
On-the-Fly Algorithms and Sequential MachinesChristiane FrougnyUniversit�e Paris 8 and L.I.A.F.A. �AbstractIt is shown that a function is computable by an on-the-y algorithm pro-cessing data in the most signi�cant digit �rst fashion with a �nite number ofregisters if and only if it is computable by a right subsequential �nite state ma-chine processing deterministically data in the least signi�cant digit �rst fashion.Some applications to complex radix number systems are given.Keywords: On-the-y algorithm, sequential machine, digit set conversion.1 IntroductionConversion from a redundant into a conventional representation is important in Com-puter Arithmetic because on-line algorithms require redundant representations [19].Similarly, in some arithmetic algorithms such as the SRT division algorithm, the re-sult is generated most signi�cant digit �rst (MSDF) in a redundant format. It is wellknown that such conversions cannot be realized on-line, that is to say MSDF digit-wise, one output digit being produced by one input digit after a certain delay, becausethere is a carry which propagates from right to left. On-the-y algorithms to solvethis problem have been proposed by Ercegovac and Lang [7] and generalized by Ko-rnerup [13] (see also [16] for application to multiplication). In an on-the-y algorithm,data are processed in a serial manner from most signi�cant to least signi�cant, butthe algorithm uses several registers, each of them representing a correct pre�x of the�L.I.A.F.A. - Case 7014, 2 place Jussieu, 75251 Paris Cedex 05 - France. Email:Christiane.Frougny@liafa.jussieu.fr

result, corresponding to an assumed value of the carry. Using the well known tech-nique of parallel pre�x computation, on-the-y algorithms can be implemented in timeO(log n) (see [13]).The purpose of this contribution is not to improve on existing algorithms, butrather to present a theoretical framework allowing to easily obtain on-the-y algo-rithms whenever it is possible. We show that a function is computable by an on-the-yalgorithm if and only if it is computable by a right subsequential �nite state machine.Such a machine is a 2-tape �nite state automaton of a certain kind: inputs are de-terministically and serially processed from right to left, i.e. LSDF digitwise, and theoutput is generated LSDF (see [6] and [3]). In radix r with non redundant digit setf0; : : : ; r � 1g, addition, subtraction, multiplication by a �xed integer are right sub-sequential functions. Division by a �xed integer is a left subsequential function (dataare processed MSDF). More generally, functions which are computable by a 2-tape�nite state automaton are those which need only a �nite auxiliary storage memory,independently of the size of the data. Note that squaring, multiplication and divisionare functions which cannot be computed by any kind of a 2-tape �nite state automatonbut they are on-line computable.On the other hand, with a redundant digit set of the form f�a; : : : ; ag with r=2 �a � r� 1, and following the Avizienis algorithm [2], addition is computable by an on-line �nite state automaton, which is a particular case of a left subsequential machine(see [17], [10]).The paper is organized as follows. First we set some de�nitions of computability.We prove that a function is on-the-y computable if and only if it is right subsequen-tial. Every radix r conversion into conventional representations is right subsequential.We illustrate our method on radix 2 conversion of redundant into conventional repre-sentations, showing how the on-the-y algorithm of [7] can be derived from the rightsubsequential machine. We give applications to the Booth canonical recoding and toconversion in number systems where the base is a negative integer, or some complexnumber. In particular, we fully give the on-the-y algorithm converting redundant rep-resentations in base ip2 on the digit set f�1; 0; 1g onto non-redundant representationson the digit set f0; 1g.This paper is the full version of [9]. 2

2 De�nitions and resultsLet r be the radix, r integer � 2, and let X be a �nite digit set, called alphabet. Aninteger p is represented by a �nite string or a word x1 � � � xm of the free monoid X�generated by X, with for 1 � k � m, xk 2 X, and such that p = Pmk=1 xkrm�k . A realnumber x of [0; 1] is represented by an in�nite word (xk)k�1 such that xk 2 X andx = Pk�1 xkr�k. The leftmost digit is the most signi�cant one. The empty word isdenoted by ". We expose the results on integers (�nite words), but they are valid forreal numbers (in�nite words) as well.Let X and Y be two �nite digit sets, and let � be a function from X� to Y �(for simplicity we consider only one-variable functions, but it is not a restriction).X is the input alphabet, and Y is the output alphabet. Following [19], we say that� is on-line computable (with delay �) if there exists a natural number � such that,to compute y1 � � � yn = �(x1 � � � xm), it is necessary and su�cient to have x1, . . . ,xk+� available to generate yk, for 1 � k � n. After the delay, one digit of theresult is produced upon receiving one digit of X. For us, on-line always refers toMSDF serial computations of that kind. It is well known that some functions arenot on-line computable, like addition in the binary system with non redundant digitset f0; 1g. Another example is the conversion function � between radix 2 redundantrepresentations and 2-complement representations� : f�1; 0; 1g� �! f0; 1g�where �1 denotes the signed digit �1. The conversion is equivalent to a subtraction.This conversion is not on-line computable: consider two redundant representationsp = 1 nz }| {0 � � � 0 1, denoted by p = 10n1 and q = 10n�1, for n � 1. Then �(p) = 010n1 and�(q) = 001n+1; this shows that the least signi�cant digit as to be known to be able tooutput the most signi�cant digits of the result.We now introduce another de�nition [7]. A function is said to be on-the-y com-putable if the digits of the result are obtained in a serial fashion in MSDF mode, usinga �nite number of registers corresponding to di�erent conditional forms of the currentresult. More precisely, let � : X� �! Y �. A register on Y is a sequence R = (R[k])k�0with R[k] in Y �. The function � is said to be on-the-y computable with N registersif there exist N registers S0; : : : ; SN�1 on Y such that the following conditions aresatis�ed.� Let p = x1 � � �xm with xk 2 X for 1 � k � m be an input word. Then for each3

1 � k � m, �(x1 � � �xk) = S0[k] (pre�x computation).� Initial conditions Si[0] are all di�erent for every 0 � i � N � 1.� Registers are updated at each step and the update is restricted to the formSi[k + 1] = (Sj[k]; u)where (Sj[k]; u) denotes the result of the concatenation of Sj[k] and of u 2 Y �, and uand j depend on the current input digit xk+1.For 0 � i � N � 1, Si[k] can be seen as the result of a computation with inputx1 � � �xk \assuming a certain condition on the beginning of the computation". For anexample where a condition is not always a carry, see the Booth canonical recodingbelow Section 3.2.Then we need a de�nition from Automata Theory (see [6], [3]). A right subsequen-tial machine with input alphabet X and output alphabet Y ,M = (S;X�Y �; E; s0; !),is a directed graph labelled by elements of X � Y � :� S is the set of vertices, called states, which is �nite� E � S � (X � Y �)� S is the set of labelled edges� s0 is the initial state� ! is the terminal function from S to Y �. When !(s) = " for any s 2 S, the machineis said to be right sequential.The machine must satisfy the following property: it is input deterministic, that is tosay, if s x=u�! t and s x=u0�! t0 are two edges of M, then necessarily t = t0 and u = u0.A word p = x1 � � � xm, with xk 2 X for 1 � k � m, has q 2 Y � for image byM if thereexists a path in M starting in the initial state s0s0 xm=um�! s1 xm�1=um�1�! � � � sm�1 x1=u1�! smwith uj 2 Y �, and such that q = !(sm)u1 � � �um. A function � : X� �! Y � is rightsubsequential if there exists a right subsequential machineM such that if p 2 X� andq 2 Y �, q = �(p) if and only if q is the image of p by M. For an example see Section3.1.The machine is called right subsequential to stress on the fact that data are pro-cessed from right to left (LSDF). The dual notion, where data are processed from leftto right (MSDF) and where the terminal function comes as a su�x of the result, iscalled a left subsequential machine.We can now state the principal result. The proof is illustrated on an example inSection 3.1. 4

Theorem 1 . A function � : X� �! Y � with Domain(�) = X� is on-the-y com-putable if and only if it is a right subsequential function.Proof. First suppose thatM = (S;X�Y �; E; s0; !) is a right subsequential machinerealizing �. Since the function is total, the machine can be chosen complete, that is,for each state s 2 S and for each input digit x 2 X, there exists an edge of the forms x=u�! t. In addition we choose a machine which is minimal in the number of states.Then we derive from M an on-the-y algorithm computing MSDF the function �as follows. Let us denote the states of M by S = fs0; : : : ; sN�1g. We thus need Nregisters denoted by S0; : : : ; SN�1, register Si corresponding to state si, 0 � i � N�1.Initialization is the following: for 0 � i � N � 1, Si[0] = !(si). Let p = x1 � � �xm bean input word and let 0 � k � m�1; recurrence relations are determined by: for each0 � i � N � 1, for each xk+1 2 X, if in M there is an edge of the form si xk+1=u�! sj ,0 � j � N � 1, u 2 Y �, put Si[k+1] = (Sj[k]; u) (note that, for a given value of xk+1,there is only one possible edge because M is input deterministic). We claim that for0 � i � N � 1 and for 0 � k � m, Si[k] is equal to the reverse of the output labelof the unique path inM starting in si and with input label xk � � � x1. The proof is byinduction on k. When k = 0, the input is the empty word, and Si[0] = !(si). Let usconsider the following path in Msi xk=uk�! si1 xk�1=uk�1�! � � � sik�1 x1=u1�! sik =!(sik)�! :By induction hypothesis, Si1 [k � 1] = !(sik) u1 � � � uk�1. By construction, Si[k] =(Si1 [k � 1]; uk), thus Si[k] = !(sik)u1 � � � uk�1uk, and we are done. Hence, for each1 � k � m, S0[k] = �(x1 � � � xk).Conversely, let us suppose that � : X� �! Y � is on-the-y computable with Nregisters S0; � � � ; SN�1 on Y . We de�ne a right subsequential machine as follows: letM = (S;X � Y �; E; s0; !) where S = fs0; � � � ; sn�1g, each si corresponding to Si.When the recurrence relations for xk+1 2 X are of the form Si[k+1] = (Sj[k]; u), for iand j in f0; : : : ; N � 1g and u 2 Y �, we de�ne in E an edge si xk+1=u�! sj. The terminalfunction is de�ned by !(si) = Si[0]. Clearly M is input deterministic, and as above,one veri�es that S0[k] = �(x1 � � �xk) if and only if there is a path in Ms0 xk=uk�! si1 xk�1=uk�1�! � � � sik�1 x1=u1�! sik =!(sik)�!with �(x1 � � � xk) = !(sik)u1 � � � uk.Since the number of registers in the on-the-y algorithm is equal to the numberof states of the right subsequential machine, it is important to �nd a minimal rightsubsequential machine, and it is known how to achieve this task [5, 15].5

Now we show a general result on radix r conversion onto the canonical digit setf0; : : : ; r� 1g. It is more or less folklore, but we give a proof of it for the convenienceof the reader.Proposition 1 . Let r be an integer � 2, let X be any �nite set of digits, and letY = f0; : : : ; r� 1g. The conversion : X� �! Y � between representations with digitsin X onto r's complement representations is a right subsequential function, and is thuson-the-y computable.Proof. Let M = maxfjx � yj; x 2 X; y 2 Y g, and let = M=(r � 1). Onede�nes a right subsequential machine R = (S;X � Y;E; s0; !) as follows. The setof states is S = fs 2 Z j jsj < g. The initial state is s0 = 0. Let s be a state,and let x 2 X be an input digit. By the Euclidean division of s+ x by r there existunique y 2 Y and t 2 Z such that s + x = rt + y. We have t = (s + x � y)=r, thusjtj � (jsj+ jx� yj)=r < (+M)=r = , and so t 2 S. Thus we de�ne an edge s x=y�! tin E. For any state s, the terminal function !(s) is taken as the r's complementrepresentation of s. When s � 0, the input word represents a positive integer, if s < 0,then the input word represents a negative integer. Now let p = x1 � � �xm be a word ofX�. Starting in initial state s0 = 0, and reading from right to left, we take the uniquepath s0 xm=ym�! s1 xm�1=ym�1�! � � � sm�1 x1=y1�! sm:Since, for 1 � j � m, sm�j+xj = rsm�j+1+yj, we getPmj=1 xjrm�j = Pmj=1 yjrm�j+sm,thus (p) = !(sm)y1 � � � ym 2 Y �. Note that some of the states may be useless.In on-line arithmetic, the redundant digit set is usually of the formX = f�a; : : : ; ag,with r=2 � a � r � 1. In that case, the right subsequential machine realizing theconversion onto r's complement notation has only two states, independently of theradix. �1��� 0����?=0/0=r� 1; � � � ; r � 1=0 /0=0; � � � ; r � 1=r� 1�=1 � �1=r� 1; � � � ; r � 1=1 *1=0; � � � ; r � 1=r� 2Figure 1. Right subsequential conversion from fr � 1; : : : ; r � 1g to r's complementIn Proposition 1, the canonical digit set Y = f0; : : : ; r � 1g can be replaced by anon-redundant digit set Z = fz0; : : : ; zr�1g, where zi is congruent to i modulo r, for6

each 0 � i � r�1, and such that any number is representable (see [14]). For instance,when r = 3, we can choose Z = f�1; 0; 1g (see [12]).3 Examples and applicationsSince there is a natural carry propagation from right to left in the most usual numbersystems, a lot of functions are right subsequential. We mention some of them.3.1 Radix 2 conversion of redundant into conventional repre-sentationsLet � : f�1; 0; 1g� �! f0; 1g� be the conversion function between radix 2 redundantrepresentations and 2-complement representations. Below is the minimal right sub-sequential machine C realizing �. The input alphabet is X = f�1; 0; 1g, the outputalphabet is Y = f0; 1g, the set of states is S = fa; bg, the initial state is a, theterminal function is de�ned by !(a) = 0 and !(b) = 1.b��� a����?=0/0=1; �1=0 /0=0; 1=1�=1 	 �1=1 �1=0Figure 2. Right subsequential radix 2 conversion of redundant into conventionalrepresentationState ameans that there is no carry, and state bmeans that there is a negative carry�1. If the computation ends in state a, then the result must be pre�xed by !(a) = 0and the machine gives the conversion for a positive number. If the computation endsin state b, then the result is pre�xed by !(b) = 1, to get the conversion for a negativenumber.Example. Let us consider 4-digit input integers. Let w = �10�11. Then (w)2 = �9.We have in the automaton C! a 1=1�! a �1=1�! b 0=1�! b �1=0�! b =1! :Thus the conversion of w is 10111, which is the 2-complement representation of �9.7

Following the method exposed in Theorem 1, we obtain exactly the on-the-yalgorithm of [7] for conversion. We need two registers A and B, corresponding tostates a and b. The initial conditions of the recurrence areA[0] = !(a) = 0; B[0] = !(b) = 1:We then de�ne xk+1 0 1 �1A[k + 1] (A[k]; 0) (A[k]; 1) (B[k]; 1)B[k + 1] (B[k]; 1) (A[k]; 0) (B[k]; 0)The result is contained in register A.Example. The on-the-y computation to convert �10�11 into 10111 is the followingone. k 0 1 2 3 4xk �1 0 �1 1A 0 11 110 1011 10111B 1 10 101 1010 101103.2 Booth canonical recodingGiven a binary representation, the Booth canonical recoding consists of �nding anequivalent one with signed bits, and having the minimum number of non-zero digits[4]. This has important application to multiplication. The Booth canonical recodingcan be obtained by the simple LSDF algorithm: each block of the form 01n, with n � 2,is transformed into 10n�1�1, and other blocks are left unchanged. Let X = f0; 1g bethe input alphabet and let Y = f�1; 0; 1g be the output alphabet. The Booth canonicalrecoding is a right subsequential function ' : X� �! Y � realized by the followingmachine B, which is minimal. b��� a����?="c��� ?=1 /0=0/1=0�=1 	 1=" �0=01	1=0�1�0="Figure 4. Right subsequential Booth canonical recoding8

Example. Let w = 11101101. Then '(w) = 1000�10�101.Note that in B, the meaning of states b and c is not the same, although theirterminal functions have the same value. State a means \no carry", state c means\there is a carry 1", and state b means \a 1 has been read and has not been output".From the �gure it is clear that, in the output, there are never two adjacent nonzero digits, which implies that the coded representation can be seen as a radix 4representation with digit set f�2; : : : ; 2g.The on-the-y algorithm to compute the Booth canonical recoding is the following.Take three registers A, B, and C corresponding to states a, b, and c of B. Initialconditions are A[0] = !(a) = "; B[0] = !(b) = 1; C[0] = !(c) = 1:Using the same notations as above, we de�nexk+1 0 1A[k + 1] (A[k]; 0) (B[k]; ")B[k + 1] (A[k]; 01) (C[k]; 0�1)C[k + 1] (B[k]; ") (C[k]; 0)The result of the computation is contained in register A.3.3 Other number systemsWe now consider less classical number systems, where the base is a negative integeror a quadratic complex number. Addition in base �2, ip2, 2i, and �1 + i has beenshown to be computable in constant time in parallel in [18].Negative radixLet r be an integer � 2. It is known that any real number can be expressed with radix�r and digit set f0; : : : ; r � 1g without a sign (see [12]). Using a redundant digit setf�a; : : : ; ag where a is an integer such that r=2 � a � r�1 one can perform addition inparallel; under the same hypothesis addition is computable by an on-line �nite stateautomaton [8]. On the other hand, the conversion from f�a; : : : ; ag to the canonicaldigit set f0; : : : ; r� 1g is right subsequential [8], and thus can be computed on-the-y,with 3 registers. It cannot be computed on-line.Note also that the conversion between radix r and radix �r expansions is rightsubsequential [1], and thus is on-the-y computable.9

Base iprLet r be an integer � 2. Every complex number is representable in base ipr and digitset f0; : : : ; r�1g (see [12], [11]). It is possible to perform addition in parallel and withan on-line �nite state automaton using a redundant digit set f�a; : : : ; ag where a is aninteger such that r=2 � a � r � 1 ([8]). Conversion from f�a; : : : ; ag to the canonicaldigit set f0; : : : ; r� 1g cannot be computed on-line, but is right subsequential [8], andthus can be computed on-the-y.Example. Let r = 2 and let � = ip2. The canonical digit set associated with� is Y = f0; 1g, and the minimally redundant one is X = f�1; 0; 1g. We give theconstruction of the right subsequential machineM = (S;X �Y;E; s0; !) realizing theconversion in base � from X to Y .� The set of states is S = fsc;d j c; d 2 Xg. State sc;d represents the number �c+ d.The initial state is s0 = s0;0.� Let sc;d 2 S and let x 2 X. By the Euclidean division of d + x by �2 there existunique y 2 Y and e 2 X such that d+ x = �2e+ y. Thus �c+ d+ x = �(�e+ c)+ y,since �2 = �2. We then de�ne in the machineM an edge sc;d x=y�! se;c.� The terminal function is de�ned by !(sc;d) = cd if c and d are in Y , !(s�1;d) = 101dif d 2 Y , !(sc;�1) = 1c1 if c 2 Y , and !(s�1;�1) = 1111.From that machine we derive an on-the-y algorithm computing the conversion.There are 9 registers, of the form Sc;d, for c and d in Y . Initial conditions are Sc;d[0] =!(sc;d). xk+1 0 1 �1S0;0[k + 1] (S0;0[k]; 0) (S0;0[k]; 1) (S1;0[k]; 1)S0;1[k + 1] (S0;0[k]; 1) (S�1;0[k]; 0) (S0;0[k]; 0)S0;�1[k + 1] (S1;0[k]; 1) (S0;0[k]; 0) (S1;0[k]; 0)S1;0[k + 1] (S0;1[k]; 0) (S0;1[k]; 1) (S1;1[k]; 1)S1;1[k + 1] (S0;1[k]; 1) (S�1;1[k]; 0) (S0;1[k]; 0)S1;�1[k + 1] (S1;1[k]; 1) (S0;1[k]; 0) (S1;1[k]; 0)S�1;0[k + 1] (S0;�1[k]; 0) (S0;�1[k]; 1) (S1;�1[k]; 1)S�1;1[k + 1] (S0;�1[k]; 1) (S�1;�1[k]; 0) (S0;�1[k]; 0)S�1;�1[k + 1] (S1;�1[k]; 1) (S0;�1[k]; 0) (S1;�1[k]; 0)The result of the computation is contained in register S0;0.For instance, let (11�1�)ip2 be a representation on X = f�1; 0; 1g of z = �3 + ip2.Below is the on-the-y computation of the conversion into (1010011�)ip2.10

k 0 1 2 3xk 1 1 �1S0;0 00 001 0011 1010011S0;1 01 10100 10110 00110S0;�1 101 000 0010 1010010S1;0 10 011 101001 1111001S1;1 11 10110 111100 101100S1;�1 111 010 101000 1111000S�1;0 1010 1011 0001 1010001S�1;1 1011 11110 10100 00100S�1;�1 1111 1010 0000 1010000Base �1 + iIt is known that every complex number has a representation in base �1 + i and digitset f0; 1g. In particular every Gaussian integer has a unique representation of theform Pnk=0 dk(�1 + i)k ([11]). Parallel and on-line addition are possible with digit setf�2; : : : ; 2g or f�3; : : : ; 3g ([18], [8]). Nevertheless, conversion in base �1 + i betweendigit set f�a; : : : ; ag, 1 � a � 3, into canonical digit set f0; 1g is not on-line computable,is right subsequential [8], and is thus on-the-y computable. In [1] it is shown how toobtain the (�1 + i)-representation of a Gaussian integer from the 2-representation ofits real and imaginary part by a right sequential machine. As a corollary of our result,this process can be realized by an on-the-y algorithm.4 ConclusionsIn Computer Arithmetic, on-the-y algorithms have been used in cases where one re-quires that some process be computed MSDF, but where it is not possible to achievethis task by an on-line algorithm. Our purpose here is to give a theoretical pointof view on this notion, allowing us to show that functions which are on-the-y com-putable in the sense we have de�ned are very simple; in particular, they always staywithin the domain of functions computable by �nite state automaton. At the sametime, subsequential functions are quite well studied in Automata Theory, and someof their properties could be useful for the e�ciency of on-the-y algorithms. Finally,we believe that our result provides an easy way to obtain such algorithms, since rightsubsequential functions are very natural. 11

Acknowledgements. We want to thank the referees for suggestions which greatlyimproved the manuscript.References[1] J.-P. Allouche, E. Cateland, W.J. Gilbert, and H.-O. Peitgen. Automatic mapsin exotic numeration systems. Theory of Computing Systems, 30:285{331, 1997.[2] A. Avizienis. Signed-digit number representations for fast parallel arithmetic.IRE Transactions on Electronic Computers, 10:389{400, 1961.[3] J. Berstel. Transductions and Context-free Languages. Teubner, 1979.[4] A.D. Booth. A signed binary multiplication technique. Quart. J. Mech. Appl.Math., 4:236{240, 1951.[5] C. Cho�rut. A generalization of Ginsburg and Rose's characterization of gsmmappings. In ICALP '79, number 71 in Lecture Notes in Computer Science,pages 88{103, 1979.[6] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,1974.[7] M.D. Ercegovac and T. Lang. On-the-y conversion of redundant into conven-tional representations. I.E.E.E. Trans. on Computers, C 36:895{897, 1987.[8] Ch. Frougny. Parallel and on-line addition in negative base and some complexnumber systems. In Euro-Par'96, number 1124 in Lecture Notes in ComputerScience, pages 175{182, 1996.[9] Ch. Frougny. On-the-y algorithms and sequential machines. In 13th IEEESymposium on Computer Arithmetic, pages 260{265. I.E.E.E. Computer SocietyPress, 1997.[10] Ch. Frougny and J. Sakarovitch. Synchronisation d�eterministe des automates �ad�elai born�e. Theoretical Computer Science, 191:61{77, 1998.[11] I. K�atai and J. Szab�o. Canonical number systems for complex integers. Acta Sci.Math., 37:255{280, 1975. 12

[12] D.E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,1988.[13] P. Kornerup. Digit-set conversions: Generalizations and applications. I.E.E.E.Trans. on Computers, 43:622{629, 1994.[14] D. Matula. Basic digit sets for radix representation. J.A.C.M., 29:1131{1143,1982.[15] M. Mohri. Minimization of sequential transducers. In STACS '94, number 807 inLecture Notes in Computer Science, pages 151{163, 1994.[16] P. Montuschi and L. Ciminiera. n � n carry-save multipliers without �nal addi-tion. In 11th IEEE Symposium on Computer Arithmetic, pages 54{61. I.E.E.E.Computer Society Press, 1993.[17] J.-M. Muller. Some characterizations of functions computable in on-line arith-metic. I.E.E.E. Trans. on Computers, 43:752{755, 1994.[18] A.M. Nielsen and J.-M. Muller. Borrow-save adders for real and complex numbersystems. In Conf. Real Numbers and Computers, pages 121{137, 1996.[19] K.S. Trivedi and M.D. Ercegovac. On-line algorithms for division and multiplica-tion. I.E.E.E. Trans. on Computers, C 26:681{687, 1977.
13

