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result, corresponding to an assumed value of the carry. Using the well known tech-nique of parallel pre�x computation, on-the-y algorithms can be implemented in timeO(log n) (see [13]).The purpose of this contribution is not to improve on existing algorithms, butrather to present a theoretical framework allowing to easily obtain on-the-y algo-rithms whenever it is possible. We show that a function is computable by an on-the-yalgorithm if and only if it is computable by a right subsequential �nite state machine.Such a machine is a 2-tape �nite state automaton of a certain kind: inputs are de-terministically and serially processed from right to left, i.e. LSDF digitwise, and theoutput is generated LSDF (see [6] and [3]). In radix r with non redundant digit setf0; : : : ; r � 1g, addition, subtraction, multiplication by a �xed integer are right sub-sequential functions. Division by a �xed integer is a left subsequential function (dataare processed MSDF). More generally, functions which are computable by a 2-tape�nite state automaton are those which need only a �nite auxiliary storage memory,independently of the size of the data. Note that squaring, multiplication and divisionare functions which cannot be computed by any kind of a 2-tape �nite state automatonbut they are on-line computable.On the other hand, with a redundant digit set of the form f�a; : : : ; ag with r=2 �a � r� 1, and following the Avizienis algorithm [2], addition is computable by an on-line �nite state automaton, which is a particular case of a left subsequential machine(see [17], [10]).The paper is organized as follows. First we set some de�nitions of computability.We prove that a function is on-the-y computable if and only if it is right subsequen-tial. Every radix r conversion into conventional representations is right subsequential.We illustrate our method on radix 2 conversion of redundant into conventional repre-sentations, showing how the on-the-y algorithm of [7] can be derived from the rightsubsequential machine. We give applications to the Booth canonical recoding and toconversion in number systems where the base is a negative integer, or some complexnumber. In particular, we fully give the on-the-y algorithm converting redundant rep-resentations in base ip2 on the digit set f�1; 0; 1g onto non-redundant representationson the digit set f0; 1g.This paper is the full version of [9]. 2



2 De�nitions and resultsLet r be the radix, r integer � 2, and let X be a �nite digit set, called alphabet. Aninteger p is represented by a �nite string or a word x1 � � � xm of the free monoid X�generated by X, with for 1 � k � m, xk 2 X, and such that p = Pmk=1 xkrm�k . A realnumber x of [0; 1] is represented by an in�nite word (xk)k�1 such that xk 2 X andx = Pk�1 xkr�k. The leftmost digit is the most signi�cant one. The empty word isdenoted by ". We expose the results on integers (�nite words), but they are valid forreal numbers (in�nite words) as well.Let X and Y be two �nite digit sets, and let � be a function from X� to Y �(for simplicity we consider only one-variable functions, but it is not a restriction).X is the input alphabet, and Y is the output alphabet. Following [19], we say that� is on-line computable (with delay �) if there exists a natural number � such that,to compute y1 � � � yn = �(x1 � � � xm), it is necessary and su�cient to have x1, . . . ,xk+� available to generate yk, for 1 � k � n. After the delay, one digit of theresult is produced upon receiving one digit of X. For us, on-line always refers toMSDF serial computations of that kind. It is well known that some functions arenot on-line computable, like addition in the binary system with non redundant digitset f0; 1g. Another example is the conversion function � between radix 2 redundantrepresentations and 2-complement representations� : f�1; 0; 1g� �! f0; 1g�where �1 denotes the signed digit �1. The conversion is equivalent to a subtraction.This conversion is not on-line computable: consider two redundant representationsp = 1 nz }| {0 � � � 0 1, denoted by p = 10n1 and q = 10n�1, for n � 1. Then �(p) = 010n1 and�(q) = 001n+1; this shows that the least signi�cant digit as to be known to be able tooutput the most signi�cant digits of the result.We now introduce another de�nition [7]. A function is said to be on-the-y com-putable if the digits of the result are obtained in a serial fashion in MSDF mode, usinga �nite number of registers corresponding to di�erent conditional forms of the currentresult. More precisely, let � : X� �! Y �. A register on Y is a sequence R = (R[k])k�0with R[k] in Y �. The function � is said to be on-the-y computable with N registersif there exist N registers S0; : : : ; SN�1 on Y such that the following conditions aresatis�ed.� Let p = x1 � � �xm with xk 2 X for 1 � k � m be an input word. Then for each3



1 � k � m, �(x1 � � �xk) = S0[k] (pre�x computation).� Initial conditions Si[0] are all di�erent for every 0 � i � N � 1.� Registers are updated at each step and the update is restricted to the formSi[k + 1] = (Sj[k]; u)where (Sj[k]; u) denotes the result of the concatenation of Sj[k] and of u 2 Y �, and uand j depend on the current input digit xk+1.For 0 � i � N � 1, Si[k] can be seen as the result of a computation with inputx1 � � �xk \assuming a certain condition on the beginning of the computation". For anexample where a condition is not always a carry, see the Booth canonical recodingbelow Section 3.2.Then we need a de�nition from Automata Theory (see [6], [3]). A right subsequen-tial machine with input alphabet X and output alphabet Y ,M = (S;X�Y �; E; s0; !),is a directed graph labelled by elements of X � Y � :� S is the set of vertices, called states, which is �nite� E � S � (X � Y �)� S is the set of labelled edges� s0 is the initial state� ! is the terminal function from S to Y �. When !(s) = " for any s 2 S, the machineis said to be right sequential.The machine must satisfy the following property: it is input deterministic, that is tosay, if s x=u�! t and s x=u0�! t0 are two edges of M, then necessarily t = t0 and u = u0.A word p = x1 � � � xm, with xk 2 X for 1 � k � m, has q 2 Y � for image byM if thereexists a path in M starting in the initial state s0s0 xm=um�! s1 xm�1=um�1�! � � � sm�1 x1=u1�! smwith uj 2 Y �, and such that q = !(sm)u1 � � �um. A function � : X� �! Y � is rightsubsequential if there exists a right subsequential machineM such that if p 2 X� andq 2 Y �, q = �(p) if and only if q is the image of p by M. For an example see Section3.1.The machine is called right subsequential to stress on the fact that data are pro-cessed from right to left (LSDF). The dual notion, where data are processed from leftto right (MSDF) and where the terminal function comes as a su�x of the result, iscalled a left subsequential machine.We can now state the principal result. The proof is illustrated on an example inSection 3.1. 4



Theorem 1 . A function � : X� �! Y � with Domain(�) = X� is on-the-y com-putable if and only if it is a right subsequential function.Proof. First suppose thatM = (S;X�Y �; E; s0; !) is a right subsequential machinerealizing �. Since the function is total, the machine can be chosen complete, that is,for each state s 2 S and for each input digit x 2 X, there exists an edge of the forms x=u�! t. In addition we choose a machine which is minimal in the number of states.Then we derive from M an on-the-y algorithm computing MSDF the function �as follows. Let us denote the states of M by S = fs0; : : : ; sN�1g. We thus need Nregisters denoted by S0; : : : ; SN�1, register Si corresponding to state si, 0 � i � N�1.Initialization is the following: for 0 � i � N � 1, Si[0] = !(si). Let p = x1 � � �xm bean input word and let 0 � k � m�1; recurrence relations are determined by: for each0 � i � N � 1, for each xk+1 2 X, if in M there is an edge of the form si xk+1=u�! sj ,0 � j � N � 1, u 2 Y �, put Si[k+1] = (Sj[k]; u) (note that, for a given value of xk+1,there is only one possible edge because M is input deterministic). We claim that for0 � i � N � 1 and for 0 � k � m, Si[k] is equal to the reverse of the output labelof the unique path inM starting in si and with input label xk � � � x1. The proof is byinduction on k. When k = 0, the input is the empty word, and Si[0] = !(si). Let usconsider the following path in Msi xk=uk�! si1 xk�1=uk�1�! � � � sik�1 x1=u1�! sik =!(sik )�! :By induction hypothesis, Si1 [k � 1] = !(sik) u1 � � � uk�1. By construction, Si[k] =(Si1 [k � 1]; uk), thus Si[k] = !(sik)u1 � � � uk�1uk, and we are done. Hence, for each1 � k � m, S0[k] = �(x1 � � � xk).Conversely, let us suppose that � : X� �! Y � is on-the-y computable with Nregisters S0; � � � ; SN�1 on Y . We de�ne a right subsequential machine as follows: letM = (S;X � Y �; E; s0; !) where S = fs0; � � � ; sn�1g, each si corresponding to Si.When the recurrence relations for xk+1 2 X are of the form Si[k+1] = (Sj[k]; u), for iand j in f0; : : : ; N � 1g and u 2 Y �, we de�ne in E an edge si xk+1=u�! sj. The terminalfunction is de�ned by !(si) = Si[0]. Clearly M is input deterministic, and as above,one veri�es that S0[k] = �(x1 � � �xk) if and only if there is a path in Ms0 xk=uk�! si1 xk�1=uk�1�! � � � sik�1 x1=u1�! sik =!(sik )�!with �(x1 � � � xk) = !(sik )u1 � � � uk.Since the number of registers in the on-the-y algorithm is equal to the numberof states of the right subsequential machine, it is important to �nd a minimal rightsubsequential machine, and it is known how to achieve this task [5, 15].5



Now we show a general result on radix r conversion onto the canonical digit setf0; : : : ; r� 1g. It is more or less folklore, but we give a proof of it for the convenienceof the reader.Proposition 1 . Let r be an integer � 2, let X be any �nite set of digits, and letY = f0; : : : ; r� 1g. The conversion  : X� �! Y � between representations with digitsin X onto r's complement representations is a right subsequential function, and is thuson-the-y computable.Proof. Let M = maxfjx � yj; x 2 X; y 2 Y g, and let  = M=(r � 1). Onede�nes a right subsequential machine R = (S;X � Y;E; s0; !) as follows. The setof states is S = fs 2 Z j jsj < g. The initial state is s0 = 0. Let s be a state,and let x 2 X be an input digit. By the Euclidean division of s+ x by r there existunique y 2 Y and t 2 Z such that s + x = rt + y. We have t = (s + x � y)=r, thusjtj � (jsj+ jx� yj)=r < ( +M)=r = , and so t 2 S. Thus we de�ne an edge s x=y�! tin E. For any state s, the terminal function !(s) is taken as the r's complementrepresentation of s. When s � 0, the input word represents a positive integer, if s < 0,then the input word represents a negative integer. Now let p = x1 � � �xm be a word ofX�. Starting in initial state s0 = 0, and reading from right to left, we take the uniquepath s0 xm=ym�! s1 xm�1=ym�1�! � � � sm�1 x1=y1�! sm:Since, for 1 � j � m, sm�j+xj = rsm�j+1+yj, we getPmj=1 xjrm�j = Pmj=1 yjrm�j+sm,thus  (p) = !(sm)y1 � � � ym 2 Y �. Note that some of the states may be useless.In on-line arithmetic, the redundant digit set is usually of the formX = f�a; : : : ; ag,with r=2 � a � r � 1. In that case, the right subsequential machine realizing theconversion onto r's complement notation has only two states, independently of theradix. �1��� 0����?=0/0=r� 1; � � � ; r � 1=0 /0=0; � � � ; r � 1=r� 1�=1 � �1=r� 1; � � � ; r � 1=1 *1=0; � � � ; r � 1=r� 2Figure 1. Right subsequential conversion from fr � 1; : : : ; r � 1g to r's complementIn Proposition 1, the canonical digit set Y = f0; : : : ; r � 1g can be replaced by anon-redundant digit set Z = fz0; : : : ; zr�1g, where zi is congruent to i modulo r, for6



each 0 � i � r�1, and such that any number is representable (see [14]). For instance,when r = 3, we can choose Z = f�1; 0; 1g (see [12]).3 Examples and applicationsSince there is a natural carry propagation from right to left in the most usual numbersystems, a lot of functions are right subsequential. We mention some of them.3.1 Radix 2 conversion of redundant into conventional repre-sentationsLet � : f�1; 0; 1g� �! f0; 1g� be the conversion function between radix 2 redundantrepresentations and 2-complement representations. Below is the minimal right sub-sequential machine C realizing �. The input alphabet is X = f�1; 0; 1g, the outputalphabet is Y = f0; 1g, the set of states is S = fa; bg, the initial state is a, theterminal function is de�ned by !(a) = 0 and !(b) = 1.b��� a����?=0/0=1; �1=0 /0=0; 1=1�=1 	 �1=1 �1=0Figure 2. Right subsequential radix 2 conversion of redundant into conventionalrepresentationState ameans that there is no carry, and state bmeans that there is a negative carry�1. If the computation ends in state a, then the result must be pre�xed by !(a) = 0and the machine gives the conversion for a positive number. If the computation endsin state b, then the result is pre�xed by !(b) = 1, to get the conversion for a negativenumber.Example. Let us consider 4-digit input integers. Let w = �10�11. Then (w)2 = �9.We have in the automaton C! a 1=1�! a �1=1�! b 0=1�! b �1=0�! b =1! :Thus the conversion of w is 10111, which is the 2-complement representation of �9.7



Following the method exposed in Theorem 1, we obtain exactly the on-the-yalgorithm of [7] for conversion. We need two registers A and B, corresponding tostates a and b. The initial conditions of the recurrence areA[0] = !(a) = 0; B[0] = !(b) = 1:We then de�ne xk+1 0 1 �1A[k + 1] (A[k]; 0) (A[k]; 1) (B[k]; 1)B[k + 1] (B[k]; 1) (A[k]; 0) (B[k]; 0)The result is contained in register A.Example. The on-the-y computation to convert �10�11 into 10111 is the followingone. k 0 1 2 3 4xk �1 0 �1 1A 0 11 110 1011 10111B 1 10 101 1010 101103.2 Booth canonical recodingGiven a binary representation, the Booth canonical recoding consists of �nding anequivalent one with signed bits, and having the minimum number of non-zero digits[4]. This has important application to multiplication. The Booth canonical recodingcan be obtained by the simple LSDF algorithm: each block of the form 01n, with n � 2,is transformed into 10n�1�1, and other blocks are left unchanged. Let X = f0; 1g bethe input alphabet and let Y = f�1; 0; 1g be the output alphabet. The Booth canonicalrecoding is a right subsequential function ' : X� �! Y � realized by the followingmachine B, which is minimal. b��� a����?="c��� ?=1 /0=0/1=0�=1 	 1=" �0=01	1=0�1�0="Figure 4. Right subsequential Booth canonical recoding8



Example. Let w = 11101101. Then '(w) = 1000�10�101.Note that in B, the meaning of states b and c is not the same, although theirterminal functions have the same value. State a means \no carry", state c means\there is a carry 1", and state b means \a 1 has been read and has not been output".From the �gure it is clear that, in the output, there are never two adjacent nonzero digits, which implies that the coded representation can be seen as a radix 4representation with digit set f�2; : : : ; 2g.The on-the-y algorithm to compute the Booth canonical recoding is the following.Take three registers A, B, and C corresponding to states a, b, and c of B. Initialconditions are A[0] = !(a) = "; B[0] = !(b) = 1; C[0] = !(c) = 1:Using the same notations as above, we de�nexk+1 0 1A[k + 1] (A[k]; 0) (B[k]; ")B[k + 1] (A[k]; 01) (C[k]; 0�1)C[k + 1] (B[k]; ") (C[k]; 0)The result of the computation is contained in register A.3.3 Other number systemsWe now consider less classical number systems, where the base is a negative integeror a quadratic complex number. Addition in base �2, ip2, 2i, and �1 + i has beenshown to be computable in constant time in parallel in [18].Negative radixLet r be an integer � 2. It is known that any real number can be expressed with radix�r and digit set f0; : : : ; r � 1g without a sign (see [12]). Using a redundant digit setf�a; : : : ; ag where a is an integer such that r=2 � a � r�1 one can perform addition inparallel; under the same hypothesis addition is computable by an on-line �nite stateautomaton [8]. On the other hand, the conversion from f�a; : : : ; ag to the canonicaldigit set f0; : : : ; r� 1g is right subsequential [8], and thus can be computed on-the-y,with 3 registers. It cannot be computed on-line.Note also that the conversion between radix r and radix �r expansions is rightsubsequential [1], and thus is on-the-y computable.9



Base iprLet r be an integer � 2. Every complex number is representable in base ipr and digitset f0; : : : ; r�1g (see [12], [11]). It is possible to perform addition in parallel and withan on-line �nite state automaton using a redundant digit set f�a; : : : ; ag where a is aninteger such that r=2 � a � r � 1 ([8]). Conversion from f�a; : : : ; ag to the canonicaldigit set f0; : : : ; r� 1g cannot be computed on-line, but is right subsequential [8], andthus can be computed on-the-y.Example. Let r = 2 and let � = ip2. The canonical digit set associated with� is Y = f0; 1g, and the minimally redundant one is X = f�1; 0; 1g. We give theconstruction of the right subsequential machineM = (S;X �Y;E; s0; !) realizing theconversion in base � from X to Y .� The set of states is S = fsc;d j c; d 2 Xg. State sc;d represents the number �c+ d.The initial state is s0 = s0;0.� Let sc;d 2 S and let x 2 X. By the Euclidean division of d + x by �2 there existunique y 2 Y and e 2 X such that d+ x = �2e+ y. Thus �c+ d+ x = �(�e+ c)+ y,since �2 = �2. We then de�ne in the machineM an edge sc;d x=y�! se;c.� The terminal function is de�ned by !(sc;d) = cd if c and d are in Y , !(s�1;d) = 101dif d 2 Y , !(sc;�1) = 1c1 if c 2 Y , and !(s�1;�1) = 1111.From that machine we derive an on-the-y algorithm computing the conversion.There are 9 registers, of the form Sc;d, for c and d in Y . Initial conditions are Sc;d[0] =!(sc;d). xk+1 0 1 �1S0;0[k + 1] (S0;0[k]; 0) (S0;0[k]; 1) (S1;0[k]; 1)S0;1[k + 1] (S0;0[k]; 1) (S�1;0[k]; 0) (S0;0[k]; 0)S0;�1[k + 1] (S1;0[k]; 1) (S0;0[k]; 0) (S1;0[k]; 0)S1;0[k + 1] (S0;1[k]; 0) (S0;1[k]; 1) (S1;1[k]; 1)S1;1[k + 1] (S0;1[k]; 1) (S�1;1[k]; 0) (S0;1[k]; 0)S1;�1[k + 1] (S1;1[k]; 1) (S0;1[k]; 0) (S1;1[k]; 0)S�1;0[k + 1] (S0;�1[k]; 0) (S0;�1[k]; 1) (S1;�1[k]; 1)S�1;1[k + 1] (S0;�1[k]; 1) (S�1;�1[k]; 0) (S0;�1[k]; 0)S�1;�1[k + 1] (S1;�1[k]; 1) (S0;�1[k]; 0) (S1;�1[k]; 0)The result of the computation is contained in register S0;0.For instance, let (11�1�)ip2 be a representation on X = f�1; 0; 1g of z = �3 + ip2.Below is the on-the-y computation of the conversion into (1010011�)ip2.10



k 0 1 2 3xk 1 1 �1S0;0 00 001 0011 1010011S0;1 01 10100 10110 00110S0;�1 101 000 0010 1010010S1;0 10 011 101001 1111001S1;1 11 10110 111100 101100S1;�1 111 010 101000 1111000S�1;0 1010 1011 0001 1010001S�1;1 1011 11110 10100 00100S�1;�1 1111 1010 0000 1010000Base �1 + iIt is known that every complex number has a representation in base �1 + i and digitset f0; 1g. In particular every Gaussian integer has a unique representation of theform Pnk=0 dk(�1 + i)k ([11]). Parallel and on-line addition are possible with digit setf�2; : : : ; 2g or f�3; : : : ; 3g ([18], [8]). Nevertheless, conversion in base �1 + i betweendigit set f�a; : : : ; ag, 1 � a � 3, into canonical digit set f0; 1g is not on-line computable,is right subsequential [8], and is thus on-the-y computable. In [1] it is shown how toobtain the (�1 + i)-representation of a Gaussian integer from the 2-representation ofits real and imaginary part by a right sequential machine. As a corollary of our result,this process can be realized by an on-the-y algorithm.4 ConclusionsIn Computer Arithmetic, on-the-y algorithms have been used in cases where one re-quires that some process be computed MSDF, but where it is not possible to achievethis task by an on-line algorithm. Our purpose here is to give a theoretical pointof view on this notion, allowing us to show that functions which are on-the-y com-putable in the sense we have de�ned are very simple; in particular, they always staywithin the domain of functions computable by �nite state automaton. At the sametime, subsequential functions are quite well studied in Automata Theory, and someof their properties could be useful for the e�ciency of on-the-y algorithms. Finally,we believe that our result provides an easy way to obtain such algorithms, since rightsubsequential functions are very natural. 11
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