On-line multiplication in real and complex base
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Abstract

Multiplication of two numbers represented in basés
shown to be computable by an on-line algorithm wiien
is a negative integer, a positive non-integer real number, o
a complex number of the forin/r, wherer is a positive
integer.

1 Introduction

On-line arithmetic, introduced in [24], is a mode of com-
putation where operands and results flow through arithmetic
units in a digit serial manner, starting with the most signif
icant digit. To generate the first digit of the result, the
first digits of the operands are required. The integés
called thedelayof the algorithm. This technique allows the
pipelining of different operations such as addition, npliti
cation and division. It is also appropriate for the proaegsi
of real numbers having infinite expansions: itis well known
that when multiplying two real numbers, only the left part of
the result is significant. On-line arithmetic is used for-spe
cial circuits such as in signal processing, and for very long
precision arithmetic. One of the interests of on-line com-
putable functions is that they are continuous for the usual
topology on the set of infinite sequences on a finite digit
set.

To be able to perform on-line computation, it is neces-

sary to use a redundant number system, where a number

may have more than one representation (see [24, 5]). An

example of such a system is the so-called signed-digit num-

ber system. It is composed of an integer bdse 2 and a
signed-digit set of the fornj—a, . ..,a}, with 5/2 < a <

B — 1. In this sytem addition can be performed in constant
time in parallel [1, 4]. On-line multiplication is also féhke

[24, 5]. Parallel addition is used internally in the multipl
cation algorithm.
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On-line algorithms for addition, subtraction, multiplca
tion, division and square-root in integer base are well-stud
ied, see [2, 6, 19].

In this paper we study the multiplication in bagevhen
B is a negative integer, or a non-integer real number, or a
complex number of the form/r.

It is known that any real number can be represented in
negative integer base without a sign [12, 13, 15], and that,
with a signed-digit set, addition is computable in constant
time in parallel, and is computable by an on-line finite state
automaton [7]. We show that the on-line multiplication used
in the signed-digit number system can be applied in nega-
tive base. Negative base is related to some complex number
systems, see below.

When the bas¢ is a real number- 1, by the greedy
algorithm of Rényi [23], one can compute a representation
in bases of any real number belonging to the interj@l1],
called its3-expansionand where the digits are elements of
the canonical digit sefis {0,...,|B]} if B is not an
integer, or ofdg = {0,...,8 — 1} if §is an integer. In
such a representation, wh@nis not an integer, not all the
patterns of digits are allowed (see [21] for instance). For
instance in basg = (1 + /5)/2 the golden ratio, the-
expansion of the number = 3 — /5 is 1001000. ... The
pattern1l is forbidden. Different3-representations aof
are0111000. .., or 100(01)(01)(01) ... for instance. This
system is thus naturally redundant.

Representation of numbers in non-integer base is en-
countered for instance in coding theory, see [10], and in the
modelization of quasicrystals, see [3].

In [8] we have studied the problem of the conversion in
areal basg from a digit setD = {0, ..., d} withd > | 5]
to the canonical digit sed 3, without changing the numer-
ical value. Addition and multiplication by a fixed positive
integer are particular cases of digit set conversion. We hav
proved that the digit set conversion is on-line computable.



Moreover, if the basg is a Pisot numbéithis conversion is Qa1 ---ajys), where 4’19 denotes the set of sequences

realizable by an on-line finite automaton. This means thatin of lengthj + § of elements ofd. This definition extends

the Pisot case, digit set conversion needs only a finite stor-readily to functions of several variables.

age memory, independent of the size of the data. However, Itis well known that some functions are not on-line com-

addition is not computable in constant time in parallel. putable, like addition in the binary system with canonical
In this work, we prove that multiplication of real num- digit set{0,1}. Addition is considered as a conversign

bers represented in real bases on-line computable witha  from {0, 1,2} to {0, 1}. Denote by* the infinite concate-

certain delay explicitly computed. nationvovv .. ., and byv™ the wordv concatenated times.
Our algorithm can be applied to the particular case that Sincex(01"20%) = 10 and x(01™0«) = 01™0“ for any

B is an integer. With digit sef0, ..., 5}, thisis the Carry-  n > 1, one sees that the most significant digit of the result

Save representation. The delay of our on-line multiplica- depends on the least significant digits of the input.

tion algorithm in the Carry-Save representation is greater Recall that a distangecan be defined oA as follows:

than the delay of on-line multiplication in the signed-digi letv = (v;);>1 andw = (w;);>1 bein AN, p(v,w) = 27"

representation, but the Carry-Save representation takes | wherer = min{j | v; # w;} if v # w, p(v,w) = 0

memory. otherwise. The setl" is then a compact metric space.
We then consider the Knuth complex number system, This topology is equivalent to the product topology. Then
which is composed of the bage= i./r, withr > 2 anin- any function fromAN to BY which is on-line computable

teger, and canonical digit sd, ..., —1}. Every complex  with delayé is 29-Lipschitz, and is thus uniformly continu-

number has a representation in this system [12]. This allowsous [8].

a unified treatment of the real and imaginary parts ofacom-  Let D be a digit set. We say thatultiplication is on-line

plex number. We show that in the Knuth number system computable with delayin bases on the digit seD if there

with a signed-digit sef—a, ..., a}, withr/2 <a <r -1, exists a function

multiplication is on-line computable. It is known that addi N N N

tion is computable in constant time in parallel, and is com- p:D"x D" = D

putable by an on-line finite state automaton [7]. The case ((zj)j>1,(Y)i>1) = @)=

[ = 2i together with the signed-digit s¢t-2,...,2}, has

been considered in [17, 16] with practical applications.
Other complex numeration systems have been consid- —j —j —j

ered. For instance the Penney complex number system con- ijﬂ = Zx]ﬂ ’x Zy]ﬂ ’

sists of the complex bagg = —1 + i and the canonical

digit set{0, 1}. Every complex number is representable in which is on-line computable with delay Note thaiapriori,

this system, and the representation is unique and finite forbecause of redundancy, the result of such a process is not

the Gaussian integers [22]. It is shown in [25] that in base unique, but the algorithms we shall consider later on are

such that

i>1 i>1 i>1

—1+1 with signed-digit se{—1, 0, 1} multiplication is on- deterministic, and thus compute a function.
line computable. The techniques are differentfrom the ones In the following, we will make the assumption that the
used in the Knuth number system. operands begin with a run éfzeroes. This allows to ignore

the delay inside the computation.

2 Preliminaries .
2.2 Number representation

2.1 On-line computability A survey on numeration systems can be found in [14,
Chapter 7]. LetD be a finite digit set of real or complex
digits and lets be a real or complex number such thajt >

1. A g-representatiorof a real or complex numbaer with

o AN o BN digits in D is a finite or a right infinite sequende;), <,
with z; € D such that: = Y27 ;. Itis denoted by

Let A and B be two finite digit sets, and denote by
the set of infinite sequences of elementsiof_et

(aj)j>1 = (bj)j>1

The functiony is said to beon-line computable with delay (@020 -1z )s.

¢ if there exists a natural numbésuch that, for eacj > 1 In this paper we consider only representations of the
there exists a functio®; : 4/t — B such thath; = form (z;);>1 € DY representing a number equal to
5 i ith infini
1A Pisot number is an algebraic integer such that its algelanju- ZJ’ZI x]ﬂ ) \.N.hen a rePr.es.entatlon ends with infinitely
gates are strictly less thanin modulus. The golden ratio and the natural ~Many Zeroes, it is said to Hanite, and the zeroes are usu-
integers are Pisot numbers. ally omitted.




2.3 Signed-digit number system and
S(z) =y =vr Y asea(-r) F
The base is a positive integér> 1. With a signed-digit k>0
set of the formS = {—a,...,a}, f/2 < a < g —1the
representation is redundant and addition can be performe
in constant time in parallel, and is computable by an on-line
finite automaton, [1, 4, 19].

qSo the p-representation ofz can be obtained by in-
ertwinning the (—r)-representation of: and the (—r)-
representation of / /7.

Most studied cases ar¢ = 2i andA = {0,...,3},
strongly related to base4, and$ = iv/2 andA = {0, 1}
([12, 13, 20, 17, 16)).

With a signed-digit set of the forl® = {—a,...,a},

r/2 < a < r — 1, addition is computable in constant time
in parallel, and is computable by an on-line finite state au-
tomaton [7].

2.4 Negative base numeration systems

Let the base be a negative integer< —1. It is well
known (see [12, 13, 15]) that any real number can be repre-
sented without a sign in bagewith digits from the canon-
ical digit setA = {0,...,|5| — 1}. With a signed-digit set
ofthe formT = {—a,...,a}, with|3|/2 < a < |B|—1the ) o ) o
representation is redundant and addition can be performed On-line multiplication algorithm in integer
in constant time in parallel, and is computable by an on-line base
finite automaton [7].

_ _ 3.1 Classical on-line multiplication algorithm
2.5 Representations in real base

First we recall the classical algorithm for on-line multi-
plication in the signed-digit number system, see [24, 5]. We
give our own presentation.

Let 8 be a real number 1, generally not an integer.
Any real numbet: € [0, 1] can be represented in basdéy
the following greedy algorithm, [23] : denote by and by
{.} the integral part and the fractional part of a number. Let THEOREM 1 Multiplication of two numbers represented in
ro =z andforj > 1letz; = frj_i| andrj = {Arj—1}.  nteger bases > 1 with digits inS = {—a,...,a}, 3/2 <
Thusz = 5, z;67/, where the digits;; are elements "3 1 js computable by an on-line algorithm with delay

of the canonicaldigit setABI =10,...,|8]}if B ¢ N, 5. wheres is the smallest positive integer such that
Ag ={0,...,3 — 1} otherwise. The sequen¢e;),>; of

AE is called thes-expansiorof z. Wheng is not an integer, B 22 1
h | diff i Sty Saets- 1)
a number: may have several differefitrepresentations on 2 T BB -1 2
Ap: this system is naturally redundant. THeexpansion
obtained by the greedy algorithm is the greatest one in thepygof. Denote byX; the partial sund, z;3~% (and

lexicographic order. - _ ~ respectivelyY; andP;), and denote by round) the closest
It is shown in [8] that addition in real base is on-line jnteger toz

computable. When the base is a Pisot number, addition is

computable by an on-line finite automaton. Classical on-line multiplication algorithm Mgp.
Input: two sequences = (z;);>1 andy = (y;);j>1 of SN
2.6 Knuth number system suchthatr, = --- =z5 =0andy, =---=y; = 0.
Output: a sequence = (p;);>1 of SN such that

Here the base is a complex number of the f@rms iy/r, ~ 2j>1PiB™) = 2551 @B X Xjny yiB ™7
wherer is an integer> 2. Any complex number is rep-  begin

resentable in basg with digits in the canonical digit set 1. pr<0,...,p5 <0

A=1{0,...,r—1} (see [12, 11, 9]). I is a square then 2. Ws + 0

every Gaussian integer has a unique finite representation 08. j«<d+1

the formayg - - -ag - a_1, a; € A. 4, while j > 6 + 1 do

Sinces? = —r, we have 5. Wi« B(Wi—1—pj—1)+y; X +x;Y;1

) 6. pj < roundW;)

2= aif T =) an(—r) FHiVr Y asp(-r)F 7, jej+1

jz1 k>1 k>0 end

Thus, First let us prove by induction that for agy> §

R(z)=x= agp(—r) " ,



By Line 5 of the algorithm,

ﬁ ]_B j—H( j—1 — Pj— 1)+ﬁ

By induction hypothesisiy’; 5~ I =X;1Yj_1 — Pj_y —
B~ p;_1 + B (y; X; + ;Y;_1), and the result follows
from the fact thatX; = X;_; + «;877, and the similar
relations forY; andP;.

Thus at stepn > §, X,,Y, = 7"W, + P,_1 =
B_n(Wn _pn) + Py. Since|Wn _pn| < 1

(ijj + ZL’jyj',l).

and the algorithm is convergent. The sequence - p,, is a

To show thap; is in T', we have to show thal¥;| < a+ %
From Line 5 and the fact thaX ;| and|Y;_,| are less than
W follows that

b, e
EHCED R

by (2). .

Wl <

4 On-line multiplication in real base

LetD = {0,...,
d > |5].

d} be a digit set containing, that is,

B-representation of the most significant half of the product THeorem2 Multiplication of two numbers represented in

X, Y.
Now it remains to prove that the digitg's computed in

Line 6 of the algorithm are in the digit sét It is enough to

show thatiV;| < a + 3.

From Line 5 and the fact thak ;| and|Y;_,| are less than
(B ) follows that

B 2a> 1
. 2L <«
|Wj|<2+ﬁ6(ﬁ_ a+

n-=""2
by (1). n

Note that additions and multiplications by a digitin Line

5 are performed in constant time in parallel.

COROLLARY 1 The delays for Algorithm Msp takes the
following values. If3 = 2anda = 1,5 = 2. If § = 3 and
a=2,6=2.1f3=2a>4thend = 2. If 3 > 4 and if
a>|p/2]+1,6=1.

3.2 On-line multiplication in negative base

Now we consider the case where the base is a negatlve7'

integer8 < —1 and the digit set i¥" =
1Bl/2<a<|B] -1

{=a,...,a},

PROPOSITION1 Multiplication of two numbers repre-
sented in negative basé < -1 and digit setT =
{—a,...,a}, |B|/2 < a < |B] — 1, is computable by the
classical on-line algorithm\/sp with delayd, whereé is
the smallest positive integer such that

|[3| 2a? 1
+—=——-<a+-. 2
iBedsl-1) = 2
Proof. At stepn > ¢ of the algorithm we get thaX,,Y,, —
P, = B~(W,, — pp). Since|W,, — p,| < &,
| XY, — Pl < W'

baseg with digits in D is computable by an on-line algo-
rithm with delayd, whered is the smallest positive integer

such that
pa 2 gy 3)
BB-1) ~ '

Proof. Clearly a numbep satisfying (3) exists, because
d > |5].

Real base on-line multiplication algorithm Mg.
Input: two sequences = (z;);>1 andy = (y;)j>1 of DN

suchthat; =---=xs=0andy, =---=ys =072
Output: a sequence = (p;)j>1 of DN such that
ZjZI pif~ = EJ>1 xi B % Z]>1 Yy
begin
1. p1<—0,...,p5<—0
2 Ws <0
3. jo+1
4, while j > § + 1 do
5. W; <_6( j—1—Pj— 1)+ij +a;Y;
6. «— ;]
jej+1
end
As above, at step > ¢, X,,Y,, — P, = 7"(W,, — pn).
Since0 < W,, — p, < 1 we get

0< XY, —P,<p™

and the algorithm is convergent.
Itremainsto prove thatthg's areinD,i.e.0 < p; < d.
Itis enough to show thdl’; < d + 1. From Line 5 and the

fact thatX; andY;_, are Iess thaW follows that

2 2
BB —1)
by (3). -

W; <+ <d+1

“This implies thaty~ ;5 , «; 6~/ and}_ ;5 y; 877 arein[0,1].



EXAMPLE 1 Lets = ¢ = (1+1/5)/2 be the golden ratio.

Then the canonical digit set id, = {0,1}. Multiplica-

tion on A, is on-line computable with delay = 5 by (3).

arithmetic under that name in the case that 2 for inter-
nal additions in multipliers, see [18].
By the real base algorithm/r, multiplication in base

This delay does not seem to be optimal, we conjecture tha2 on {0,1,2} is on-line computable with delay = 3.
4 is optimal. We give in Table 1 below the detail of a com- This delay is optimal, as shown by the following exam-

putation withz = y = .0°10101. The numerical value
The result is
p = .01°101000100001. Computations are represented in

of z is equal top >(p™t + 2 + p°).

basey, in a symbolic way.

J UHk pj
6 .000001 0
7 .00001 0
8 0010001001 0
9 010001001 0
10| .101000100001 | O
11 | 1.01000100001 1
12| .1000100001 0
13 | 1.000100001 1
14| .00100001 0
15| .0100001 0
16 | .100001 0
17 | 1.00001 1
18 | .0001 0
19| .001 0
20| .01 0
21| 1 0
22110 1
23| .0 0

Table 1. On-line multiplication in base
delay 5

Note that the result is not the greeditexpansion in
general. For instance witlv = .0°10100101010101 and
y = .0°010100101010101, Algorithm My, gives the result
p = .01110100001100001010001001, which contains the

forbidden patterril.

EXAMPLE 2 Let 8 = (3 + v/5)/2 be the square of the

© with

goldenratio. Then the canonical digit setdg = {0, 1, 2}.
Multiplication on Az is on-line computable with delay=

3. This delay is optimal for our algorithm : suppose that

the delay2 is achievable, and take = y = .002222.
The result given by Algorithmd/r would then bep =

.00010301011011 which is not on the alphabets.

5 Carry-Saveversus Signed-Digit

ple. Suppose that the delay is 2, and take- .00222 and
y = .00212. The result computed by the algorithm would
be equal tgp = .0001301.

If 5 > 3, multiplication onD = {0, ...
computable with the optimal delay= 2.

Relation (3) is never satisfied f@rinteger andl = f—1,
which is not surprising because it is known that multiplica-
tion in integer base on the canonical digit set is not on-line
computable.

Internal additions and multiplications by a digit in Algo-
rithm Mg can be performed in parallel wheris an integer.
This is well known whers = 2. We give below the algo-
rithm for addition in the general case.

,B} is on-line

PROPOSITION2 Addition in the Carry-Save representation
can be performed in constant time in parallel.

Proof. Input:x,,_1 ---xo andy,,_1 - - - yo with x; andy; in
D={0,...,8}for0<i<n-1.
Output:s,, - - - sg With s; in D such that

YosiBi= > @B+ Y ub

0<i<n 0<i<n—1 0<i<n—1
begin
1. In parallel ford0 <i <n —1do
2. Zi & T Ty
3. if z; = 2/ then { Cit1 2,1 +— 0}
4 if z; =28 — 1then

if z;_1 > [ then
{ Cit+1 2,1 —1}
else{ ciy1 < 1;7r; « B —1}
5. if 2, =20 —-k(2<k<p—1)then
{civ1 < Liri < B -k}
if 2 = ﬁthen { Cit1 1;r; < 0}
if z; = 8 — 1then
if Zi—1 > B then
{Ci+1 — 1;r; « —1}
else{cit1 <« 0;r; < B —1}

8. if 0 <z <pB—2then
{ Cit1 < 0; r; < zz}
9. S ¢Ci+ g
10. Sn < Cp
end
Clearly,

In this sections is an integer> 1. TakeD = {0, ..., 3},
then the representation ab is redundant. We call it the
Carry-Save representation, because it is used in computer

2

0<i<n

sif' =

o@D wb

0<i<n—1 0<i<n—1



One has to prove that the digiigs are elements ab.
Since—1<r;, <fB—1land0 <¢; <2then—-1<s; <
B + 1. The cases; = —1 can happen only if; = —1 and
¢; = 0, which is impossible.

The cases; = § + 1 can happen only if; = 5 — 1 and
¢; = 2, which is impossible as well. [

The delay for multiplication in the signed-digit represen-

and
a

%Xj 7'7”1
SOOI < Vs

and the same holds true fB§_;. Thus

4a? 1
+ —— <a+ <

IR(W;)| < m 5

N3

tation is better than in the Carry-Save representation, butby (4).

note that the digit-set in the signed-digit representalias
cardinality2a + 1, to be compared to caf®) = 8 + 1,

and the digits inD being nonnegative take less memory to

be stored.

6 On-line multiplication in the Knuth com-
plex number system

THEOREM 3 Multiplication of two complex numbers rep-

resented in basg = iy/r, withr an integer> 2, and digit
setR = {—a,...,a},r/2 < a < r — 1, is computable by
an on-line algorithm with delay, where¢ is the smallest
odd integer such that

4a?
b <a+

T(FTI(T’ -1) )

N3
N | =

Proof. On-line multiplication algorithm Mc¢.
Input: two sequences = (z;);>1 andy = (y;);>1 of RN

suchthaty =---=xs =0andy; =--- =y = 0.
Output: a sequence = (p;)j>1 of RN such that
ijl P’ = 2]21 T X 2]21 yiB7.

begin

1. p1<—0,...,p5<—0

2. Ws + 0

3. j—o+1

4, while j > 6 + 1 do

5. W; B(ijl —pjfl)—f—ijj +x;Y;,
6. p; + sign (R(W;)[[R(W))] + 1]

7. j+—j+1

end

The digitp; will belong to R if [R(W;)| < a + 3. By Line
6, for all j, R(|W; — p;|) < 5 and(W; — p;) = I(W;).
Thus, by Line 5,

IRV < VrIS(Wj—1)| + a(|R(X;) + R(Yj-1)]
and
S < ¥ +a(30X) + 30501
First suppose thaktis odd. Then

IR(X;)| < m

Suppose now that a better even delély could be
achieved. Then

a
[R(XH)| < —
! rE(r—1)
and
IS(X5) < vVr—
rz(r—1)
thus 2 )
r  2a°(r+1
RW)| < z 4+ ———.
ROV <5+ 7
This delay will work if
r 2a%(r+1) 1
st+t———<a+3. (5)
2 rE(r-1) 2

Suppose that the delay in (4) is of the fodm= 2k + 1 and
the delay in (5) is of the form’ = 2k’, and set

r—1)(2a+1-r7)
4a?

ot

Thenk is the smallest positive integer such that

L < 10g(2/0)
log(r)
andk’ is the smallest positive integer such that
W s los((r +1)/0)
log(r)

and obviouslyk < k'
Since forn > ¢

XnYn - Pn = ﬁin(Wn _pn),
and
2a?

+Vr—g

|3( po)l = [S(Wy)] D)

ol

the algorithm is convergent, ang,---p, is a -
representation of the most significant halfxfY,. [



COROLLARY 2 The delay for Algorithm M takes the fol-
lowing values. Iff =2anda=1,6 =7.Ifr=8o0rr=9
anda = r — 1thend = 3. If r = 10 anda > 7 thend = 3.
In the other cases, far < 10 the delay isf = 5.

ExampLE 3 Let 4 = 2i and R = {-2,-1,0,1,2}.
By Corollary 2 the delayd is equal to 5. Letzr =
.0°1201201 and y = .0°1100121. The result isp =
0101111711211, ..

J (W;)2i
6 .000001

7 .0001112
8

9

001112

0111211

.1111000012
1.11101202
1.111112111121
1.11112111121
11112111121

»—u»—uwn—\n—\»—u»—t»—\»—\l—\oooooﬁ

Table 2. On-line multiplication in base  2i with

delay 5
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