On-the-Fly Algorithms and Sequential Machines

Christiane Frougny

Université Paris 8 and L.I.A.F.A. *

Abstract

It is shown that a function is computable by an on-the-fly algorithm pro-
cessing data in the most significant digit first fashion with a finite number of
registers if and only if it is computable by a right subsequential finite state ma-
chine processing deterministically data in the least significant digit first fashion.

Some applications to complex radix number systems are given.

Keywords: On-the-fly algorithm, sequential machine, digit set conversion.

1 Introduction

Conversion from a redundant into a conventional representation is important in Com-
puter Arithmetic because on-line algorithms require redundant representations [19].
Similarly, in some arithmetic algorithms such as the SRT division algorithm, the re-
sult is generated most significant digit first (MSDF) in a redundant format. It is well
known that such conversions cannot be realized on-line, that is to say MSDF digit-
wise, one output digit being produced by one input digit after a certain delay, because
there is a carry which propagates from right to left. On-the-fly algorithms to solve
this problem have been proposed by Ercegovac and Lang [7] and generalized by Ko-
rnerup [13] (see also [16] for application to multiplication). In an on-the-fly algorithm,
data are processed in a serial manner from most significant to least significant, but

the algorithm uses several registers, each of them representing a correct prefix of the

*LIAF.A. - Case 7014, 2 place Jussieu, 75251 Paris Cedex 05 - France. Email:

Christiane.Frougny@liafa. jussieu.fr

result, corresponding to an assumed value of the carry. Using the well known tech-
nique of parallel prefix computation, on-the-fly algorithms can be implemented in time
O(logn) (see [13]).

The purpose of this contribution is not to improve on existing algorithms, but
rather to present a theoretical framework allowing to easily obtain on-the-fly algo-
rithms whenever it is possible. We show that a function is computable by an on-the-fly
algorithm if and only if it is computable by a right subsequential finite state machine.
Such a machine is a 2-tape finite state automaton of a certain kind: inputs are de-
terministically and serially processed from right to left, i.e. LSDF digitwise, and the
output is generated LSDF (see [6] and [3]). In radix r with non redundant digit set
{0,...,r — 1}, addition, subtraction, multiplication by a fixed integer are right sub-
sequential functions. Division by a fixed integer is a left subsequential function (data
are processed MSDF). More generally, functions which are computable by a 2-tape
finite state automaton are those which need only a finite auxiliary storage memory,
independently of the size of the data. Note that squaring, multiplication and division
are functions which cannot be computed by any kind of a 2-tape finite state automaton
but they are on-line computable.

On the other hand, with a redundant digit set of the form {—a,...,a} with r/2 <
a <r —1, and following the Avizienis algorithm [2], addition is computable by an on-

line finite state automaton, which is a particular case of a left subsequential machine

(see [17], [10]).

The paper is organized as follows. First we set some definitions of computability.
We prove that a function is on-the-fly computable if and only if it is right subsequen-
tial. Every radix r conversion into conventional representations is right subsequential.
We illustrate our method on radix 2 conversion of redundant into conventional repre-
sentations, showing how the on-the-fly algorithm of [7] can be derived from the right
subsequential machine. We give applications to the Booth canonical recoding and to
conversion in number systems where the base is a negative integer, or some complex
number. In particular, we fully give the on-the-fly algorithm converting redundant rep-
resentations in base iv/2 on the digit set {—1,0, 1} onto non-redundant representations
on the digit set {0,1}.

This paper is the full version of [9].

2 Definitions and results

Let r be the radix, r integer > 2, and let X be a finite digit set, called alphabet. An
integer p is represented by a finite string or a word z---z,, of the free monoid X*
generated by X, with for 1 <k < m, x, € X, and such that p = 37 xpr™ %, A real
number x of [0, 1] is represented by an infinite word (xj)r>1 such that z; € X and
T = Y1 zyr~%. The leftmost digit is the most significant one. The empty word is
denoted by . We expose the results on integers (finite words), but they are valid for

real numbers (infinite words) as well.

Let X and Y be two finite digit sets, and let p be a function from X* to Y~
(for simplicity we consider only one-variable functions, but it is not a restriction).
X is the input alphabet, and Y is the output alphabet. Following [19], we say that
p is on-line computable (with delay &) if there exists a natural number § such that,
to compute yy -+ -y, = p(xy---x,), it is necessary and sufficient to have xy, ...,
rpas available to generate yi, for 1 < k < n. After the delay, one digit of the
result is produced upon receiving one digit of X. For us, on-line always refers to
MSDF serial computations of that kind. It is well known that some functions are
not on-line computable, like addition in the binary system with non redundant digit
set {0,1}. Another example is the conversion function y between radix 2 redundant

representations and 2-complement representations
X {1707 1}* — {07 1}*

where 1 denotes the signed digit —1. The conversion is equivalent to a subtraction.

This conversion is not on-line computable: consider two redundant representations
n

— _

p=10---01, denoted by p = 10"1 and ¢ = 10”1, for n > 1. Then x(p) = 010”1 and
x(gq) = 001"*!; this shows that the least significant digit as to be known to be able to
output the most significant digits of the result.

We now introduce another definition [7]. A function is said to be on-the-fly com-
putable if the digits of the result are obtained in a serial fashion in MSDF mode, using
a finite number of registers corresponding to different conditional forms of the current
result. More precisely, let g : X* — Y. A registeron Y is a sequence R = (R[k])r>o0
with R[] in Y*. The function x is said to be on-the-fly computable with N registers
if there exist N registers Sp,...,5yv_1 on Y such that the following conditions are
satisfied.

o Let p = a2, with 2 € X for 1 < k& < m be an input word. Then for each

1 <k <m, plxy---a) = S9lk] (prefix computation).
e Initial conditions S;[0] are all different for every 0 <i¢ < N — 1.
o Registers are updated at each step and the update is restricted to the form

Silk + 1] = (S5[k], u)

where (5;[k], u) denotes the result of the concatenation of S;[k] and of v € Y*, and u
and j depend on the current input digit xx44.

For 0 < ¢ < N — 1, S;[k] can be seen as the result of a computation with input
xy---xp “assuming a certain condition on the beginning of the computation”. For an

example where a condition is not always a carry, see the Booth canonical recoding
below Section 3.2.

Then we need a definition from Automata Theory (see [6], [3]). A right subsequen-
tial machine with input alphabet X and output alphabet Y, M = (S, X XY™, E 50, w),
is a directed graph labelled by elements of X x Y™ :

e S is the set of vertices, called states, which is finite

o [/ C S x (X xY*)x S is the set of labelled edges

e s is the initial state

e w is the terminal function from S to Y*. When w(s) = ¢ for any s € S, the machine
is said to be right sequential.

The machine must satisfy the following property: it is input deterministic, that is to
say, if s %) and s iu; t" are two edges of M, then necessarily t = ' and v = u'.
Awordp =z 2,, with 2 € X for 1 <k < m, has g € V" for image by M if there

exists a path in M starting in the initial state s

S0 mmln 81 Fm1 /4 Cee Sl iy Sm

with u; € Y*, and such that ¢ = w(sy,)ug - up,. A function p @ X* — Y™ is right
subsequential if there exists a right subsequential machine M such that if p € X* and
g €Y*, g=u(p)if and only if ¢ is the image of p by M. For an example see Section
3.1.

The machine is called right subsequential to stress on the fact that data are pro-
cessed from right to left (LSDF). The dual notion, where data are processed from left
to right (MSDF) and where the terminal function comes as a suffix of the result, is

called a left subsequential machine.

We can now state the principal result. The proof is illustrated on an example in
Section 3.1.

Theorem 1 . A function p : X* — Y™ with Domain(u) = X* is on-the-fly com-
putable if and only if it is a right subsequential function.

Proof. First suppose that M = (S, X x Y™, E, 50,w) is a right subsequential machine
realizing p. Since the function is total, the machine can be chosen complete, that is,
for each state s € S and for each input digit € X, there exists an edge of the form
e 90—/13 t. In addition we choose a machine which is minimal in the number of states.
Then we derive from M an on-the-fly algorithm computing MSDF the function p
as follows. Let us denote the states of M by S = {sg,...,sny_1}. We thus need N
registers denoted by Sy, ..., Sy_1, register S; corresponding to state s;, 0 <1 < N —1.
Initialization is the following: for 0 < ¢ < N — 1, S;[0] = w(s;). Let p = a1 --- 2, be
an input word and let 0 < k < m — 1; recurrence relations are determined by: for each
0 <: <N —1, for each x4y € X, if in M there is an edge of the form s; xﬂu 55,
0<j<N-—1,ueY* put Si[k+1] = (5]k],u) (note that, for a given value of xj41,
there is only one possible edge because M is input deterministic). We claim that for
0<i:<N—1andfor 0 <k <m, S;[k|is equal to the reverse of the output label
of the unique path in M starting in s; and with input label xy ---2;. The proof is by
induction on k. When k = 0, the input is the empty word, and S;[0] = w(s;). Let us
consider the following path in M

xg [u Tp_1/uk_1 T /U1 [w(siy)
S; — S5 — et Si_, T S84y —{; .

By induction hypothesis, S; [k — 1] = w(s;,) uy---ug—1. By construction, S;[k] =
(Si, [k — 1], uk), thus S;[k] = w(s;)ur - up—1ug, and we are done. Hence, for each
1 <k <m, Solk] = play---xp).

Conversely, let us suppose that p : X* — Y™ is on-the-fly computable with N
registers Sy, -+, Sy_1 on Y. We define a right subsequential machine as follows: let
M = (5, X X Y* F, sg,w) where S = {sg,---,s,-1}, each s; corresponding to ;.
When the recurrence relations for 2341 € X are of the form S;[k+ 1] = (5;[k], u), for ¢
and 7 in {0,...,N —1} and v € Y*, we define in F an edge s; gaite sj. The terminal
function is defined by w(s;) = S;[0]. Clearly M is input deterministic, and as above,
one verifies that So[k] = p(ay - - x) if and only if there is a path in M

/

Tk [ug Tp_1/ug_1 x1 /ul [w(siy)
So —— Si = eesi s, —%

with p(zy - ap) = w(s;, Jug - - ug. [

Since the number of registers in the on-the-fly algorithm is equal to the number
of states of the right subsequential machine, it is important to find a minimal right

subsequential machine, and it is known how to achieve this task [5, 15].

5

Now we show a general result on radix r conversion onto the canonical digit set
{0,...,7 —1}. It is more or less folklore, but we give a proof of it for the convenience

of the reader.

Proposition 1 . Let r be an integer > 2, let X be any finite set of digits, and lel
Y ={0,...,r—1}. The conversion ¢ : X* — Y™ between representations with digits
in X onto r’s complement representations is a right subsequential function, and is thus

on-the-fly computable.

Proof. Let M = max{|z —y|; = € X, y € Y}, and let v = M/(r —1). One
defines a right subsequential machine R = (5, X x Y, F, s9,w) as follows. The set
of states is S = {s € Z | |s|] < v}. The initial state is so = 0. Let s be a state,
and let x € X be an input digit. By the Euclidean division of s + x by r there exist
unique y € Y and t € Z such that s + 2 = rt +y. We have t = (s + « — y)/r, thus
lt| < (|s|+]z —y|)/r <(y+ M)/r =~,and so t € S. Thus we define an edge s Iy
in £. For any state s, the terminal function w(s) is taken as the r’s complement
representation of s. When s > 0, the input word represents a positive integer, if s < 0,
then the input word represents a negative integer. Now let p = 1 ---z,, be a word of
X*. Starting in initial state sp = 0, and reading from right to left, we take the unique
path

l’m/ym & —1/1/ —1 1’1/1/1
S = s AT s) S s,

Since, for 1 < j < m, s, j+x; = rsp,_jy1+y;, weget 357 z;rmTI = 2Ty Y 45
thus ¢ (p) = w(sm)y1 - - ym € Y*. Note that some of the states may be useless. []

In on-line arithmetic, the redundant digit set is usually of the form X ={a,...,a},
with r/2 < a < r — 1. In that case, the right subsequential machine realizing the

conversion onto r’s complement notation has only two states, independently of the

radix.
0fr—1,--+,7r —1/0 0/0,---,r—1/r—1
1/r—1,---,r —1/1
/1 T — -
T AP
Figure 1. Right subsequential conversion from {r — 1,...,r — 1} to r’s complement

In Proposition 1, the canonical digit set Y = {0,...,r — 1} can be replaced by a

non-redundant digit set Z = {zg,..., 2,1}, where z; is congruent to 7 modulo r, for

each 0 <1 < r—1, and such that any number is representable (see [14]). For instance,

when r = 3, we can choose Z = {1,0,1} (see [12]).

3 Examples and applications

Since there is a natural carry propagation from right to left in the most usual number

systems, a lot of functions are right subsequential. We mention some of them.

3.1 Radix 2 conversion of redundant into conventional repre-

sentations

Let x : {1,0,1}* — {0,1}* be the conversion function between radix 2 redundant
representations and 2-complement representations. Below is the minimal right sub-
sequential machine C realizing y. The input alphabet is X = {1,0,1}, the output
alphabet is Y = {0,1}, the set of states is S = {a,b}, the initial state is a, the
terminal function is defined by w(a) = 0 and w(b) = 1.

0/1,1/0 0/0,1/1

gille
ot

o /0

Figure 2. Right subsequential radix 2 conversion of redundant into conventional

representation

State a means that there is no carry, and state b means that there is a negative carry
—1. If the computation ends in state a, then the result must be prefixed by w(a) =0
and the machine gives the conversion for a positive number. If the computation ends
in state b, then the result is prefixed by w(b) = 1, to get the conversion for a negative
number.

Example. Let us consider 4-digit input integers. Let w = 1011. Then (w); = —9.

We have in the automaton C

/1 1/1

0/1 1
—Saqa—a——b

—>b£>b—>.

Thus the conversion of w is 10111, which is the 2-complement representation of —9.

Following the method exposed in Theorem 1, we obtain exactly the on-the-fly
algorithm of [7] for conversion. We need two registers A and B, corresponding to

states a¢ and b. The initial conditions of the recurrence are

We then define

Lh41 0 1 1
Ak + 1] | (A[KL0) | (A[K], 1) | (BIK], 1)
Blk+1] | (B[

The result is contained in register A.
Example. The on-the-fly computation to convert 1011 into 10111 is the following

one.

Efop 1| 2 | 3 4

T 1 0 1 1
A (0] 11 110 | 1011 | 10111
B | 110|101 |1010 | 10110

3.2 Booth canonical recoding

Given a binary representation, the Booth canonical recoding consists of finding an
equivalent one with signed bits, and having the minimum number of non-zero digits
[4]. This has important application to multiplication. The Booth canonical recoding
can be obtained by the simple LSDF algorithm: each block of the form 017, with n > 2,
is transformed into 10”71, and other blocks are left unchanged. Let X = {0,1} be
the input alphabet and let Y = {1,0,1} be the output alphabet. The Booth canonical
recoding is a right subsequential function ¢ : X* — Y™ realized by the following

machine B, which is minimal.

Figure 4. Right subsequential Booth canonical recoding

Example. Let w = 11101101. Then ¢(w) = 100010101.

Note that in B, the meaning of states b and ¢ is not the same, although their
terminal functions have the same value. State @ means “no carry”, state ¢ means
“there is a carry 17, and state b means “a 1 has been read and has not been output”.

From the figure it is clear that, in the output, there are never two adjacent non
zero digits, which implies that the coded representation can be seen as a radix 4
representation with digit set {2,...,2}.

The on-the-fly algorithm to compute the Booth canonical recoding is the following.
Take three registers A, B, and C corresponding to states a, b, and ¢ of B. Initial

conditions are
Al0] = w(a) =¢, B]0] =w(b) =1, C[0] =w(c) = 1.

Using the same notations as above, we define

Lh41 0 1
Alk+ 1] | (A[K],0) | (B[], €)
B[k +1] | (A[k],01) | (C[k],01)
Clk+1] | (Blkl,e) | (C[K],0)

The result of the computation is contained in register A.

3.3 Other number systems

We now consider less classical number systems, where the base is a negative integer
or a quadratic complex number. Addition in base —2, 1v/2, 27, and —1 + i has been

shown to be computable in constant time in parallel in [18].

Negative radix

Let r be an integer > 2. It is known that any real number can be expressed with radix
—r and digit set {0,...,r — 1} without a sign (see [12]). Using a redundant digit set
{a,...,a} where a is an integer such that r/2 < a <r—1 one can perform addition in
parallel; under the same hypothesis addition is computable by an on-line finite state
automaton [8]. On the other hand, the conversion from {a,...,a} to the canonical
digit set {0,...,r—1} is right subsequential [§], and thus can be computed on-the-fly,
with 3 registers. It cannot be computed on-line.

Note also that the conversion between radix r and radix —r expansions is right

subsequential [1], and thus is on-the-fly computable.

9

Base i./r

Let r be an integer > 2. Every complex number is representable in base i/r and digit
set {0,...,r—1} (see [12], [11]). It is possible to perform addition in parallel and with
an on-line finite state automaton using a redundant digit set {a,...,a} where a is an
integer such that r/2 < a < r —1 ([8]). Conversion from {a,...,a} to the canonical
digit set {0,...,r —1} cannot be computed on-line, but is right subsequential [8], and
thus can be computed on-the-fly.

Example. Let 7 = 2 and let 3 = iv/2. The canonical digit set associated with
Bis Y = {0,1}, and the minimally redundant one is X = {1,0,1}. We give the
construction of the right subsequential machine M = (5, X x Y, E, sy, w) realizing the
conversion in base # from X to Y.
e The set of states is S = {s.q | ¢,d € X}. State s.4 represents the number e+ d.
The initial state is sg = s¢,0.
o Let s.q € S and let € X. By the Euclidean division of d 4+ « by —2 there exist
unique y € Y and e € X such that d+x = —2e+y. Thus e+ d+ 2 = B(fe+¢)+y,
since 32 = —2. We then define in the machine M an edge s.4 x—/y> Sec
e The terminal function is defined by w(s.q) = cd if ¢ and d are in Y, w(s7) = 101d
ifdeY,w(s.i)=1cl ifc€Y, and w(siy) = 1111.

From that machine we derive an on-the-fly algorithm computing the conversion.

There are 9 registers, of the form S. 4, for ¢ and d in Y. Initial conditions are S 4[0] =

W(Sed)-

Tt 0 1 1
Soolk +1] | (So0[k],0) | (Soolk],1) | (Siolk]1)
Soalk +1] | (Soolk], 1) | (Siolk],0) | (Soolk].0)
Soalk +1] | (Stolk], 1) | (Soolk],0) | (S10[k].0)
Srolk + 1] | (S01[£],0) | (Soalk],1) | (S1alk] 1)
Stalk + 1] | (Soa[k], 1) | (Si1[k],0) | (Soa[k].0)
Svalk + 11| (S1alk], 1) | (Soalk],0) | (S1a[k],0)
Stolk + 1] | (50,1[k],0) | (Soi[k], 1) | (S11[k],1)
Stalk + 1] | (Soi[k], 1) | (S11[K],0) | (So1[K],0)
Siilk + 1] | (Suilk], 1) | (So,i[K],0) | (511[K],0)

The result of the computation is contained in register Sg .
For instance, let (111-), 5 be a representation on X = {1,0,1} of z = =3 + iv2.
Below is the on-the-fly computation of the conversion into (1010011-); .

10

k 0 1 2 3

Ty 1 1 1
Soo | 00 001 0011 | 1010011
Sox | 01 | 10100 | 10110 00110
Soi | 101 000 0010 | 1010010
Sio | 10 011 | 101001 | 1111001
Sia| 11 | 10110 | 111100 | 101100
Sii | 111 010 | 101000 | 1111000
Sio | 1010 | 1011 0001 | 1010001
Sia | 1011 | 11110 | 10100 00100
Sii | 1111] 1010 0000 | 1010000

Base —1 +:

It is known that every complex number has a representation in base —1 + ¢ and digit
set {0,1}. In particular every Gaussian integer has a unique representation of the
form Y7_o dr(—1+14)" ([11]). Parallel and on-line addition are possible with digit set
{2,...,2} or {3,...,3} ([18], [8]). Nevertheless, conversion in base —1 + i between
digit set {a,...,a}, 1 < a < 3, into canonical digit set {0, 1} is not on-line computable,
is right subsequential [§], and is thus on-the-fly computable. In [1] it is shown how to
obtain the (—1 + 7)-representation of a Gaussian integer from the 2-representation of
its real and imaginary part by a right sequential machine. As a corollary of our result,

this process can be realized by an on-the-fly algorithm.

4 Conclusions

In Computer Arithmetic, on-the-fly algorithms have been used in cases where one re-
quires that some process be computed MSDF, but where it is not possible to achieve
this task by an on-line algorithm. Our purpose here is to give a theoretical point
of view on this notion, allowing us to show that functions which are on-the-fly com-
putable in the sense we have defined are very simple; in particular, they always stay
within the domain of functions computable by finite state automaton. At the same
time, subsequential functions are quite well studied in Automata Theory, and some
of their properties could be useful for the efficiency of on-the-fly algorithms. Finally,
we believe that our result provides an easy way to obtain such algorithms, since right

subsequential functions are very natural.

11

Acknowledgements. We want to thank the referees for suggestions which greatly

improved the manuscript.

References

1]

J.-P. Allouche, E. Cateland, W.J. Gilbert, and H.-O. Peitgen. Automatic maps
in exotic numeration systems. Theory of Computing Systems, 30:285-331, 1997.

A. Avizienis. Signed-digit number representations for fast parallel arithmetic.
IRE Transactions on Electronic Computers, 10:389-400, 1961.

J. Berstel. Transductions and Context-free Languages. Teubner, 1979.

A.D. Booth. A signed binary multiplication technique. Quart. J. Mech. Appl.
Math., 4:236-240, 1951.

C. Choffrut. A generalization of Ginsburg and Rose’s characterization of gsm
mappings. In ICALP 79, number 71 in Lecture Notes in Computer Science,
pages 88-103, 1979.

S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,

1974.

M.D. Ercegovac and T. Lang. On-the-fly conversion of redundant into conven-
tional representations. ILE.E.E. Trans. on Computers, C 36:895-897, 1987.

Ch. Frougny. Parallel and on-line addition in negative base and some complex
number systems. In Furo-Par’96, number 1124 in Lecture Notes in Computer

Science, pages 175-182, 1996.

Ch. Frougny. On-the-fly algorithms and sequential machines. In 13th [FEFE
Symposium on Computer Arithmetic, pages 260-265. [.LE.E.E. Computer Society
Press, 1997.

Ch. Frougny and J. Sakarovitch. Synchronisation déterministe des automates a
délai borné. Theoretical Computer Science, 191:61-77, 1998.

. Katai and J. Szabd. Canonical number systems for complex integers. Acta Sei.

Math., 37:255-280, 1975.

12

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D.E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
1988.

P. Kornerup. Digit-set conversions: Generalizations and applications. LE.F.F.
Trans. on Computers, 43:622-629, 1994.

D. Matula. Basic digit sets for radix representation. J.A.C.M., 29:1131-1143,
1982.

M. Mohri. Minimization of sequential transducers. In STACS "94, number 807 in
Lecture Notes in Computer Science, pages 151-163, 1994.

P. Montuschi and L. Ciminiera. n X n carry-save multipliers without final addi-
tion. In 11th IEFE Symposium on Computer Arithmetic, pages 54-61. I.E.E.E.
Computer Society Press, 1993.

J.-M. Muller. Some characterizations of functions computable in on-line arith-

metic. LLE.E.E. Trans. on Computers, 43:752-755, 1994.

A.M. Nielsen and J.-M. Muller. Borrow-save adders for real and complex number
systems. In Conf. Real Numbers and Computers, pages 121-137, 1996.

K.S. Trivedi and M.D. Ercegovac. On-line algorithms for division and multiplica-

tion. LE.E.E. Trans. on Computers, C 26:681-687, 1977.

13

