 Introduction

Word combinatorics has been proved to be very useful in the solution of problems arising from the modelization of metallic alloys called *quasicrystals*. The first quasicrystal was discovered in 1984: it is a solid structure presenting a local symmetry of order 5, *i.e.* a local invariance under rotation of  $\pi/5$ , and it is linked to the golden mean and to the Fibonacci substitution. The Fibonacci substitution, given by

$$L \mapsto LS, S \mapsto L,$$

defines a quasiperiodic selfsimilar tiling of the positive real line, and is a historical model of a one-dimensional mathematical quasicrystal. The fixed point of the substitution is the infinite word

$$LSLLSLSLSL\cdots$$

Each letter L or S is considered as a tile. The vertices of the tiles are labelled by algebraic integers, the so-called  $\beta$ -integers, where  $\beta$  is equal to  $\frac{1+\sqrt{5}}{2}$ . The description and the properties of those  $\beta$ -integers use a base  $\beta$  number system.

A more general theory has been elaborated with Pisot numbers<sup>1</sup> for base, see [3, 6]. Note that so far, all the quasicrystals discovered by physicists present local symmetry of order 5, 8, 10, or 12, and are modelized using some quadratic Pisot units, namely  $\frac{1+\sqrt{5}}{2}$ ,  $1 + \sqrt{2}$ , and  $2 + \sqrt{3}$ . More generally, a substitution can be associated with any Pisot number giving a selfsimilar quasiperiodic tiling of the positive real line [19].

 $<sup>^{1}</sup>$  A *Pisot number* is an algebraic integer > 1 such that the other roots of its minimal polynomial have a modulus less than 1. The golden mean and the natural integers are Pisot numbers

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 209–223, 2005.

<sup>©</sup> Springer-Verlag Berlin Heidelberg 2005

The construction of quasiperiodic point sets involves a method called *cut and* projection [12, 13]. The determination of the quasicrystal depends on a set called *window*. For instance, when  $\beta$  is the Tribonacci number, the window of the set of  $\beta$ -integers is the well known Rauzy fractal, see [11] for instance.

The purpose of this work is to give a combinatorial characterization of the geometry of tilings associated with sets of beta-integers. More precisely we show that local geometrical configurations of beta-integers, given by their *Voronoi* cells, are characterized by their beta-expansions. This allows to give a fine partition of the window associated with positive beta-integers according to the combinatorial properties of the underlying numeration system.

It is worthwile to mention that the fixed point  $u_{\beta}$  of the substitutions associated with the Pisot numbers  $\beta$  considered here enjoys the following properties. When  $\beta$  is a quadratic Pisot unit,  $u_{\beta}$  is a Sturmian sequence [6], that is to say, the number  $\mathcal{C}(n)$  of factors of length n, is equal to n + 1. When  $\beta$ is the Tribonacci number,  $u_{\beta}$  is an Arnoux-Rauzy sequence [1], of complexity  $\mathcal{C}(n) = 2n + 1$ . When  $\beta$  is the cubic Pisot unit associated with 7-fold symmetry,  $u_{\beta}$  has complexity  $\mathcal{C}(n) = 2n + 1$ , but is not an Arnoux-Rauzy sequence [7].

The paper is organized as follows: after some definitions, we give characterizations of the Voronoi cells of the tilings associated with quadratic Pisot units, with the Tribonacci number and, with the cubic Pisot unit associated with 7-fold symmetry. These results are given in terms of the properties of the beta-expansions as words, and by the belonging of the conjugates of beta-integers to some connected region, the window. For the Tribonacci number, our results allow to give a nice combinatorial interpretation of the domain exchange defined by Rauzy on the Rauzy fractal, see [11, 15, 16].

# 2 Preliminaries

## 2.1 Words

Let A be a finite set of symbols called the *alphabet*. We denote by  $A^*$  the set of finite *words* over A, and by  $\varepsilon$  the empty word. A *factor* of a word x is a word z such that x = yzt. If  $y = \varepsilon$ , z is said to be a *prefix* of x; if  $t = \varepsilon$ , the word z is a *suffix* of x. A prefix (or a suffix) z of y is *proper* if it is different of the entire word y. If v is a word, the concatenation of v k times is denoted by  $v^k$ , with the convention that if k = 0,  $v^k$  is the empty word  $\varepsilon$ .

A function  $f : A^* \to B^*$  is a morphism if f(xy) = f(x)f(y), for all  $x, y \in A^*$ . A morphism is a substitution if for each a in A,  $f(a) \neq \varepsilon$ .

The *radix order* for finite words over an ordered alphabet is defined by  $x \leq y$  if |x| < |y|, or |x| = |y| and their exist factorizations x = uax' and y = uby', for some word  $u \in A^*$ ,  $a, b \in A$  such that  $a \leq b$ , and  $x', y' \in A^*$ .

The set of infinite words over A is denoted by  $A^{\mathbb{N}}$ . It is the set of sequences of symbols of A indexed by non-negative integers. Denote by  $v^{\omega} = vvvv \dots$  the word obtained by the infinite concatenation of the word v. A word of the form  $uv^{\omega}$  is called *eventually periodic* if  $u \neq \varepsilon$ , *periodic* otherwise. The *lexicographic order* for infinite words over an ordered alphabet is defined by  $x <_{\text{lex}} y$  if their exist factorizations x = uax' and y = uby', for some word  $u \in A^*$ ,  $a, b \in A$  such that a < b, and  $x', y' \in A^{\mathbb{N}}$ .

#### 2.2 Beta-Expansions

For definitions and results on beta-expansions the reader may consult [10, Chapter 7]. Let  $\beta > 1$  be a real number. A representation in base  $\beta$ , or a  $\beta$ representation, of a real number x > 0 is an infinite sequence of integers  $(x_i)_{i \leq N}$ such that  $x = \sum_{i \leq N} x_i \beta^i$ , for some N. A particular  $\beta$ -representation, called  $\beta$ -expansion, is computed by the "greedy algorithm" [17]. Denote by  $\lfloor y \rfloor$  and by  $\{y\}$  the integer part and the fractional part of the real number y, respectively. There exists  $N \in \mathbb{Z}$  such that  $\beta^N \leq x < \beta^{N+1}$ . Let  $x_N = \lfloor x/\beta^N \rfloor$ , and let  $r_N = \{x/\beta^N\}$ . Then for i < N,  $x_i = \lfloor \beta r_{i+1} \rfloor$ , and  $r_i = \{\beta r_{i+1}\}$ . If x < 1, then N < 0 and we set  $x_{-1} = \cdots = x_{N+1} = 0$ . The  $\beta$ -expansion of x is denoted by

$$\langle x \rangle_{\beta} = x_N x_{N-1} \cdots x_1 x_0 \cdot x_{-1} x_{-2} \cdots,$$

most significant digits first. The dot between  $x_0$  and  $x_{-1}$  symbolizes the separation between positive and negative powers of the base. By abuse we refer to the word  $x_N \cdots x_0$  as the  $\beta$ -integer part, and to the word  $x_{-1}x_{-2}\cdots$  as the  $\beta$ -fractional part of x in base  $\beta$ . The digits  $x_i$  obtained by the greedy algorithm belong to the set  $\mathbb{B} = \{0, 1, \dots, \lfloor\beta\rfloor\}$ , called the *canonical* alphabet associated with  $\beta$ , if  $\beta$  is not an integer. If  $\beta$  is an integer, then  $\mathbb{B} = \{0, 1, \dots, \beta-1\}$ , and the  $\beta$ -expansion is just the standard representation in base  $\beta$ . If a  $\beta$ -representation ends with infinitely many 0's it is said to be *finite* and the ending 0's are omitted.

A word (finite or infinite) is said to be *admissible* if it is the  $\beta$ -expansion of some number of [0,1[. Let us introduce the so called  $Rényi \beta$ -expansion of 1, denoted by  $d_{\beta}(1)$ . It is computed as follows: let the  $\beta$ -transform of the unit interval be defined by  $T_{\beta}(y) = \beta y \mod 1$ . Then  $d_{\beta}(1) = (t_i)_{i \ge 1}$ , where  $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor$ . Note that  $d_{\beta}(1)$  belongs to  $\mathbb{B}^{\mathbb{N}}$ . A number  $\beta$  such that  $d_{\beta}(1)$  is eventually periodic is called a *beta-number*, or a *Parry number*. When  $d_{\beta}(1)$  is finite,  $\beta$  is said to be a *simple* Parry number. Set  $d_{\beta}^{*}(1) = d_{\beta}(1)$  if  $d_{\beta}(1)$  is eventually periodic, and  $d_{\beta}^{*}(1) = (t_1 \cdots t_{m-1}(t_m - 1))^{\omega}$  if  $d_{\beta}(1) = t_1 \cdots t_{m-1}t_m$ is finite. Let us recall the following result from [14]: An infinite sequence of non-negative integers  $\xi = (\xi_i)_{i\ge 1}$  is admissible if and only if for every  $p \ge 0$ ,  $(\xi_{i+p})_{i\ge 1} <_{\text{lex}} d_{\beta}^{*}(1)$ . We can now define the set of  $\beta$ -integers.

**Definition 1** The set of  $\beta$ -integers is the set of real numbers such that the  $\beta$ -expansion of their absolute value has a  $\beta$ -fractional part equal to  $0^{\omega}$ 

$$\mathbb{Z}_{\beta} = \left\{ x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_N x_{N-1} \cdots x_1 x_0, \ N \ge 0 \right\}.$$
(1)

Denote  $\mathbb{Z}_{\beta}^{+}$  the set of non-negative  $\beta$ -integers. Note that  $\mathbb{Z}_{\beta} = \mathbb{Z}_{\beta}^{+} \cup (-\mathbb{Z}_{\beta}^{+})$ and that  $\beta \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}$ . The set  $\mathbb{Z}_{\beta}^{+}$  is ordered by the radix order on the (finite)  $\beta$ -expansions of its elements; its *n*-th element is denoted  $b_n$ . An algebraic integer is a root of a monic polynomial with integer coefficients. A *Pisot number* is an algebraic integer greater than 1 such that the other roots of its minimal polynomial have a modulus smaller than 1. When the constant term of the minimal polynomial is equal to  $\pm 1$ ,  $\beta$  is said to be a *unit*. Recall that any Pisot number is a Parry number [2, 18].

#### 2.3 Substitution Tilings

Let  $\beta$  be a Parry number. To such a number a substitution  $\sigma_{\beta}$  can be associated with  $\beta$  in a canonical way. Its fixed point  $u_{\beta}$  is written on an alphabet  $\mathbb{A}$  of letters that are considered as tiles. This defines a tiling of the positive real line with a finite number of tiles. Each tile U is given a length  $\ell(U)$ , see [5, 19]. Each vertex of the positive real line is labelled by the length in tiles of the prefix of  $u_{\beta}$  ending in that vertex.

In the frame of this study, we restrict ourselves to a subclass of Parry numbers, namely the quadratic Pisot units and two examples of cubic Pisot units.

#### Quadratic Pisot Units. They are of two types.

**Case 1.**  $\beta > 1$  is the root of the polynomial  $X^2 - aX - 1$ ,  $a \ge 1$ . The canonical alphabet is  $\mathbb{B} = \{0, 1, \ldots, a\}$ , the  $\beta$ -expansion of 1 is finite and equal to  $d_{\beta}(1) = a1$ . Note that a word on  $\mathbb{B}$  is a  $\beta$ -expansion if and only if it does not contain a factor a1. The substitution  $\sigma_{\beta}$  is defined on the alphabet  $\mathbb{A} = \{L, S\}$  by

$$\sigma_{\beta} = \begin{cases} L \mapsto L^{a}S \\ S \mapsto L \,. \end{cases}$$
(2)

To each letter of A we associate a tile with the same name of length  $\ell(L) = 1$ , and  $\ell(S) = T_{\beta}(1) = \beta - a = 1/\beta$ .

**Case 2.**  $\beta > 1$  is the root of the polynomial  $X^2 - aX + 1$ ,  $a \ge 3$ . The canonical alphabet is  $\mathbb{B} = \{0, 1, \ldots, a - 1\}$ , the  $\beta$ -expansion of 1 is eventually periodic and equal to  $d_{\beta}(1) = (a - 1)(a - 2)^{\omega}$ . The substitution  $\sigma_{\beta}$  is defined on the alphabet  $\mathbb{A} = \{L, S\}$  by

$$\sigma_{\beta} = \begin{cases} L \mapsto L^{a-1}S \\ S \mapsto L^{a-2}S \end{cases}.$$
(3)

Here we have  $\ell(L) = 1$ , and  $\ell(S) = T_{\beta}(1) = \beta - (a - 1) = 1 - 1/\beta$ .

**Cubic Pisot Units.** We consider two particular cases of cubic Pisot units, namely the roots of the polynomials

$$X^{3} - X^{2} - X - 1$$
, Case 1  
 $X^{3} - 2X^{2} - X + 1$ , Case 2.

The root  $\beta > 1$  in Case 1 is the so-called Tribonacci number, see for instance [11]. The root  $\beta$  in Case 2 is a cyclotomic Pisot unit with a 7-fold symmetry, that is to say, the ring  $\mathbb{Z}[e^{i2\pi/7}]$ , which is invariant by rotation of  $2\pi/7$ , satisfies  $\mathbb{Z}[e^{i2\pi/7}] = \mathbb{Z}[\beta] + \mathbb{Z}[\beta]e^{i2\pi/7}$ , see [3].

**Case 1.** The Tribonacci number. The canonical alphabet is  $\mathbb{B} = \{0, 1\}$ , the  $\beta$ -expansion of 1 is finite and equal to  $d_{\beta}(1) = 111$ . A word on  $\mathbb{B}$  is a  $\beta$ -expansion if and only if it does not contain a factor 111. The substitution  $\sigma_{\beta}$  is defined on the alphabet  $\mathbb{A} = \{L, M, S\}$  by

$$\sigma_{\beta} = \begin{cases} L \mapsto LM \\ M \mapsto LS \\ S \mapsto L . \end{cases}$$
(4)

We have  $\ell(L) = 1$ ,  $\ell(M) = T_{\beta}(1) = \beta - 1$ , and  $\ell(S) = T_{\beta}^2(1) = \beta^2 - \beta - 1$ . **Case 2.** Symmetry of order 7. The canonical alphabet is  $\mathbb{B} = \{0, 1, 2\}$ , the  $\beta$ -expansion of 1 is eventually periodic and equal to  $d_{\beta}(1) = 2(01)^{\omega}$ . The substitution  $\sigma_{\beta}$  is defined on the alphabet  $\mathbb{A} = \{L, M, S\}$  by

$$\sigma_{\beta} = \begin{cases} L \mapsto LLS \\ S \mapsto M \\ M \mapsto LS \end{cases}$$
(5)

Here we have  $\ell(L) = 1$ ,  $\ell(S) = T_{\beta}(1) = \beta - 2$ , and  $\ell(M) = T_{\beta}^2(1) = \beta^2 - 2\beta$ .

For all the above cases, the infinite word  $u_{\beta} = \sigma_{\beta}^{\infty}(L)$  is the fixed point of the substitution  $\sigma_{\beta}$ . The interval  $[0, \beta^j]$  is tiled by the tiling associated with the word  $\sigma_{\beta}^j(L)$ . Consequently the tiling associated with  $\sigma_{\beta}^{\infty}(L)$  is a selfsimilar tiling of the positive real line and positive  $\beta$ -integers are the labels of the vertices of this tiling, see [3, 6]. The substitution  $\sigma_{\beta}$  acts on the tiles as the multiplication by  $\beta$  acts on  $\beta$ -integers.

**Example** Let  $\varphi = \frac{1+\sqrt{5}}{2}$ . Then  $d_{\varphi}(1) = 11$ . The associated substitution is the Fibonacci substitution  $L \mapsto LS$ ,  $S \mapsto L$ . We have  $\ell(L) = 1$ , and  $\ell(S) = \varphi - 1$ . The first non-negative  $\varphi$ -integers are

$$\begin{array}{ll} b_0 = 0 & \langle b_0 \rangle_{\varphi} = 0 \\ b_1 = 1 & \langle b_1 \rangle_{\varphi} = 1 \\ b_2 = \varphi & \langle b_2 \rangle_{\varphi} = 10 \\ b_3 = \varphi^2 & \langle b_3 \rangle_{\varphi} = 100 \\ b_4 = \varphi^2 + 1 & \langle b_4 \rangle_{\varphi} = 101 \\ b_5 = \varphi^3 & \langle b_5 \rangle_{\varphi} = 1000 \end{array}$$

The fixed point of the substitution is

$$u_{\varphi} = LSLLSLSLSL\cdots$$

Below is shown the beginning of the labelling of vertices of the Fibonacci tiling by  $\varphi$ -integers



### 2.4 Meyer Sets and Voronoi Cells

We recall here several definitions and results that can be found in [8, 9, 12, 13], see also [4] for a survey on these questions. Delaunay sets were introduced as a mathematical idealization of a solid-state structure. A set  $\Lambda$  in  $\mathbb{R}^d$  is said to be uniformly discrete if there exists r > 0 such that every ball of radius r contains at most a point of  $\Lambda$ . A set  $\Lambda$  in  $\mathbb{R}^d$  is said to be relatively dense if there exists R > 0 such that every ball of radius R contains at least a point of  $\Lambda$ . If both conditions are satisfied,  $\Lambda$  is said to be a Delaunay set.

Meyer introduced in [12, 13] the mathematical notion of quasicrytals as a generalization of ideal crystalline structures. They are now known as Meyer sets. A set  $\Lambda \subset \mathbb{R}^d$  is said to be a Meyer set if it is a Delaunay set and if there exists a finite set F such that  $\Lambda - \Lambda \subset \Lambda + F$ . This is equivalent to  $\Lambda - \Lambda$  being a Delaunay set [8]. The Meyer sets generalize the lattices of crystallography, that obey the relation  $\Lambda - \Lambda \subset \Lambda$ .

We now give the definition of Voronoi cells and of Voronoi tessellation.

**Definition 2** (i) Given a discrete set  $\Lambda$  in  $\mathbb{R}^d$ , the Voronoi cell  $\mathcal{V}(\lambda)$  of  $\lambda \in \Lambda$  is the closure of the set of all points in  $\mathbb{R}^d$  closer to  $\lambda$  than to any other point of  $\Lambda$ 

$$\mathcal{V}(\lambda) = \{ x \in \mathbb{R}^d \mid \delta(x - \lambda) \leqslant \delta(x - \lambda'), \ \lambda' \in \Lambda \},$$
(6)

where  $\delta$  is the Euclidean distance in  $\mathbb{R}^d$ .

(ii) The set of Voronoi cells of a discrete set  $\Lambda$  forms a tiling of  $\mathbb{R}^d$  called the Voronoi tessellation of  $\mathbb{R}^d$  induced by  $\Lambda$ .

Lagarias has proved in [9] that if  $\Lambda$  is a Meyer set, its Voronoi tessellation contains a finite number of tiles. It is proved in [3] that when  $\beta$  is a Pisot number, then the set  $\mathbb{Z}_{\beta}$  of  $\beta$ -integers is a Meyer set.

There is a special class of Meyer sets, defined by Meyer [12, 13], called *model* sets, computed by the so called *cut and project algorithm* and in which arises the notion of *window*. In the frame of this article, we introduce the algebraic version of the cut and project algorithm in the particular cases we study.

**Quadratic Pisot Units.** Let  $\beta > 1$  be a quadratic Pisot unit. Let now  $\beta'$  be the other root of the minimal polynomial associated with  $\beta$ , and let the *Galois conjugation automorphism* be the map  $x = \sum_{0 \leq i \leq N} x_i \beta^i \mapsto x' = \sum_{0 \leq i \leq N} x_i \beta'^i$ . We define the window of positive  $\beta$ -integers as the compact set  $\Omega$ 

$$\Omega = \overline{\{x' \mid x \in \mathbb{Z}_{\beta}^+\}} = \overline{(\mathbb{Z}_{\beta}^+)'}.$$
(7)

We know from [3] that a a number x of  $\mathbb{Z}[\beta] \cap \mathbb{R}^+$  is a positive  $\beta$ -integer if and only if its conjugate x' belongs to the window  $\Omega = (-1, \beta)$  in Case 1, and  $\Omega = (0, \beta)$  in Case 2.

Cubic Pisot Units. We have to consider our two cases separately.

**Case 1.** Let  $\beta > 1$  be the Tribonacci number, and let  $\alpha$  and  $\alpha^c$  be its Galois conjugates (the symbol <sup>c</sup> denotes complex conjugation). The Galois conjugation automorphism is defined as  $x = \sum_{0 \le i \le N} x_i \beta^i \mapsto x' = \sum_{0 \le i \le N} x_i \alpha^i$ . Then the

window  $\Omega$  of  $\mathbb{Z}_{\beta}^{+}$  is a compact subset of  $\mathbb{C}$  with a fractal boundary, see for instance Figure 3. This figure is called the Rauzy fractal [11, 16].

**Case 2.** Let  $\beta > 1$  be the dominant root of the polynomial  $X^3 - 2X^2 - X + 1$ . The other roots of this polynomial are the real numbers  $\alpha_1 = \beta^2 - 2\beta$  and  $\alpha_2 = -\beta^2 + \beta + 2$ . The Galois automorphism is  $x = \sum_{0 \le i \le N} x_i \beta^i \mapsto x' = \sum_{0 \le i \le N} x_i (\alpha_1^i + \alpha_2^i e^{i4\pi/7}).$ 

The definition of the window  $\Omega$  of positive  $\beta$ -integers is again given by Equation (7). Note that, unless for quadratic Pisot units, the determination of the window of positive  $\beta$ -integers is an open problem, see discussion in [6].

# 3 Beta-Integers Voronoi Cells

We shall now study the Voronoi tessellation of  $\mathbb{Z}_{\beta}^+$ , and characterize Voronoi cells of  $\beta$ -integers when  $\beta$  is a quadratic Pisot unit, the Tribonacci number, or a cubic Pisot unit associated with 7-fold symmetry.

When a  $\beta$ -integer is the common vertex of the generic tiles U and V, it is said to be an  $UV \beta$ -integer, and its Voronoi cell is consequently said to be an UV Voronoi cell. The window associated with positive  $UV \beta$ -integers is denoted by  $\Omega_{UV}$ , and is given by

$$\Omega_{UV} = \overline{\{x' \mid x \in \mathbb{Z}_{\beta}^+, x \text{ is } UV\}}.$$

Since a negative  $\beta$ -integer  $b_{-n}$  is by definition equal to  $-b_n$ , by symmetry one obtains a tiling of the negative real line, and thus the beta-integer  $b_0 = 0$  is always of type LL.

## 3.1 Quadratic Pisot Units

Recall that from the substitution  $\sigma_{\beta}$  we have only three possible tile-configurations, *LL*, *LS* and *SL*, since *SS* is excluded, so there are only three possible Voronoi cells. When a  $\beta$ -integer is *SL* or *LS*, the length of its Voronoi cell is  $(1 + 1/\beta)/2$  in Case 1, and  $(2 - 1/\beta)/2$  in Case 2. Figure 1 displays the case when the  $n^{\text{th}} \beta$ -integer is *SL*. When a  $\beta$ -integer is *LL* the length of its Voronoi cell is 1.

We will see in the following that it is possible to further differentiate Voronoi cells, from the analysis of the  $\beta$ -expansion of the  $\beta$ -integer they support.



**Fig. 1.** Configuration where the  $n^{\text{th}} \beta$ -integer,  $b_n$ , is SL

Case 1.  $\beta^2 = a\beta + 1, a \ge 1$ 

**Proposition 1** In each of the following assertions, (i), (ii) and (iii) are equivalent.

1.1 (i)  $b_n$  is SL; (ii)  $\langle b_n \rangle_{\beta}$  ends in the suffix  $(0)^{2q+1}$ ,  $q \in \mathbb{N}$  maximal; (iii)  $b'_n \in \Omega_{SL} = (-1,0)$ .

1.2 (i)  $b_n$  is LL; (ii) for  $n \ge 1$ ,  $\langle b_n \rangle_\beta$  ends in either the suffix  $(0)^{2q+2}$ ,  $q \in \mathbb{N}$  maximal, or by an  $h \in \{1, \ldots, a-1\}$ ; (iii)  $b'_n \in \Omega_{LL} = [0, \beta - 1)$ .

1.3 (i)  $b_n$  is LS; (ii)  $\langle b_n \rangle_\beta$  ends in a; (iii)  $b'_n \in \Omega_{LS} = (\beta - 1, \beta)$ .

**Proof** We prove Proposition 1 in two steps. First we prove that  $(i) \Leftrightarrow (ii)$  by recurrence. Recall that the set  $\mathbb{Z}_{\beta}$  is symmetric with respect to the origin by definition, which makes the origin  $b_0 = 0$  a  $LL \beta$ -integer. We have  $b'_0 = 0$ . The relations are clearly valid for small  $n \ge 1$ .

Suppose that  $b_n$  is an  $SL \beta$ -integer. In the fixed point of the substitution  $u_\beta = \sigma_\beta^\infty(L)$ , the factor SL can appear in two different configurations.

In the first configuration SL is a factor of  $L^a SL^a S$ . We thus have  $b_n = \beta b_k$ , where  $b_k$  is a  $LL \beta$ -integer,

$$egin{array}{cccc} b_n & & & \ L^aS & \mid L^aS \ \uparrow & \uparrow & \ b_k & & \ L & \mid & L \end{array}$$

where the upright arrow symbolizes the action of the substitution  $\sigma_{\beta}$  on a given tile. By recurrence hypothesis,  $\langle b_k \rangle_{\beta}$  ends either with an  $h \in \{1, 2, \ldots, a-1\}$ and then  $\langle b_n \rangle_{\beta}$  ends in h0, or  $\langle b_k \rangle_{\beta}$  ends in  $(0)^{2q+2}$ ,  $q \in \mathbb{N}$  maximal and then  $\langle b_n \rangle_{\beta}$  ends in  $(0)^{2q+3}$ , thus  $\langle b_n \rangle_{\beta}$  ends with an odd number of 0's. Consequently, the  $\beta$ -expansions of  $b_{n+1}, b_{n+2}, \ldots, b_{n+a-1}$ , which are all  $LL \beta$ -integers, end in  $1, 2, \ldots, (a-1)$  respectively, and the  $\beta$ -expansion of  $b_{n+a}$ , which is LS, ends in a.

In the second configuration SL is a factor of  $L^a SLL^a S$  thus  $b_n = \beta b_k$  where  $b_k$  is a  $LS \beta$ -integer. Since by recurrence hypothesis,  $\langle b_k \rangle_\beta$  ends in a, then  $\langle b_n \rangle_\beta$  ends with a0. Recall that a1 is not admissible for such a  $\beta$ . Thus the  $\beta$ -expansion of  $b_{n+1}$ , which is LL, ends in j00, where  $j \neq 0$ . Therefore, the  $\beta$ -expansion of  $b_{n+2}, \ldots, b_{n+a}$ , which are all LL, ends in  $1, 2, \ldots, a-1$ , respectively, and the  $\beta$ -expansion of  $b_{n+a+1}$ , which is LS, ends in a.

The cases where  $b_n$  is an LL or an  $LS \beta$ -integer have been already treated just above.

Let us now show that  $(i) \Leftrightarrow (iii)$ . Recall that a number x of  $\mathbb{Z}[\beta] \cap \mathbb{R}^+$  is a positive  $\beta$ -integer if and only if its conjugate x' belongs to  $(-1,\beta)$ . Let  $b_n$ be a  $SL \beta$ -integer. Then  $b_{n-1} = b_n - \frac{1}{\beta}$  and  $b_{n+1} = b_n + 1$  are  $\beta$ -integers, and  $(b_{n-1})' = b'_n + \beta \in (-1,\beta)$  and  $(b_{n+1})' = b'_n + 1 \in (-1,\beta)$ . Therefore  $b'_n \in (-1,0)$ .

Let  $b_n$  be a  $LL \beta$ -integer. Then  $b_{n-1} = b_n - 1$  and  $b_{n+1} = b_n + 1$  are  $\beta$ -integers, and  $(b_{n-1})' = b'_n - 1 \in (-1, \beta)$  and  $(b_{n+1})' = b'_n + 1 \in (-1, \beta)$ . Since 0 is LL we have  $b'_n \in [0, \beta - 1)$ .

Finally, let  $b_n$  be a LS  $\beta$ -integer. Then  $b_{n-1} = b_n - 1$  and  $b_{n+1} = b_n + \frac{1}{\beta}$  are  $\beta$ -integers, and  $(b_{n-1})' = b'_n - 1 \in (-1, \beta)$  and  $(b_{n+1})' = b'_n - \beta \in (-1, \beta)$ .

For  $LL \beta$ -integers we can refine the characterization. We give a partition of the window of  $LL \beta$ -integers as

$$\Omega_{LL} = \bigcup_{0 \leqslant h \leqslant a-1} \Omega_{LL}(h) \, ,$$

where  $\Omega_{LL}(h)$  is the window associated with positive  $LL \beta$ -integers such that their  $\beta$ -expansions end in  $h \in \{0, \dots, a-1\}$ .

**Proposition 2** Let  $b_n$  be a LL  $\beta$ -integer, then  $\langle b_n \rangle_\beta$  ends in 2.1  $(0)^{2q+2}$ , q maximal in  $\mathbb{N}$ , if and only if  $b'_n \in \Omega_{LL}(0) = [0, \frac{1}{\beta})$ , 2.2 an  $h \in \{1, \ldots, a-1\}$  if and only if  $b'_n \in \Omega_{LL}(h) = (\frac{1}{\beta} + h - 1, \frac{1}{\beta} + h)$ .

**Proof** Let us first prove 2.1. Let  $b_n$  be a  $LL \beta$ -integer, such that  $\langle b_n \rangle_{\beta}$  ends in  $(0)^{2q+2}$ ,  $q \in \mathbb{N}$ . By Proposition 1, 1.1, the  $\beta$ -integer  $b_n/\beta$  is SL, and  $(b_n/\beta)' = -\beta b'_n \in (-1, 0)$ . Therefore  $b_n \in (0, 1/\beta)$ .

We prove 2.2 in two steps. Suppose that  $b_n$  is a  $LL \beta$ -integer such that  $\langle b_n \rangle_{\beta}$  ends in 1. There are two cases for  $b_{n-1} = b_n - 1$ .

•  $b_{n-1}$  is a  $LL \beta$ -integer such that  $\langle b_{n-1} \rangle_{\beta}$  ends in  $(0)^{2q+2}$ ,  $q \in \mathbb{N}$ . Thus  $b'_{n-1} \in [0, \frac{1}{\beta})$ , and  $b'_n \in [1, 1 + \frac{1}{\beta})$ .

•  $b_{n-1}$  is a  $SL \beta$ -integer such that  $\langle b_{n-1} \rangle_{\beta}$  ends with  $h0, h \neq a$ . The conjugate  $b'_n$  of  $b_n$  lies in the window computed as follows. Let  $b_s$  be a  $SL \beta$ -integer such that  $\langle b_s \rangle_{\beta}$  ends with a0. Then  $b_s/\beta$  ends with a, and by Proposition 1, 1.3,  $(b_s/\beta)' \in (\beta - 1, \beta)$ . Thus  $b'_s \in (-1, -1 + 1/\beta)$ . It is obvious now that  $(b_{n-1})' \in (-1 + 1/\beta, 0)$ , and  $b'_n \in (\frac{1}{\beta}, 1)$ .

Putting the two cases together we get that  $b'_n \in (\frac{1}{\beta}, 1 + \frac{1}{\beta})$ . The end of the proof for any h in  $\{1, \ldots, a-1\}$  follows easily.

On Figure 2 we display the window  $\Omega$  of  $\mathbb{Z}_{\beta}^+$ , when  $\beta$  is a quadratic Pisot unit of Case 1, and its decomposition into subwindows which correspond to the windows of  $\beta$ -integers having specific Voronoi cells.

$$-1 \qquad 0 \qquad \frac{1}{\beta} \qquad \cdots \qquad \frac{1}{\beta+h-1} \qquad \frac{1}{\beta+h} \qquad \cdots \qquad \frac{\beta-2 \qquad \beta-1 \qquad \beta}{\Omega_{LL}(a-1) \qquad \Omega_{LS}}$$

Fig. 2. Graphical representation of Proposition 1 (iii) and Proposition 2

Case 2.  $\beta^2 = a\beta - 1, a \ge 3$ 

Let  $\mathcal{M} = (a-1)(a-2)^*$  be the set of maximal words of each length in the radix order. Remark that any word in  $\mathcal{M}$  is a prefix of  $d_{\beta}(1) = (a-1)(a-2)^{\omega}$ .

**Proposition 3** In each of the following assertions, (i), (ii) and (iii) are equivalent. For  $n \ge 1$ 

3.1 (i)  $b_n$  is SL; (ii)  $\langle b_n \rangle_{\beta}$  ends in 0; (iii)  $b'_n \in \Omega_{SL} = (0, 1)$ . 3.2 (i)  $b_n$  is LL; (ii)  $\langle b_n \rangle_{\beta}$  ends in a word  $w \notin \mathcal{M} \cup 0$ ; (iii)  $b'_n \in \Omega_{LL} = [1, \beta - 1)$ . 3.3 (i)  $b_n$  is LS; (ii)  $\langle b_n \rangle_{\beta}$  ends in a word  $w \in \mathcal{M}$ ; (iii)  $b'_n \in \Omega_{LS} = (\beta - 1, \beta)$ .

*Proof.* We prove  $(i) \Leftrightarrow (ii)$  by recurrence. Suppose that  $b_n$  is SL. The factor SL can appear in three different configurations in the fixed point of the substitution  $u_{\beta}$ .

In the first configuration SL is a factor of  $L^{a-1}SL^{a-1}S$  where  $b_n$  is issued from the  $LL \beta$ -integer  $b_k$ ,  $b_n = \beta b_k$ .

$$\begin{matrix} b_n \\ L^{a-1}S & | & L^{a-1}S \\ \uparrow & \uparrow \\ b_k \\ L & | & L \end{matrix}$$

By recurrence hypothesis  $\langle b_k \rangle_{\beta}$  ends in  $w \notin \mathcal{M} \cup 0$ . Then  $\langle b_n \rangle_{\beta}$  ends in w0. Consequently, the  $\beta$ -expansions of  $b_{n+1}, b_{n+2}, \ldots, b_{n+a-2}$ , which are all LL, end respectively by  $w1, w2, \ldots, w(a-2)$ , and the  $\beta$ -expansion of  $b_{n+a-1}$ , which is LS, ends in (a-1), which belongs to  $\mathcal{M}$ .

In the second configuration, SL is a factor of  $L^{a-1}SL^{a-2}S$ , and  $b_n = \beta b_k$  with  $b_k$  a  $LS \beta$ -integer.

$$\begin{matrix} b_n \\ L^{a-1}S & | & L^{a-2}S \\ \uparrow & \uparrow \\ b_k \\ L & | & S \end{matrix}$$

By recurrence hypothesis,  $\langle b_k \rangle_{\beta}$  ends in  $(a-1)(a-2)^q$ , with  $q \in \mathbb{N}$ . Then  $\langle b_n \rangle_{\beta}$ ends in  $(a-1)(a-2)^q 0$ . Thus, the  $\beta$ -expansion of  $b_{n+1}, b_{n+2}, \ldots, b_{n+a-3}$ , which are LL, ends in  $1, 2, \ldots, (a-3)$ , respectively, and the  $\beta$ -expansion of  $b_{n+a-2}$ , which is LS, ends in  $(a-1)(a-2)^{q+1} \in \mathcal{M}$ .

In the third configuration, SL is a factor of  $L^{a-2}SL^{a-1}S$ ,  $b_n = \beta b_k$  with  $b_k$  a SL  $\beta$ -integer.

By recurrence hypothesis  $\langle b_k \rangle_{\beta}$  ends in 0, and  $\langle b_n \rangle_{\beta}$  ends in 00. Therefore, the  $\beta$ -expansion of  $b_{n+1}, b_{n+2}, \ldots, b_{n+a-2}$ , which are LL, ends in  $01, 02, \ldots, 0(a-2)$ , and the  $\beta$ -expansion of  $b_{n+a-1}$ , which is LS, ends in 0(a-1).

The cases where  $b_n$  is an LL or an  $LS \beta$ -integer have been already treated. The case SS cannot occur.

Now let us prove  $(i) \Leftrightarrow (iii)$ . Recall that a number x of  $\mathbb{Z}[\beta] \cap \mathbb{R}^+$  is a positive  $\beta$ -integer if and only if its conjugate x' belongs to  $(0,\beta)$ . Let  $b_n$  be a  $SL \beta$ -integer. Then  $b_{n-1} = b_n - (1 - 1/\beta)$  and  $b_{n+1} = b_n + 1$  are  $\beta$ -integers, and  $(b_{n-1})' = b'_n - 1 + \beta \in (0,\beta)$  and  $(b_{n+1})' = b'_n + 1 \in (0,\beta)$ . Therefore  $b'_n \in (0,1)$ . Let  $b_n$  be a  $LL \beta$ -integer. Then  $b_{n-1} = b_n - 1$  and  $b_{n+1} = b_n + 1$  are  $\beta$ -integers, and  $(b_{n-1})' = b'_n - 1 \in (0,\beta)$  and  $(b_{n+1})' = b'_n + 1 \in (0,\beta)$ . Therefore  $b'_n \in (1,\beta-1)$ . Since  $b_1 = 1$  is LL,  $b'_n \in [1,\beta-1)$ .

Finally, let  $b_n$  be a  $LS \beta$ -integer. Then  $b_{n-1} = b_n - 1$  and  $b_{n+1} = b_n + (1 - 1/\beta)$  are  $\beta$ -integers, and  $(b_{n-1})' = b'_n - 1 \in (0, \beta)$  and  $(b_{n+1})' = b'_n + 1 - \beta \in (0, \beta)$ . Therefore  $b'_n \in (\beta - 1, \beta)$ .

We now precise the characterization for  $LL \beta$ -integers.

**Proposition 4** Let  $b_n$  be a LL  $\beta$ -integer, then  $\langle b_n \rangle_{\beta}$  ends in

4.1 an  $h \in \{1, ..., a - 3\}$  if and only if  $b'_n \in \Omega_{LL}(h) = [h, h + 1)$ 

4.2 (a-2) not prefixed by an element of  $\mathcal{M}$  if and only if  $b'_n \in \Omega_{LL}(a-2) = (a-2,\beta-1)$ .

*Proof.* Let us first prove 4.1. Let  $b_n$  be a  $LL \beta$ -integer such that  $\langle b_n \rangle_\beta$  ends in 1. Then  $b_n - 1 = b_{n-1}$  is SL, and  $b'_n - 1 \in (0, 1)$ . Then  $b'_n \in (1, 2)$ . Since  $b_1 = 1$  is LL,  $b'_n \in [1, 2)$ . From the fact that h' = h for  $h \in \{1, \ldots, (a-3)\}$ , we deduce 4.1.

The proof of 4.2 is now straightforward. The only possibility for  $\beta$ -integers such that their  $\beta$ -expansion ends in (a-2) not prefixed by an element of  $\mathcal{M}$  is  $\Omega_{LL}(a-2) = (a-2,\beta-1)$ .

#### 3.2 Some Cubic Pisot Units

**Case 1.** The Tribonacci number:  $\beta^3 = \beta^2 + \beta + 1$ 

The substitution  $\sigma_{\beta}$  allows only the following configurations (respectively Voronoi cells): LM, LS, ML, SL and LL in  $u_{\beta}$ .

**Proposition 5** In each of the following assertions (i) and (ii) are equivalent. For  $n \ge 1$ 

5.1 (i)  $b_n$  is LM; (ii)  $\langle b_n \rangle_\beta$  ends in 01, or n = 1 and  $\langle b_1 \rangle_\beta = 1$ . 5.2 (i)  $b_n$  is LS; (ii)  $\langle b_n \rangle_\beta$  ends in 011, or n = 3 and  $\langle b_3 \rangle_\beta = 11$ . 5.3 (i)  $b_n$  is ML; (ii)  $\langle b_n \rangle_\beta$  ends in  $10(000)^q$ ,  $q \in \mathbb{N}$ . 5.4 (i)  $b_n$  is SL; (ii)  $\langle b_n \rangle_\beta$  ends in  $100(000)^q$ ,  $q \in \mathbb{N}$ . 5.5 (i)  $b_n$  is LL; (ii)  $\langle b_n \rangle_\beta$  ends in  $1000(000)^q$ ,  $q \in \mathbb{N}$ .

*Proof.* Suppose that  $b_n$  is ML. The word ML can be issued from the substitution of three configurations of letters. In the first configuration, ML is a factor of LMLSLM, and  $b_n = \beta b_k$ , where  $b_k$  is LM.

Since by recurrence hypothesis,  $\langle b_k \rangle_{\beta}$  ends in 01,  $\langle b_n \rangle_{\beta}$  ends with 010. Consequently the  $\beta$ -expansions of  $b_{n+1}$ ,  $b_{n+2}$  and  $b_{n+3}$ , which are respectively LS, SL and LM, end with 011, 100 and 101, respectively.

In the second configuration ML is a factor of LMLLM, and  $b_n = \beta b_k$ , where  $b_k$  is LS.

$$b_n \quad b_{n+1} \ b_{n+2}$$

$$LM \mid L \mid LM$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$b_k \quad b_{k+1}$$

$$L \mid S \mid L$$

By recurrence hypothesis,  $\langle b_k \rangle_{\beta}$  ends in 011, then  $\langle b_n \rangle_{\beta}$  ends with 0110. Thus, the  $\beta$ -expansions of  $b_{n+1}$ ,  $b_{n+2}$  which are respectively LL and LM end with 1000 and 1001, respectively. Since M is always followed by L,  $b_{n+3}$  is ML, and ends in 1010.

Finally, in the third configuration ML is a factor of LMLM, and  $b_n = \beta b_k$ , where  $b_k$  is LL.

$$egin{array}{cccc} b_n & b_{n+1} \ LM & \mid & LM \ \uparrow & & \uparrow \ & b_k \ L & \mid & L \end{array}$$

By recurrence hypothesis,  $\langle b_k \rangle_{\beta}$  ends in  $1000(000)^q$ ,  $q \in \mathbb{N}$ , then  $\langle b_n \rangle_{\beta}$  ends with  $10(000)^{q+1}$ . Then the  $\beta$ -expansions of  $b_{n+1}$  and  $b_{n+2}$ , which are respectively LM and ML, end with  $10(000)^q001$  and  $10(000)^q010$ , respectively.

Let now  $b_n$  be SL, which appears as a factor of LSLM. Then  $b_n = \beta b_k$ , where  $b_k$  is ML.

$$\begin{array}{c|c} b_n \ b_{n+1} \\ LS \ \mid \ LM \\ \uparrow \qquad \uparrow \\ b_k \\ M \ \mid \ L \end{array}$$

Since by recurrence hypothesis  $\langle b_k \rangle_{\beta}$  ends with  $10(000)^q$ , then  $\langle b_n \rangle_{\beta}$  ends with  $100(000)^q$ , and consequently, the  $\beta$ -expansions of  $b_{n+1}$  and  $b_{n+2}$ , which are LM and ML, respectively, end in 001 and 010, respectively.

Eventually, let  $b_n$  be LL, which appears as a factor of LLM. Then  $b_n = \beta b_k$ , with  $b_k SL$ .

$$egin{array}{cccc} b_n & b_{n+1} \ L & \mid & LM \ \uparrow & & \uparrow \ & b_k \ S & \mid & L \end{array}$$

By recurrence hypothesis  $\langle b_k \rangle_{\beta}$  ends in  $100(000)^q$ , then  $\langle b_n \rangle_{\beta}$  ends with  $1000(000)^q$ , and consequently, the  $\beta$ -expansions of  $b_{n+1}$  and  $b_{n+2}$ , which are LM and ML respectively, end in 001 and 010. Cases LM and LS are treated above.

Let  $\alpha$  be one of the complex roots of  $\underline{X^3} - X^2 - X - 1$ . On Figure 3 we display the Rauzy fractal, *i.e.* the set  $\Omega = (\overline{\mathbb{Z}_{\beta}^+})'$ , which is the closure of the set  $\{\sum_{0 \leq i \leq N} x_i \alpha^i \mid \text{there is no factor 111 in } x_N \cdots x_0, N \geq 0\}$ , and its partition according to Voronoi cells of  $\beta$ -integers. Recall that, by definition,  $b_0 = 0$  is LL. The origin 0, although it belongs to  $\Omega_{LL}$ , lies at the intersection of  $\Omega_{LL}$  with  $\Omega_{ML}$  and  $\Omega_{SL}$ .



Fig. 3. The Rauzy fractal, obtained when  $\beta$  is the Tribonacci number

Usually the Rauzy fractal is divided into three basic tiles  $T_0$ ,  $T_{01}$  and  $T_{011}$ , see [11, 16] or [15, Chapter 7]. Obviously our partition of the Rauzy fractal is a refinement of the classical division, with  $T_0 = \Omega_{SL} \cup \Omega_{ML} \cup \Omega_{LL}$ ,  $T_{01} = \Omega_{LM}$ , and  $T_{011} = \Omega_{LS}$ .

Thus the domain exchange  $\rho$  defined on the Rauzy fractal (see Theorem 7.4.4 in [15]) is just the following:

$$T_{0} = \Omega_{SL} \cup \Omega_{ML} \cup \Omega_{LL} \stackrel{\rho}{\mapsto} \Omega_{LS} \cup \Omega_{LM} \cup \Omega_{LL}$$
$$T_{01} = \Omega_{LM} \stackrel{\rho}{\mapsto} \Omega_{ML}$$
$$T_{011} = \Omega_{LS} \stackrel{\rho}{\mapsto} \Omega_{SL}.$$

From Proposition 5 one obtains the following result.

**Proposition 6** In the Rauzy fractal we have the following relations

(i) 
$$\Omega_{ML} = \Omega_{LM} + \alpha^{-1} + \alpha^{-2}$$
  
(ii)  $\Omega_{SL} = \Omega_{LS} + \alpha^{-1}$   
(iii)  $\Omega_{LL} = \alpha \Omega_{LS} + 1 = \alpha^2 \Omega_{LM} + \alpha + 1$ 

**Proof** (i). Let  $b'_n$  be in  $\Omega_{ML}$ . Then the  $\beta$ -expansion of  $b_n$  is of the form  $w 10(000)^q$ . Using that the word  $10(000)^q$  has the same value in base  $\beta$  (or  $\alpha$ ) as the word  $(011)^q 01.11$ , we obtain that  $b'_n$  belongs to  $\Omega_{LM} + \alpha^{-1} + \alpha^{-2}$ .

Conversely, let  $b'_p$  be in  $\Omega_{LM}$ . Then the  $\beta$ -expansion of  $b_p$  is of the form v01. The word v01.11 has same value as v10. If v10 is already in normal form, it is an element of  $\Omega_{ML}$ . If not, it is of the form  $u(011)^k10$ , with k maximal, and its normal form is  $u10(000)^k$ , thus the result follows.

- (ii) The proof is similar.
- (iii) It follows easily from (i) and (ii), and from the fact that  $\Omega_{LL} = \alpha \Omega_{SL} = \alpha^2 \Omega_{ML}$ .

**Case 2.** Symmetry of order 7:  $\beta^3 = 2\beta^2 + \beta - 1$ 

The substitution  $\sigma_{\beta}$  allows only the following configurations (respectively Voronoi cells): *LL*, *LS*, *SL*, *SM* and *ML*.

Let  $\mathcal{M}_1 = 2(01)^*$  and  $\mathcal{M}_2 = 2(01)^*0$ . The set  $\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2$  is the set of maximal words of each length in the radix order, i.e., the set of prefixes of  $d_\beta(1)$ .

**Proposition 7** In each of the following assertions (i) and (ii) are equivalent. For  $n \ge 1$ 

6.1 (i)  $b_n$  is LL; (ii)  $\langle b_n \rangle_\beta$  ends in w1 where  $w \notin \mathcal{M}_2$ . 6.2 (i)  $b_n$  is LS; (ii)  $\langle b_n \rangle_\beta$  ends in a word  $w \in \mathcal{M}_1$ . 6.3 (i)  $b_n$  is SL; (ii)  $\langle b_n \rangle_\beta$  ends in w0 where  $w \notin \mathcal{M}_1$  or by  $(0)^{2q+1}$ ,  $q \in \mathbb{N}^*$ . 6.4 (i)  $b_n$  is SM; (ii)  $\langle b_n \rangle_\beta$  ends in a word  $w \in \mathcal{M}_2$ . 6.5 (i)  $b_n$  is ML; (ii)  $\langle b_n \rangle_\beta$  ends in  $(0)^{2q+2}$ ,  $q \in \mathbb{N}$ .

*Proof.* It is similar to the proof of Proposition 5.

# References

 P. Arnoux et G. Rauzy, Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France 119 (1991), 199–215.

- A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sc. Paris, Série A, t.285, (1977) 419–421.
- 3. C. Burdik, Ch. Frougny, J. P. Gazeau, R. Krejcar, Beta-integers as natural counting systems for quasicrystal, *J. of Physics A: Math. Gen.* **31** (1998) 6449–6472.
- A. Elkharrat, Etude et application des beta-réseaux aux structures apériodiques, Ph. D. Thesis, Université Paris 7, novembre 2004.
- 5. S. Fabre, Substitutions et  $\beta$ -systèmes de numération, Theor. Comp. Sci. **137** (1995) 219–236.

- Ch. Frougny, J. P. Gazeau, R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers, *Theor. Comp. Sci.* 303 (2003) 491-516.
- Ch. Frougny, Z. Masáková, E. Pelantová, Complexity of infinite words associated with beta-expansions, *RAIRO-Inf. Theor. Appl.* 38 (2004) 163–185. Corrigendum, *RAIRO-Inf. Theor. Appl.* 38 (2004) 269–271.
- J. C. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, Commun. Math. Phys. 179 (1996) 365–376.
- J. C. Lagarias, Geometric models for quasicrystals: I. Delone sets of finite type, Discrete Comput. Geom. 21 (1999) 161–191.
- 10. M. Lothaire, Algebraic combinatorics on words, Cambridge University Press (2002).
- 11. A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe, Acta Arithmetica **95** (2000) 195–224.
- 12. Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland (1972).
- Y. Meyer, Quasicrystals, Diophantine approximation and algebraic numbers, in *Be*yond Quasicrystals, F. Axel, D. Gratias (Eds), Les Editions de Physique, Springer (1995).
- W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416.
- 15. N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes In Mathematics **1794**, Springer (2002).
- G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982) 147–178.
- A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957) 477–493.
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980) 269–278.
- 19. W. Thurston, *Groups, tilings, and finite state automata.* AMS Colloquium Lecture Notes, Boulder, (1989).