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Abstract—In 1961 Avizienis proposed a parallel algorithm for
addition in base 10 with digit set A = {−6,−5, . . . , 5, 6}. Such
an algorithm performs addition in constant time, independently
of the length of the representation of the summands. In computer
arithmetic parallel addition is used for speeding up multiplication

and division algorithms. In this work we consider number
systems where the base is a complex number β such that |β| > 1.
We show that we can find a set of signed-digits on which addition
is realizable by a parallel algorithm if and only if β is an algebraic
number with no conjugate of modulus 1. We then address the
question of the size of the digit set that permits parallel addition.
We also investigate block parallel addition.

I. INTRODUCTION

A positional number system is given by a base and by a

set of digits. The base is a real or complex number β such

that |β| > 1, and the digit set A is a finite alphabet of real

or complex digits. The most studied number systems are of

course the usual ones, where the base is a positive integer. But

there have been also numerous studies where the base is an

irrational real number (the so-called β-expansions), a complex

number, or a non-integer rational number, etc. Some surveys

can be found in [14, Chapter 7] and [10, Chapter 2].

Since the beginnings of computer science, the fact that

addition of two numbers has a worst-case linear-time com-

plexity has been considered as an important drawback (see,

in particular, the seminal paper of Burks, Goldstine and von

Neumann [2]). Suppose that two numbers x and y are given

by their expansion x = •x1x2 · · · and y = •y1y2 · · · in

a given base β, and the digits xj ’s and yj’s are elements

of a digit set A. A parallel algorithm to compute their sum

z = x+y = •z1z2 · · · with zj ∈ A exists when the digit zj can

be determined by the examination of a window of fixed length

around the digit (xj + yj). This avoids carry propagation.

Parallel addition has received a lot of attention, because the

complexity of the addition of two numbers becomes constant,

and so it is used for internal addition in multiplication and

division algorithms, see [5] for instance.

In symbolic dynamics, functions computable in parallel are

called sliding block codes or local function, more precisely p-

local, which means that to determine the image of a word by

a p-local function, it is enough to consider a sliding window

of length p of the input.

A parallel algorithm for addition has been given by Avizie-

nis [1] in 1961: numbers are represented in base β = 10 with

digits from the set A = {−6,−5, . . . , 5, 6}. This algorithm

has been generalized to any integer base β > 3. The case

β = 2 and alphabet A = {−1, 0, 1} has been elaborated

by Chow and Robertson [4] in 1978. Notice that Cauchy [3]

already considered the representation in base 10 and alphabet

{−5, . . . , 5}. All these systems are redundant, that is to say,

some numbers may have several representations. It is known

that the cardinality of an alphabet allowing parallel addition

in integer base β > 2 must be at least equal to β+1, see [15].

Amongst the non-standard bases, special attention has been

paid to the complex ones, which allow to represent any

complex number by a single sequence (finite or infinite) of

natural digits, without separating the real and the imaginary

part. For instance, it is known that every complex number can

be expressed with base −1 + ı and digit set {0, 1}, [17]. The

case of a non-integer positive real number is the most studied

one: it is the theory of so-called β-expansions, and it provides

strong mathematical tools, that we have extensively used.

In this paper we consider only digit sets that are finite and

formed by contiguous integers. The existence of a parallel

addition algorithm in base β implies thus that β must be

an algebraic number, i.e., satisfies an equation with integer

coefficients. First we give a simple algorithm for parallel

addition, Algorithm S, which works whenever the base is an

algebraic number with no conjugate of modulus 1. We then

show that parallel addition is never possible when the base has

an algebraic conjugate of modulus 1. The digit set provided

by Algorithm S is in general larger than necessary, so we try

to find the smallest possible one. We give lower bounds on

the minimal size, and we give addition algorithms for popular

number systems. We then address the generalization of block

parallel addiction, and show that in some cases, it reduces the

size of the addition digit set.

This presentation is based on our three papers [8], [9], [7]

where the proofs can be found.

II. PRELIMINARIES

A. Number systems

A positional number system (β,A) within the complex field

C is defined by a base β, which is a complex number such that



|β| > 1, and a digit set A usually called the alphabet, which

is a subset of C. If a complex number x can be expressed in

the form
∑

−∞6j6n xjβ
j with coefficients xj in A, we call

the sequence (xj)−∞6j6n a (β,A)-representation of x and

note x = xnxn−1 · · ·x0 • x−1x−2 · · · .

In what follows, A is a finite set of contiguous integers

containing 0. If a (β,A)-representation of x has only finitely

many non-zero entries, we say that it is finite and the trailing

zeroes are omitted.

In analogy with the classical algorithms for arithmetical

operations, we work only on the set of numbers with finite

representations, i.e., on the set

FinA(β) =
{

∑

j∈I

xjβ
j | I ⊂ Z, I finite, xj ∈ A

}

.

Such a finite sequence (xj)j∈I of elements of A is identified

with a bi-infinite string (xj)j∈Z in AZ, where only a finite

number of digits xj have non-zero values.

When the base is a positive real number, the domain has

been extensively studied. The best-understood case is the one

of representations of real numbers in a non-integer base β > 1,

the so-called greedy expansions, introduced by Rényi [18].

Every number x ∈ [0, 1] can be given a β-expansion by the

following greedy algorithm:

r0 := x; for j > 1 put xj := ⌊βrj−1⌋ and rj := βrj−1−xj .

Then x =
∑

j>1 xjβ
−j , and the digits xj are elements of

the so-called canonical alphabet Cβ = {0, 1, . . . , ⌈β⌉ − 1}.

For x ∈ [0, 1), the sequence (xj)j>1 is said to be the Rényi

expansion or the β-greedy expansion of x and denoted 〈x〉β .

The greedy algorithm applied to the number 1 gives the

β-expansion of 1, denoted by dβ(1) = (tj)j>1, and plays

a special role in this theory. A number β > 1 such that

dβ(1) is eventually periodic, that is to say, of the form

t1 · · · tm(tm+1 · · · tm+p)
ω is called a Parry number. If dβ(1)

is finite, dβ(1) = t1 · · · tm, β is a simple Parry number, [16].

B. Parallel addition

Let us first formalize the notion of parallel addition.

Definition 1. A function ϕ : AZ → BZ is said to be p-local

if there exist two non-negative integers r and t satisfying p =
r + t + 1, and a function Φ : Ap → B such that, for any

u = (uj)j∈Z ∈ AZ and its image v = ϕ(u) = (vj)j∈Z ∈ BZ,

we have vj = Φ(uj+t · · ·uj−r) for every j in Z.

This means that the image of u by ϕ is obtained through

a sliding window of length p. The parameter r is called the

memory and the parameter t is called the anticipation of the

function ϕ. Such functions, restricted to finite sequences, are

computable by a parallel algorithm in constant time.

Definition 2. Given a base β with |β| > 1 and two alphabets

A and B containing 0, a digit set conversion in base β from

A to B is a function ϕ : AZ → BZ such that

1) for any u = (uj)j∈Z ∈ AZ with a finite number of non-

zero digits, the image v = (vj)j∈Z = ϕ(u) ∈ BZ has

only a finite number of non-zero digits as well, and

2)
∑

j∈Z

vjβ
j =

∑

j∈Z

ujβ
j .

Such a conversion is said to be computable in parallel if it is

a p-local function for some p ∈ N.

Thus, addition in FinA(β) is computable in parallel if there

exists a digit set conversion in base β from A+A to A which

is computable in parallel.

In [13], Kornerup suggested a more general concept of

parallel addition. Instead of manipulating single digits, one

works with blocks of digits with fixed block length k. For the

precise description of the Kornerup’s idea, we introduce the

notation

A(k) = {a0 + a1β + · · ·+ ak−1β
k−1 | ai ∈ A} ,

where A is an alphabet and k a positive integer. Clearly,

A(1) = A.

Definition 3. Given a base β with |β| > 1 and two alphabets

A and B containing 0, a digit set conversion in base β from

A to B is said to be block parallel computable if there exists

some k ∈ N such that the digit set conversion in base βk from

A(k) to B(k) is computable in parallel. When the specification

of k is needed, we say k-block parallel computable.

In this terminology, the original parallel addition is 1-block

parallel addition.

Remark 4. Suppose that the base is an integer β with |β| > 2.

It is known that parallel addition is possible on an alphabet of

cardinality at least β+1 (see [15] and [9]). But k-block parallel

addition on an alphabet A is just 1-block parallel addition in

integer base βk on A(k). Thus k-block parallel addition in

integer base β is possible on an alphabet A such that #A(k) >

βk + 1. This shows that k-block parallel addition with k > 2
does not allow the use of a smaller alphabet than when k = 1.

III. EXISTENCE OF A PARALLEL ALGORITHM FOR

ADDITION

To be self-contained, we recall the classical algorithms for

parallel addition of Avizienis [1], and of Chow and Robert-

son [4].

Algorithm of Avizienis: Base β = b, b > 3 integer, parallel

addition on alphabet A = {−a, . . . , 0, . . . , a}, b/2 < a 6

b− 1.

Input: two words xn · · ·xm and yn · · · ym of A∗, with m 6 n,

x =
∑n

j=m xjβ
j and y =

∑n

j=m yjβ
j .

Output: a word zn+1 · · · zm of A∗ such that

z = x+ y =

n+1
∑

j=m

zjβ
j .

for each j in parallel do

zj := xj + yj
if zj > a then qj := 1, rj := zj − b
if zj 6 −a then qj := −1, rj := zj + b



if −a+ 1 6 zj 6 a− 1 then qj := 0, rj := zj
zj := qj−1 + rj

Addition realized by the Avizienis algorithm is a 2-local

function, with memory 1 and anticipation 0. Notice that the

minimally redundant symmetric alphabet is obtained with the

value a = ⌈ b+1
2 ⌉.

The Chow and Robertson algorithm works for base 2 and

alphabet {−1, 0, 1}. We give here a generalization to an even

base β = b = 2a, A = {−a, . . . , 0, . . . , a}.

Algorithm of Chow and Robertson: Base β = b = 2a, a > 1
integer, parallel addition on alphabet A = {−a, . . . , 0, . . . , a}.

Input: two words xn · · ·xm and yn · · · ym of A∗, with m 6 n,

x =
∑n

j=m xjβ
j and y =

∑n
j=m yjβ

j .

Output: a word zn+1 · · · zm of A∗ such that

z = x+ y =

n+1
∑

j=m

zjβ
j .

for each j in parallel do

zj := xj + yj
if a+ 1 6 zj 6 b then qj := 1, rj := zj − b
if −b 6 zj 6 −a− 1 then qj := −1, rj := zj + b
if −a+ 1 6 zj 6 a− 1 then qj := 0, rj := zj
if zj = a and zj−1 > 0 then qj := 1, rj := −a
if zj = a and zj−1 6 0 then qj := 0, rj := a
if zj = −a and zj−1 < 0 then qj := −1, rj := a
if zj = −a and zj−1 > 0 then qj := 0, rj := −a
zj := qj−1 + rj

Addition realized by the Chow and Robertson algorithm is

a 3-local function, with memory 2 and anticipation 0.

The main difference between the two algorithms is that the

Avizienis algorithm is neighbour-free, while the Chow and

Robertson algorithm is neighbour-sensitive, since the decision

taken at position j depends also on the digit at position j− 1.

The alphabets we use are formed by contiguous integers

and contain 0. This restriction already forces the base β to be

an algebraic number.

Definition 5. Let β be an algebraic number such that |β| >
1. We say that β satisfies the strong representation of zero

property (or, for short, that β is SRZ) if there exist integers

bk, . . . , b0, . . . , b−h, for some non-negative integers h and k,

such that β is a root of the polynomial

S(X) = bkX
k + · · ·+ b0 + · · ·+ b−hX

−h

and

b0 > 2
∑

i∈{−h,...,k}\{0}
|bi| .

The polynomial S is a said to be a strong polynomial for β.

If β is SRZ, then the word bk · · · b0 · · · b−h is a β-

representation of zero.

Set B = b0 and M =
∑

i∈{−h,...,k}\{0}
|bi| . The inequality

from Definition 5 now reads

B > 2M .

Suppose that β is SRZ. We choose the symmetric alphabet

A = {−a, . . . , 0, . . . , a}, where a =
⌈

B−1
2

⌉

+
⌈

B−1
2(B−2M)

⌉

M .

For this fixed alphabet A, we describe a parallel algorithm for

addition in base β. Let us denote

c =
⌈

B−1
2(B−2M)

⌉

and a′ =
⌈

B−1
2

⌉

.

Then a = a′+cM . The alphabet A′ = {−a′, . . . , 0, . . . , a′} ⊂
A is called the inner alphabet.

Algorithm S: Parallel addition for base β with the strong

representation of zero property (β is SRZ).

Input: two words xn · · ·xm and yn · · · ym of A∗, with m 6 n,

x =
∑n

j=m xjβ
j and y =

∑n
j=m yjβ

j .

Output: a word zn+k · · · zm−h of A∗ such that

z = x+ y =

n+k
∑

j=m−h

zjβ
j .

for each j in parallel do

zj := xj + yj
find qj ∈ {−c, . . . , 0, . . . , c} such that zj − qjB ∈ A′

zj := zj −
k
∑

i=−h

qj−ibi

Proposition 6 ([8]). Suppose that β is SRZ. Then Algorithm S

realizes addition in constant time in parallel in FinA(β) with

A = {−a, . . . , 0, . . . , a}, where a =
⌈

B−1
2

⌉

+
⌈

B−1
2(B−2M)

⌉

M .

Addition realized by Algorithm S is a (h+k+1)-local function

with memory k and anticipation h. Algorithm S is neighbour-

free.

Example 7. Consider base β = 10. It is SRZ for the

polynomial −X + 10, where B = 10 and M = 1. In this

case

c =
⌈

9
16

⌉

= 1, a′ =
⌈

9
2

⌉

= 5, and a = 6 .

Therefore, Algorithm S provides parallel addition in the deci-

mal number system on alphabet A = {−6, . . . , 0, . . . , 6}, and

in fact it is precisely the algorithm of Avizienis.

Example 8. Consider base β = 2. For such a base, −X+2 is

not a strong polynomial. Nevertheless, this base satisfies also

the polynomial −X2 + 4 = 0, which is strong, with B = 4
and M = 1. Now we have

c =
⌈

3
4

⌉

= 1, a′ =
⌈

3
2

⌉

= 2, and a = 3 .

So Algorithm S works for base 2 with the alphabet

{−3, . . . , 0, . . . , 3}, and is 3-local. Remind that the Chow and



Robertson algorithm is 3-local as well, but it works with the

smaller alphabet {−1, 0, 1}.

Example 9. Let us consider the base β = 1+
√
5

2 , the Golden

Mean. It is one root of the equation X2 = X + 1, the second

root is β′ = 1−
√
5

2 = − 1
β

. Since β4 + (β′)4 = 7, β is a root

of the strong polynomial

S(X) = −X4 + 7− 1
X4

with B = 7 and M = 2. This implies c = 1, a′ = 3, and

a = 5. Thus addition in the Golden Mean base is a 9-local

function on A = {−5, . . . , 0, . . . , 5}.

The alphabet A provided by Algorithm S is in general larger

than necessary, as shown by Example 8. So we introduce

another notion.

Definition 10. Let β be an algebraic number such that

|β| > 1. We say that β satisfies the weak representation of zero

property (or, for short, that β is WRZ) if there exist integers

bk, . . . , b0, . . . , b−h, for some non-negative integers h and k,

such that β is a root of the polynomial

W (X) = bkX
k + · · ·+ b0 + · · ·+ b−hX

−h

and

b0 >
∑

i∈{−h,...,k}\{0}
|bi| .

The polynomial W is said to be a weak polynomial for β.

When β is WRZ, we can describe a parallel algorithm

for addition. Let us put as above B = b0 and M =
∑

i∈{−h,...,k}\{0} |bi|, and let

A = {−a, . . . , 0, . . . , a}, where a =
⌈

B−1
2

⌉

+M .

Similarly to Algorithm S, the inner alphabet is A′ =
{−a′, . . . , 0, . . . , a′} with a′ = ⌈B−1

2 ⌉. The algorithm works

in

s+ 1 steps, where s =
⌈

a
B−M

⌉

.

Algorithm W: Parallel addition for base β with the weak

representation of zero property (β is WRZ).

Input: two words xn · · ·xm and yn · · · ym of A∗, with m 6 n,

x =
∑n

j=m xjβ
j and y =

∑n

j=m yjβ
j .

Output: a word zn+ks · · · zm−hs of A∗ such that

z = x+ y =
n+ks
∑

j=m−hs

zjβ
j .

for each j in parallel do

zj := xj + yj
for ℓ := 1 to s do

if zj ∈ A′ then qj := 0 else qj := sgn zj
zj := zj −

∑k
i=−h qj−ibi

Proposition 11 ([8]). Suppose that β is WRZ. Then Al-

gorithm W realizes addition in constant time in parallel

in FinA(β) with alphabet A = {−a, . . . , 0, . . . , a}, where

a =
⌈

B−1
2

⌉

+ M . Addition realized by Algorithm W is a

(hs+ks+1)-local function with memory ks and anticipation

hs. Algorithm W is neighbour-free.

Example 12. The base β = 1+
√
5

2 is a root of the weak

polynomial

W (X) = −X2 + 3− 1

X2
.

By Algorithm W addition is a 13-local function on A =
{−3, . . . , 0, . . . , 3}.

In [8] we have proved the following result.

Theorem 13. Let β with |β| > 1 be an algebraic number.

Then β is SRZ (or WRZ) if and only if it has no conjugate of

modulus 1.

The proof of the previous statement gives a constructive

method for finding a suitable strong (or weak) polynomial.

The following proposition shows that the requirement of

having no conjugate of modulus 1 is also necessary and, even

more, that the generalization of parallelism via working with

k-blocks does not change the situation.

Proposition 14 ([7]). Let β with |β| > 1 be an algebraic

number with a conjugate γ of modulus |γ| = 1 and let A ⊂ Z

be a finite alphabet of contiguous integers containing 0 and

1. Then addition on A cannot be block parallel computable.

Corollary 15. Let β with |β| > 1. Addition in base β is

computable in parallel if and only if β is an algebraic number

with no conjugate of modulus 1.

It is fairly easy to recognize whether an algebraic number

does, or does not have a conjugate of modulus 1, by looking

at its minimal polynomial. First, if the number is quadratic, it

cannot have any conjugate of modulus 1. Suppose now that

β is an algebraic number of degree d > 2, with a conjugate

β′ with modulus |β′| = 1. Let F (X) = Xd + g1X
d−1 +

· · ·+ gd−1X + gd be its minimal polynomial, F (X) in Q[X ].
Since F (X) is minimal, β′ 6= ±1, thus β′ is not real. As the

minimal polynomial has all its coefficients real, the complex

conjugate β′ = 1
β′

is a root of G as well. In general, if the

minimal polynomial has two different roots η and 1
η

, then the

minimal polynomial satisfies

F (X) = XdG
(

1
X

)

,

thus it is reciprocal and its degree is even. This is summarized

in the following remark.

Remark 16. Let β with |β| > 1 be an algebraic number of

degree d.

• If d is odd, or

• if d = 2, or

• if d > 4 is even and the minimal polynomial of β is not

reciprocal,

then β has no conjugate of modulus 1.



IV. LOWER BOUNDS ON THE SIZE OF ALPHABETS

ALLOWING PARALLEL ADDITION

We now give another parallel algorithm for addition in base

the Golden Mean on the smaller alphabet {−1, 0, 1}, with a

method similar to the method of Chow and Robertson. In that

case addition is a 21-local function. This alphabet cannot be

further reduced, as proved in [6].

We begin by describing two auxiliary algorithms for elimi-

nation of digits. Both of them use the weak representation of

zero −β2 + 3− 1
β2 = 0.

The first auxiliary algorithm removes digits −2:

Algorithm A: Base β = 1+
√
5

2 , digit set conversion from

{−2, . . . , 2} to {−1, . . . , 2}.

Input: a finite sequence of digits (zj) of {−2, 1, 0, 1, 2}, with

z =
∑

zjβ
j .

Output: a finite sequence of digits (zj) of {−1, 0, 1, 2}, with

z =
∑

zjβ
j .

for each j in parallel do

if







zj = −2
zj = −1
zj = 0 and zj+2 < 0 and zj−2 < 0







then qj := −1
else qj := 0
zj := zj − 3qj + qj+2 + qj−2

The second auxiliary algorithm removes digits 2:

Algorithm B: Base β = 1+
√
5

2 , digit set conversion from

{−1, 0, 1, 2} to {−1, 0, 1}.

Input: a finite sequence of digits (zj) of {−1, 0, 1, 2}, with

z =
∑

zjβ
j .

Output: a finite sequence of digits (zj) of {−1, 0, 1}, with

z =
∑

zjβ
j .

for each j in parallel do

if























































zj = 2
zj = 1 and (zj+2 > 1 or zj−2 > 1)
zj = 0 and zj+2 = zj−2 = 2
zj = 0 and zj+2 = zj−2 = 1 and zj+4 > 1 and
zj−4 > 1
zj = 0 and zj+2 = 2 and zj−2 = 1 and

zj−4 > 1
zj = 0 and zj−2 = 2 and zj+2 = 1 and

zj+4 > 1























































then qj := 1
else qj := 0
zj := zj − 3qj + qj+2 + qj−2

Algorithm G realizes parallel addition in base β = 1+
√
5

2
on alphabet {−1, 0, 1}:

Algorithm G: Base β = 1+
√
5

2 , parallel addition on alphabet

A = {−1, 0, 1}.

Input: two finite sequences of digits (xj) and (yj) of

{−1, 0, 1}, with x =
∑

xjβ
j and y =

∑

yjβ
j .

Output: a finite sequence of digits (zj) of {−1, 0, 1} such that

z = x+ y =
∑

zjβ
j .

for each j in parallel do

vj := xj + yj
use Algorithm A with input (vj) and output (wj)
use Algorithm B with input (wj) and output (zj)

This example shows that the question of the size of a

minimal digit set allowing parallel addition for a given base β
must be taken under consideration. In [9] we have found the

following lower bounds.

Theorem 17. Let β be a positive real algebraic number, β >
1, and let A be a finite set of contiguous integers containing

0 and 1. If addition in FinA(β) can be performed in parallel

then #A > ⌈β⌉.

Remark 18. The inequality #A > ⌈β⌉ guarantees that

FinA(β) is dense in R+ or in R, depending on the fact

whether the digits of A are non-negative. This property is

very important, as it enables us to approximate each positive

real number (resp. real number) by an element from FinA(β)
with arbitrary accuracy.

When β is an algebraic integer, and not only an algebraic

number, we can obtain another lower bound on the cardinality

of alphabet for parallelism:

Theorem 19. Let β, with |β| > 1, be an algebraic integer

with minimal polynomial F (X). Let A be an alphabet of

contiguous integers containing 0 and 1. If addition in FinA(β)
is computable in parallel, then #A > |F (1)|. If, moreover, β
is a positive real number, β > 1, then #A > |F (1)|+ 2.

We have designed parallel algorithms for addition in well

studied number systems in [9], [7]. The results are summarized

in the table below. The canonical alphabet is the one which is

sufficient to represent all the elements of R+, R or C according

to the base.

V. BLOCK PARALLEL ADDITION

In [13] Kornerup has proposed a more general concept of

parallel addition. Instead of manipulating single digits, one

works with blocks of fixed length k. So the classical parallel

addition is just k-block parallel addition with k = 1.

We have investigated in [7] how the Kornerup’s general-

ization influences the relationship between the base and the

alphabet for parallel addition, in the hope of reducing the

size of the alphabet. For instance consider the Penney number

system with the complex base β = −1 + ı, see [17]. We

know that 1-block parallel addition in base −1 + ı requires

an alphabet of cardinality at least 5, whereas Herreros in [12]



Base Canonical al-

phabet

Minimal alphabet for

parallel addition

b ∈ N, b > 2 {0, . . . , b−1} All alphabets of size

b+ 1
−b, b ∈ N,

b > 2
{0, . . . , b−1} All alphabets of size

b+ 1
n

√
b, b ∈ N,

b > 2
All alphabets of size

b+ 1
−1 + ı {0, 1} All alphabets of size 5
2ı {0, . . . , 3} All alphabets of size 5

ı
√
2 {0, 1} All alphabets of size 3

β2 = aβ − 1,

a ∈ N, a > 3
{0, . . . , a−1} All alphabets of size a

β2 = aβ + b,
a, b ∈ N, a >

b > 1

{0, . . . , a} All alphabets of size

a+ b+ 1

a/b, a, b ∈ N,

a > b > 1
{0, . . . , a−1} {0, . . . , a + b − 1},

{−a − b + 1, . . . , 0},

and all alphabets of

size a + b containing

{−b, . . . , 0, . . . , b}
−a/b, a, b ∈
N, a > b > 1

{0, . . . , a−1} All alphabets of size

a+ b

gives an algorithm for 4-block parallel addition on the alphabet

{−1, 0, 1}.

In the case where β is a positive real number, we have more

results. First we take a base which is a simple Parry number.

Theorem 20. Let dβ(1) = t1t2 · · · tm with 1 6 tm 6 ti
for 1 6 i < m be the Rényi expansion of 1 in base β. If

block parallel addition can be performed on alphabet A =
{0, 1, . . . ,M}, then M > t1 + tm.

The lower bound on the cardinality of the alphabet in

Theorem 20 is sharp, i.e. can be attained, as it is the case

when β is the positive root of the equation X2 = aX + b
a > b > 1 (see the table above).

We now consider the case where the base is a non-simple

Parry number.

Theorem 21. Let dβ(1) = t1t2 · · · tm(tm+1tm+2 · · · tm+p)
ω

be the Rényi expansion of 1. Let the coefficients t1, . . . , tm+p

satisfy one of the following assumptions:

1) m = p = 1;

2) m = 1 and t2 > tk for all k such that 2 < k 6 m+ p;

3) m > 2 and t2 > tk for all k such that 2 6 k 6 m and

t2 > tk for all k such that m+ 1 6 k 6 m+ p.

If block parallel addition can be performed on alphabet A =
{0, 1, . . . ,M}, then M > 2t1 − t2 − 1.

The bound on the cardinality of alphabet in Theorem 21 is

sharp, as shown by the quadratic case.

Proposition 22. Let β be the root > 1 of X2−aX+b, where

a > b+2, b > 1. Then dβ(1) = (a− 1)(a− b− 1)ω. Parallel

addition is possible on A = {0, . . . , a+ b− 2}.

A number β > 1 is said to satisfy the (PF) Property if

the sum of any two positive numbers with finite greedy β-

expansion in base β has its greedy β-expansion finite as well,

[11].

Proposition 23. Let β > 1 be a number with Property (PF).

Then there exists k such that k-block parallel addition is

possible on the alphabet {0, 1, . . . , 2⌊β⌋} and on the alphabet

{−⌊β⌋, . . . , 0, . . . , ⌊β⌋}.

Using Theorems 20 and 21 and families of numbers sat-

isfying Property (PF), see [11], we obtain the two following

results.

Corollary 24. Let dβ(1) = t1t2 · · · tm with t1 > t2 > · · · >
tm > 1 be the Rényi expansion of 1. Then there exists M ∈
N such that parallel addition by a k-block local function is

possible on the alphabet {0, 1, . . . ,M} and t1 + tm 6 M 6

2t1.

Corollary 25. Let dβ(1) = t1t2 · · · tmtω with t1 > t2 >

t3 > · · · > tm > t > 1 be the Rényi expansion of 1. Then

there exists M ∈ N such that parallel addition by a k-block

local function is possible on the alphabet {0, 1, . . . ,M} and

2t1 − t2 − 1 6 M 6 2t1.

We end this paper by considering a generalization of the

Golden Mean. The root > 1 of the polynomial Xd−Xd−1−
Xd−2 − · · · −X − 1 is called a d-bonacci number.

Corollary 26. Let β be a d-bonacci number.

• If the alphabet A allows 1-block parallel addition, then

#A > d+ 1.

• There exists k such that k-block parallel addition is

possible on the alphabets {0, 1, 2} and {−1, 0, 1} and

these alphabets cannot be reduced.

Unfortunately the parameter k can be quite large: for

instance, when d = 3 — the so-called Tribonacci number

system — k is equal to 14.

VI. CONCLUSION

The design of a parallel addition in a given base β requires

to take into consideration the following parameters of the

algorithm:

1) the size of the used alphabet A,

2) the width p of the sliding window, i.e., the number p
appearing in the definition of the p-local function Φ,

3) the length k of the blocks in which are grouped the digits

of A for k-block parallel addition.

There are mathematical reasons (for example comparison of

numbers) and even more technical reasons to minimize all

these three parameters. Intuitively, the smaller is one of the

parameters, the bigger have to be the others. The question of

the relationship between the values #A, p and k is far from

being answered. The example of the Golden Mean shows that

the writing of a parallel addition algorithm working on an

alphabet of minimal size is not straightforward, and heavily



depends on the properties of the base, contrarily to Algorithms

S and W that are more general.

As said in Remark 4, in integer base k-block parallel

addition with k > 2 is not interesting from the point of

view of the minimality of the cardinality of the alphabet.

However grouping digits in k-blocks can allow a simpler

parallel algorithm. For instance, in base 2, 1-block parallel

addition is doable on the minimal alphabet A = {−1, 0, 1} by

the algorithm of Chow and Robertson, and the associated local

function Φ is 3-local. But 2-block addition is just addition base

4 on A(2) = {−3, . . . , 0, . . . , 3}, and is performable by the

simpler algorithm of Avizienis which gives a 2-local function.

The most common reason why to work in number system

with an algebraic base β instead of a system with base 2 or 10
consists in the requirement of performing precise computations

in the algebraic field Q(β). If the base β is not “nice enough”,

we can choose another base γ such that Q(β) = Q(γ) and

work in the number system with the base γ. The question

is which base in Q(β) is “nice enough” and how to find it

effectively.
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