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Abstract

Multiplication of two numbers represented in base� is
shown to be computable by an on-line algorithm when�
is a negative integer, a positive non-integer real number, or
a complex number of the formipr, wherer is a positive
integer.

1 Introduction

On-line arithmetic, introduced in [24], is a mode of com-
putation where operands and results flow through arithmetic
units in a digit serial manner, starting with the most signif-
icant digit. To generate the first digit of the result, theÆ
first digits of the operands are required. The integerÆ is
called thedelayof the algorithm. This technique allows the
pipelining of different operations such as addition, multipli-
cation and division. It is also appropriate for the processing
of real numbers having infinite expansions : it is well known
that when multiplying two real numbers, only the left part of
the result is significant. On-line arithmetic is used for spe-
cial circuits such as in signal processing, and for very long
precision arithmetic. One of the interests of on-line com-
putable functions is that they are continuous for the usual
topology on the set of infinite sequences on a finite digit
set.

To be able to perform on-line computation, it is neces-
sary to use a redundant number system, where a number
may have more than one representation (see [24, 5]). An
example of such a system is the so-called signed-digit num-
ber system. It is composed of an integer base� � 2 and a
signed-digit set of the formf�a; : : : ; ag, with �=2 � a �� � 1. In this sytem addition can be performed in constant
time in parallel [1, 4]. On-line multiplication is also feasible
[24, 5]. Parallel addition is used internally in the multipli-
cation algorithm.

On-line algorithms for addition, subtraction, multiplica-
tion, division and square-root in integer base are well stud-
ied, see [2, 6, 19].

In this paper we study the multiplication in base� when� is a negative integer, or a non-integer real number, or a
complex number of the formipr.

It is known that any real number can be represented in
negative integer base without a sign [12, 13, 15], and that,
with a signed-digit set, addition is computable in constant
time in parallel, and is computable by an on-line finite state
automaton [7]. We show that the on-line multiplication used
in the signed-digit number system can be applied in nega-
tive base. Negative base is related to some complex number
systems, see below.

When the base� is a real number> 1, by the greedy
algorithm of Rényi [23], one can compute a representation
in base� of any real number belonging to the interval[0; 1℄,
called its�-expansion, and where the digits are elements of
the canonical digit setA� = f0; : : : ; b�
g if � is not an
integer, or ofA� = f0; : : : ; � � 1g if � is an integer. In
such a representation, when� is not an integer, not all the
patterns of digits are allowed (see [21] for instance). For
instance in base� = (1 + p5)=2 the golden ratio, the�-
expansion of the numberx = 3 �p5 is 1001000 : : :. The
pattern11 is forbidden. Different�-representations ofx
are0111000 : : :, or 100(01)(01)(01) : : : for instance. This
system is thus naturally redundant.

Representation of numbers in non-integer base is en-
countered for instance in coding theory, see [10], and in the
modelization of quasicrystals, see [3].

In [8] we have studied the problem of the conversion in
a real base� from a digit setD = f0; : : : ; dg with d � b�

to the canonical digit setA� , without changing the numer-
ical value. Addition and multiplication by a fixed positive
integer are particular cases of digit set conversion. We have
proved that the digit set conversion is on-line computable.
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Moreover, if the base� is a Pisot number1 this conversion is
realizable by an on-line finite automaton. This means that in
the Pisot case, digit set conversion needs only a finite stor-
age memory, independent of the size of the data. However,
addition is not computable in constant time in parallel.

In this work, we prove that multiplication of real num-
bers represented in real base� is on-line computable with a
certain delay explicitly computed.

Our algorithm can be applied to the particular case that� is an integer. With digit setf0; : : : ; �g, this is the Carry-
Save representation. The delay of our on-line multiplica-
tion algorithm in the Carry-Save representation is greater
than the delay of on-line multiplication in the signed-digit
representation, but the Carry-Save representation takes less
memory.

We then consider the Knuth complex number system,
which is composed of the base� = ipr, with r � 2 an in-
teger, and canonical digit setf0; : : : ; r�1g. Every complex
number has a representation in this system [12]. This allows
a unified treatment of the real and imaginary parts of a com-
plex number. We show that in the Knuth number system
with a signed-digit setf�a; : : : ; ag, with r=2 � a � r� 1,
multiplication is on-line computable. It is known that addi-
tion is computable in constant time in parallel, and is com-
putable by an on-line finite state automaton [7]. The case� = 2i together with the signed-digit setf�2; : : : ; 2g, has
been considered in [17, 16] with practical applications.

Other complex numeration systems have been consid-
ered. For instance the Penney complex number system con-
sists of the complex base� = �1 + i and the canonical
digit setf0; 1g. Every complex number is representable in
this system, and the representation is unique and finite for
the Gaussian integers [22]. It is shown in [25] that in base�1+ i with signed-digit setf�1; 0; 1gmultiplication is on-
line computable. The techniques are different from the ones
used in the Knuth number system.

2 Preliminaries

2.1 On-line computability

Let A andB be two finite digit sets, and denote byAN
the set of infinite sequences of elements ofA. Let' : AN ! BN(aj)j�1 7! (bj)j�1
The function' is said to beon-line computable with delayÆ if there exists a natural numberÆ such that, for eachj � 1
there exists a function�j : Aj+Æ ! B such thatbj =

1A Pisot number is an algebraic integer such that its algebraic conju-
gates are strictly less than1 in modulus. The golden ratio and the natural
integers are Pisot numbers.

�j(a1 � � � aj+Æ), whereAj+Æ denotes the set of sequences
of lengthj + Æ of elements ofA. This definition extends
readily to functions of several variables.

It is well known that some functions are not on-line com-
putable, like addition in the binary system with canonical
digit setf0; 1g. Addition is considered as a conversion�
from f0; 1; 2g to f0; 1g. Denote byv! the infinite concate-
nationvvv : : :, and byvn the wordv concatenatedn times.
Since�(01n20!) = 10! and�(01n0!) = 01n0! for anyn � 1, one sees that the most significant digit of the result
depends on the least significant digits of the input.

Recall that a distance� can be defined onAN as follows:
let v = (vj)j�1 andw = (wj)j�1 be inAN, �(v; w) = 2�r
wherer = minfj j vj 6= wjg if v 6= w, �(v; w) = 0
otherwise. The setAN is then a compact metric space.
This topology is equivalent to the product topology. Then
any function fromAN to BN which is on-line computable
with delayÆ is 2Æ-Lipschitz, and is thus uniformly continu-
ous [8].

LetD be a digit set. We say thatmultiplication is on-line
computable with delayÆ in base� on the digit setD if there
exists a function� : DN �DN ! DN((xj)j�1; (yj)j�1) 7! (pj)j�1
such thatXj�1 pj��j =Xj�1 xj��j �Xj�1 yj��j
which is on-line computable with delayÆ. Note thatapriori,
because of redundancy, the result of such a process is not
unique, but the algorithms we shall consider later on are
deterministic, and thus compute a function.

In the following, we will make the assumption that the
operands begin with a run ofÆ zeroes. This allows to ignore
the delay inside the computation.

2.2 Number representation

A survey on numeration systems can be found in [14,
Chapter 7]. LetD be a finite digit set of real or complex
digits and let� be a real or complex number such thatj�j >1. A �-representationof a real or complex numberx with
digits in D is a finite or a right infinite sequence(xj)j�n
with xj 2 D such thatx =P�1j=n xj�j . It is denoted by(xn � � �x0 � x�1x�2 � � � )� :

In this paper we consider only representations of the
form (xj)j�1 2 DN representing a numberx equal toPj�1 xj��j . When a representation ends with infinitely
many zeroes, it is said to befinite, and the zeroes are usu-
ally omitted.
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2.3 Signed-digit number system

The base is a positive integer� > 1. With a signed-digit
set of the formS = f�a; : : : ; ag, �=2 � a � � � 1 the
representation is redundant and addition can be performed
in constant time in parallel, and is computable by an on-line
finite automaton, [1, 4, 19].

2.4 Negative base numeration systems

Let the base be a negative integer� < �1. It is well
known (see [12, 13, 15]) that any real number can be repre-
sented without a sign in base� with digits from the canon-
ical digit setA = f0; : : : ; j�j � 1g. With a signed-digit set
of the formT = f�a; : : : ; ag, with j�j=2 � a � j�j�1 the
representation is redundant and addition can be performed
in constant time in parallel, and is computable by an on-line
finite automaton [7].

2.5 Representations in real base

Let � be a real number> 1, generally not an integer.
Any real numberx 2 [0; 1℄ can be represented in base� by
the following greedy algorithm, [23] : denote byb:
 and byf:g the integral part and the fractional part of a number. Letr0 = x and forj � 1 let xj = b�rj�1
 andrj = f�rj�1g.
Thusx = Pj�1 xj��j , where the digitsxj are elements
of the canonicaldigit setA� = f0; : : : ; b�
g if � =2 N,A� = f0; : : : ; � � 1g otherwise. The sequence(xj)j�1 ofAN� is called the�-expansionof x. When� is not an integer,
a numberx may have several different�-representations onA� : this system is naturally redundant. The�-expansion
obtained by the greedy algorithm is the greatest one in the
lexicographic order.

It is shown in [8] that addition in real base is on-line
computable. When the base is a Pisot number, addition is
computable by an on-line finite automaton.

2.6 Knuth number system

Here the base is a complex number of the form� = ipr,
wherer is an integer� 2. Any complex number is rep-
resentable in base� with digits in the canonical digit setA = f0; : : : ; r � 1g (see [12, 11, 9]). Ifr is a square then
every Gaussian integer has a unique finite representation of
the formak � � �a0 � a�1, ai 2 A.

Since�2 = �r, we havez =Xj�1 aj��j =Xk�1 a2k(�r)�k+iprXk�0 a2k+1(�r)�k�1:
Thus, <(z) = x =Xk�1 a2k(�r)�k

and =(z) = y = prXk�0 a2k+1(�r)�k�1:
So the �-representation ofz can be obtained by in-
tertwinning the(�r)-representation ofx and the(�r)-
representation ofy=pr.

Most studied cases are� = 2i andA = f0; : : : ; 3g,
strongly related to base�4, and� = ip2 andA = f0; 1g
([12, 13, 20, 17, 16]).

With a signed-digit set of the formR = f�a; : : : ; ag,r=2 � a � r � 1, addition is computable in constant time
in parallel, and is computable by an on-line finite state au-
tomaton [7].

3 On-line multiplication algorithm in integer
base

3.1 Classical on-line multiplication algorithm

First we recall the classical algorithm for on-line multi-
plication in the signed-digit number system, see [24, 5]. We
give our own presentation.

THEOREM 1 Multiplication of two numbers represented in
integer base� > 1 with digits inS = f�a; : : : ; ag, �=2 �a � ��1, is computable by an on-line algorithm with delayÆ, whereÆ is the smallest positive integer such that�2 + 2a2�Æ(� � 1) � a+ 12 : (1)

Proof. Denote byXj the partial sum
P1�i�j xi��i (and

respectivelyYj andPj ), and denote by round(z) the closest
integer toz
Classical on-line multiplication algorithm MSD.
Input: two sequencesx = (xj)j�1 andy = (yj)j�1 of SN
such thatx1 = � � � = xÆ = 0 andy1 = � � � = yÆ = 0.
Output: a sequencep = (pj)j�1 of SN such thatPj�1 pj��j =Pj�1 xj��j �Pj�1 yj��j :
begin
1. p1  0, . . . ,pÆ  0
2. WÆ  0
3. j  Æ + 1
4. while j � Æ + 1 do
5. Wj  �(Wj�1�pj�1)+yjXj+xjYj�1
6. pj  round(Wj)
7. j  j + 1
end

First let us prove by induction that for anyj � ÆWj��j = XjYj � Pj�1:
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By Line 5 of the algorithm,Wj��j = ��j+1(Wj�1 � pj�1) + ��j(yjXj + xjYj�1):
By induction hypothesis,Wj��j = Xj�1Yj�1 � Pj�2 ���j+1pj�1 + ��j(yjXj + xjYj�1), and the result follows
from the fact thatXj = Xj�1 + xj��j , and the similar
relations forYj andPj .

Thus at stepn � Æ, XnYn = ��nWn + Pn�1 =��n(Wn � pn) + Pn. SincejWn � pnj � 12 ,jXnYn � Pnj � ��n2
and the algorithm is convergent. The sequencep1 � � � pn is a�-representation of the most significant half of the productXnYn.

Now it remains to prove that the digitspj ’s computed in
Line 6 of the algorithm are in the digit setS. It is enough to
show thatjWj j � a+ 12 .
From Line 5 and the fact thatjXj j andjYj�1j are less thana�Æ(��1) follows thatjWj j < �2 + 2a2�Æ(� � 1) � a+ 12
by (1).

Note that additions and multiplications by a digit in Line
5 are performed in constant time in parallel.

COROLLARY 1 The delayÆ for AlgorithmMSD takes the
following values. If� = 2 anda = 1, Æ = 2. If � = 3 anda = 2, Æ = 2. If � = 2a � 4 thenÆ = 2. If � � 4 and ifa � b�=2
+ 1, Æ = 1.

3.2 On-line multiplication in negative base

Now we consider the case where the base is a negative
integer� < �1 and the digit set isT = f�a; : : : ; ag,j�j=2 � a � j�j � 1.

PROPOSITION1 Multiplication of two numbers repre-
sented in negative base� < �1 and digit setT =f�a; : : : ; ag, j�j=2 � a � j�j � 1, is computable by the
classical on-line algorithmMSD with delayÆ, whereÆ is
the smallest positive integer such thatj�j2 + 2a2j�jÆ(j�j � 1) � a+ 12 : (2)

Proof. At stepn � Æ of the algorithm we get thatXnYn �Pn = ��n(Wn � pn). SincejWn � pnj � 12 ,jXnYn � Pnj � j�j�n2 :

To show thatpj is inT , we have to show thatjWj j � a+ 12 .
From Line 5 and the fact thatjXj j andjYj�1j are less thanaj�jÆ(j�j�1) follows thatjWj j < j�j2 + 2a2j�jÆ(j�j � 1) � a+ 12
by (2).

4 On-line multiplication in real base

LetD = f0; : : : ; dg be a digit set containingA� , that is,d � b�
.
THEOREM 2 Multiplication of two numbers represented in
base� with digits inD is computable by an on-line algo-
rithm with delayÆ, whereÆ is the smallest positive integer
such that � + 2d2�Æ(� � 1) � d+ 1: (3)

Proof. Clearly a numberÆ satisfying (3) exists, becaused � b�
.
Real base on-line multiplication algorithmMR.
Input: two sequencesx = (xj)j�1 andy = (yj)j�1 of DN
such thatx1 = � � � = xÆ = 0 andy1 = � � � = yÆ = 0 2.
Output: a sequencep = (pj)j�1 of DN such thatPj�1 pj��j =Pj�1 xj��j �Pj�1 yj��j :
begin
1. p1  0, . . . ,pÆ  0
2. WÆ  0
3. j  Æ + 1
4. while j � Æ + 1 do
5. Wj  �(Wj�1�pj�1)+yjXj+xjYj�1
6. pj  bWj

7. j  j + 1
end

As above, at stepn � Æ, XnYn � Pn = ��n(Wn � pn).
Since0 �Wn � pn < 1 we get0 � XnYn � Pn < ��n
and the algorithm is convergent.

It remains to prove that thepj ’s are inD, i.e. 0 � pj � d.
It is enough to show thatWj < d+ 1. From Line 5 and the
fact thatXj andYj�1 are less than d�Æ(��1) follows thatWj < � + 2d2�Æ(� � 1) � d+ 1
by (3).

2This implies that
Pj�1 xj��j and

Pj�1 yj��j are in[0; 1℄.
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EXAMPLE 1 Let� = ' = (1+p5)=2 be the golden ratio.
Then the canonical digit set isA' = f0; 1g. Multiplica-
tion onA' is on-line computable with delayÆ = 5 by (3).
This delay does not seem to be optimal, we conjecture that4 is optimal. We give in Table 1 below the detail of a com-
putation withx = y = .0510101. The numerical value
of x is equal to'�5('�1 + '�3 + '�5). The result isp = .010101000100001. Computations are represented in
base', in a symbolic way.j (Wj)' pj

6 .000001 0
7 .00001 0
8 .0010001001 0
9 .010001001 0
10 .101000100001 0
11 1.01000100001 1
12 .1000100001 0
13 1.000100001 1
14 .00100001 0
15 .0100001 0
16 .100001 0
17 1.00001 1
18 .0001 0
19 .001 0
20 .01 0
21 .1 0
22 1.0 1
23 .0 0

Table 1. On-line multiplication in base ' with
delay 5

Note that the result is not the greedy�-expansion in
general. For instance withx = .0510100101010101 andy = .05010100101010101, AlgorithmMR gives the resultp = .01110100001100001010001001, which contains the
forbidden pattern11.

EXAMPLE 2 Let � = (3 + p5)=2 be the square of the
golden ratio. Then the canonical digit set isA� = f0; 1; 2g.
Multiplication onA� is on-line computable with delayÆ =3. This delay is optimal for our algorithm : suppose that
the delay2 is achievable, and takex = y = .002222.
The result given by AlgorithmMR would then bep =
.00010301011011which is not on the alphabetA� .

5 Carry-Saveversus Signed-Digit

In this section� is an integer> 1. TakeD = f0; : : : ; �g,
then the representation onD is redundant. We call it the
Carry-Save representation, because it is used in computer

arithmetic under that name in the case that� = 2 for inter-
nal additions in multipliers, see [18].

By the real base algorithmMR, multiplication in base
2 on f0; 1; 2g is on-line computable with delayÆ = 3.
This delay is optimal, as shown by the following exam-
ple. Suppose that the delay is 2, and takex = :00222 andy = :00212. The result computed by the algorithm would
be equal top = :0001301.

If � � 3, multiplication onD = f0; : : : ; �g is on-line
computable with the optimal delayÆ = 2.

Relation (3) is never satisfied for� integer andd = ��1,
which is not surprising because it is known that multiplica-
tion in integer base on the canonical digit set is not on-line
computable.

Internal additions and multiplications by a digit in Algo-
rithmMR can be performed in parallel when� is an integer.
This is well known when� = 2. We give below the algo-
rithm for addition in the general case.

PROPOSITION2 Addition in the Carry-Save representation
can be performed in constant time in parallel.

Proof. Input:xn�1 � � �x0 andyn�1 � � � y0 with xi andyi inD = f0; : : : ; �g for 0 � i � n� 1.
Output:sn � � � s0 with si in D such thatX0�i�n si�i = X0�i�n�1xi�i + X0�i�n�1 yi�i:
begin
1. In parallel for0 � i � n� 1 do
2. zi  xi + yi
3. if zi = 2� then f 
i+1  2; ri  0g
4. if zi = 2� � 1 then

if zi�1 � � thenf 
i+1  2; ri  �1g
elsef 
i+1  1; ri  � � 1g

5. if zi = 2� � k (2 � k � � � 1) thenf 
i+1  1; ri  � � kg
6. if zi = � then f 
i+1  1; ri  0g
7. if zi = � � 1 then

if zi�1 � � thenf 
i+1  1; ri  �1g
elsef 
i+1  0; ri  � � 1g

8. if 0 � zi � � � 2 thenf 
i+1  0; ri  zig
9. si  
i + ri
10. sn  
n
end

Clearly,X0�i�n si�i = X0�i�n�1xi�i + X0�i�n�1 yi�i:
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One has to prove that the digitssi’s are elements ofD.
Since�1 � ri � � � 1 and0 � 
i � 2 then�1 � si �� + 1. The casesi = �1 can happen only ifri = �1 and
i = 0, which is impossible.
The casesi = � + 1 can happen only ifri = � � 1 and
i = 2, which is impossible as well.

The delay for multiplication in the signed-digit represen-
tation is better than in the Carry-Save representation, but
note that the digit-set in the signed-digit representationhas
cardinality2a + 1, to be compared to card(D) = � + 1,
and the digits inD being nonnegative take less memory to
be stored.

6 On-line multiplication in the Knuth com-
plex number system

THEOREM 3 Multiplication of two complex numbers rep-
resented in base� = ipr, with r an integer� 2, and digit
setR = f�a; : : : ; ag, r=2 � a � r � 1, is computable by
an on-line algorithm with delayÆ, whereÆ is the smallest
odd integer such thatr2 + 4a2r Æ�12 (r � 1) � a+ 12 : (4)

Proof. On-line multiplication algorithm MC .
Input: two sequencesx = (xj)j�1 andy = (yj)j�1 of RN
such thatx1 = � � � = xÆ = 0 andy1 = � � � = yÆ = 0.
Output: a sequencep = (pj)j�1 of RN such thatPj�1 pj��j =Pj�1 xj��j �Pj�1 yj��j :
begin
1. p1  0, . . . ,pÆ  0
2. WÆ  0
3. j  Æ + 1
4. while j � Æ + 1 do
5. Wj  �(Wj�1�pj�1)+yjXj+xjYj�1
6. pj  sign (<(Wj))bj<(Wj)j+ 12

7. j  j + 1
end

The digitpj will belong toR if j<(Wj)j < a+ 12 . By Line
6, for all j, <(jWj � pj j) � 12 and=(Wj � pj) = =(Wj).
Thus, by Line 5,j<(Wj)j � prj=(Wj�1)j+ a(j<(Xj) + <(Yj�1)j
and j=(Wj)j � pr2 + a(j=(Xj) + =(Yj�1)j:
First suppose thatÆ is odd. Thenj<(Xj)j < ar Æ�12 (r � 1)

and j=(Xj)j < pr ar Æ+12 (r � 1)
and the same holds true forYj�1. Thusj<(Wj)j � r2 + 4a2r Æ�12 (r � 1) < a+ 12
by (4).

Suppose now that a better even delayÆ0 could be
achieved. Then j<(Xj)j < ar Æ02 (r � 1)
and j=(Xj)j < pr ar Æ02 (r � 1)
thus j<(Wj)j < r2 + 2a2(r + 1)r Æ02 (r � 1) :
This delay will work ifr2 + 2a2(r + 1)r Æ02 (r � 1) � a+ 12 : (5)

Suppose that the delay in (4) is of the formÆ = 2k + 1 and
the delay in (5) is of the formÆ0 = 2k0, and setC = (r � 1)(2a+ 1� r)4a2 :
Thenk is the smallest positive integer such thatk > log(2=C)log(r)
andk0 is the smallest positive integer such thatk0 > log((r + 1)=C)log(r)
and obviouslyk < k0.

Since forn � ÆXnYn � Pn = ��n(Wn � pn);j<(Wn � pn)j � 1=2
andj=(Wn � pn)j = j=(Wn)j � pr2 +pr 2a2r Æ+12 (r � 1)
the algorithm is convergent, andp1 � � � pn is a �-
representation of the most significant half ofXnYn.
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COROLLARY 2 The delayÆ for AlgorithmMC takes the fol-
lowing values. Ifr = 2 anda = 1, Æ = 7. If r = 8 or r = 9
anda = r � 1 thenÆ = 3. If r = 10 anda � 7 thenÆ = 3.
In the other cases, forr � 10 the delay isÆ = 5.

EXAMPLE 3 Let � = 2i and R = f�2;�1; 0; 1; 2g.
By Corollary 2 the delayÆ is equal to 5. Letx =
.051�20�1201 and y = .051�100121. The result isp =
.0101111�11�12�1�1 : : :.j (Wj)2i pj

6 .000001 0
7 .0001112 0
8 .001112 0
9 .01112�11 0
10 .11110000�12 0
11 1.1110120�2 1
12 1.11�11�12�1�1�1�121 1
13 1.1�11�12�1�1�1�121 1
14 1.�11�12�1�1�1�121 1
15 �1.1�12�1�1�1�121 �1
16 1.�12�1�1�1�121 1
17 �1.2�1�1�1�121 �1
18 2.�1�1�1�121 2
19 �1.�1�1�121 �1
20 �1.�1�121 �1

Table 2. On-line multiplication in base 2i with
delay 5
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