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Abstract

Parallel addition in integer base is used for speeding up multiplication and division
algorithms. k-block parallel addition has been introduced by Kornerup in [14]: instead of
manipulating single digits, one works with blocks of fixed length k. The aim of this paper
is to investigate how such notion influences the relationship between the base and the
cardinality of the alphabet allowing block parallel addition. In this paper, we mainly focus
on a certain class of real bases — the so-called Parry numbers. We give lower bounds on
the cardinality of alphabets of non-negative integer digits allowing block parallel addition.
By considering quadratic Pisot bases, we are able to show that these bounds cannot be
improved in general and we give explicit parallel algorithms for addition in these cases.
We also consider the d-bonacci base, which satisfies the equation Xd = Xd−1 + Xd−2 +
· · · + X + 1. If in a base being a d-bonacci number 1-block parallel addition is possible
on an alphabet A, then #A > d + 1; on the other hand, there exists a k ∈ N such that
k-block parallel addition in this base is possible on the alphabet {0, 1, 2}, which cannot
be reduced. In particular, addition in the Tribonacci base is 14-block parallel on alphabet
{0, 1, 2}.

Keywords: Numeration system, addition, parallel algorithm.

1. Introduction

This work is a continuation of our two papers [9] and [10] devoted to the study of
parallel addition. Suppose that two numbers x and y are given by their expansion x =
.x1x2 · · · and y = .y1y2 · · · in a given base β, and the digits xj’s and yj’s are elements
of a digit set A. A parallel algorithm to compute their sum z = x + y = .z1z2 · · · with
zj ∈ A exists when each digit zj can be determined by the examining a window of fixed
length around the digit (xj + yj). This avoids carry propagation.

Parallel addition has received a lot of attention, because the complexity of the addition
of two numbers becomes constant, and so it is used for internal addition in multiplication

∗Corresponding author

Preprint submitted to Elsevier May 14, 2014



and division algorithms, see [8] for instance.
A parallel algorithm for addition has been given by Avizienis [2] in 1961; there, num-

bers are represented in base β = 10 with digits from the set A = {−6,−5, . . . , 5, 6}. This
algorithm has been generalized to any integer base β > 3. The case β = 2 and alphabet
A = {−1, 0, 1} has been elaborated by Chow and Robertson [7] in 1978. It is known that
the cardinality of an alphabet allowing parallel addition in integer base β > 2 must be at
least equal to β + 1.

We consider non-standard numeration systems, where the base is a real or complex
number β such that |β| > 1, and the digit set A is a finite alphabet of contiguous integer
digits containing 0. If parallel addition in base β is possible on A, then β must be an
algebraic number.

In [9], we have shown that if β is an algebraic number, |β| > 1, such that all its
conjugates in modulus differ from 1, then there exists a digit set A ⊂ Z such that addition
on A can be performed in parallel. The proof gives a method for finding a suitable
alphabet A and provides an algorithm — a generalization of Avizienis’ algorithm — for
parallel addition on this alphabet. But the obtained digit set A is in general quite large, so
in [10] we have given lower bounds on the cardinality of minimal alphabets (of contiguous
integers containing 0) allowing parallel addition for a given base β.

In [14] Kornerup has proposed a more general concept of parallel addition. Instead of
manipulating single digits, one works with blocks of fixed length k. So, in this terminology,
the “classical” parallel addition is just k-block parallel addition with k = 1, and all the
results recalled above actually concern 1-block addition.

The aim of this article is to investigate how Kornerup’s generalization influences the
relationship between the base and the alphabet for block parallel addition, in the hope of
reducing the size of the alphabet. For instance, consider the Penney numeration system
with the complex base β = ı−1, see [19]. We know from [10] that 1-block parallel addition
in base ı− 1 requires an alphabet of cardinality at least 5, whereas Herreros in [13] gives
an algorithm for 4-block parallel addition on the alphabet A = {−1, 0, 1}.

The paper is organized as follows. Definitions and previous results are recalled in
Section 2. In Section 3 we show that for an algebraic base with a conjugate of modulus 1,
block parallel addition is never possible, Theorem 3.1.

Then we consider bases β > 1 whose Rényi expansion of unity dβ(1) = t1t2t3 · · · is
eventually periodic, i.e., β is a so called Parry number. Assuming that the coefficients
ti’s satisfy certain conditions and that block parallel addition is possible in base β on
alphabet A = {0, 1, . . . ,M}, we deduce two lower bounds on M , see Theorem 3.5 and
Theorem 3.12.

A Pisot number is an algebraic integer larger than 1 such that all its Galois conjugates
have modulus smaller than 1. It is known that Pisot numbers are Parry numbers, see
the survey [11] for instance. By considering quadratic Pisot bases, we are able to show
that the two previously mentioned (lower) bounds for Parry numbers cannot be improved
in general. We give explicit (1-block) parallel algorithms for addition in these two cases
(simple quadratic Parry numbers, and non-simple quadratic Parry numbers).

The main result of Section 4 is Theorem 4.1, which implies that there are many bases
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for which Kornerup’s concept of block parallel addition reduces substantially the size of
the alphabet.

A number β > 1 is said to satisfy the (PF) Property if the sum of any two positive
numbers with finite greedy β-expansion in base β has its greedy β-expansion finite as
well. We deduce that if β > 1 satisfies the (PF) Property, then there exists a k ∈ N such
that k-block parallel addition is possible on the alphabet A = {0, 1, . . . , 2bβc}.

We then consider a class of well studied Pisot numbers, that generalize the golden
mean 1+

√
5

2
. Let d be in N, d > 2. The real root β > 1 of the equation Xd = Xd−1 +

Xd−2 + · · · + X + 1 is said to be the d-bonacci number. These numbers satisfy the (PF)
Property. If, in base a d-bonacci number, 1-block parallel addition is possible on the
alphabet A, then #A > d + 1. Moreover, there exists some k ∈ N such that k-block
parallel addition is possible on the alphabet A = {0, 1, 2}, and this alphabet cannot be
further reduced. In particular, addition in the Tribonacci base is 14-block parallel on
A = {0, 1, 2}.

Part of our results concerns only non-negative alphabets. The reason is simple. For
non-negative alphabet a strong tool — namely the greedy expansions of numbers — can
be applied when proving theorems. That is why we recall some properties of the greedy
expansions in Section 2.1.

2. Preliminaries

2.1. Numeration systems

For a detailed presentation of these topics, the reader may consult [11].
A positional numeration system (β,A) within the complex field C is defined by a base

β, which is a complex number such that |β| > 1, and a digit set A usually called the
alphabet, which is a subset of C. In what follows, A is finite and contains 0. If a complex
number x can be expressed in the form

∑
−∞6j6n xjβ

j with coefficients xj in A, we call the
sequence (xj)−∞6j6n a (β,A)-representation of x and note x = xnxn−1 · · ·x0.x−1x−2 · · · .
If a (β,A)-representation of x has only finitely many non-zero entries, we say that it is
finite and the trailing zeroes are omitted.

In analogy with the classical algorithms for arithmetical operations, we work only on
the set of numbers with finite representations, i.e., on the set

FinA(β) =
{ ∑

j∈I

xjβ
j | I ⊂ Z, I finite, xj ∈ A

}
.

Such a finite sequence (xj)j∈I of elements of A is identified with a bi-infinite string (xj)j∈Z
in AZ, where only a finite number of digits xj have non-zero values.

The best-understood case is the one of representations of real numbers in a base β > 1,
the so-called greedy expansions, introduced by Rényi [20]. Every number x ∈ [0, 1] can be
given a β-expansion by the following greedy algorithm:

r0 := x; for j > 1 put xj := bβrj−1c and rj := βrj−1 − xj.
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Then x =
∑

j>1 xjβ
−j, and the digits xj are elements of the so-called canonical alphabet

Cβ = {j ∈ Z | 0 6 j < β}. For x ∈ [0, 1), the sequence (xj)j>1 is said to be the Rényi
expansion or the β-greedy expansion of x.

The greedy algorithm applied to the number 1 gives the β-expansion of 1, denoted by
dβ(1) = (tj)j>1, which plays a special role in this theory. We define also the quasi-greedy
expansion d∗β(1) = (t∗j)j>1 by: if dβ(1) = t1 · · · tm is finite, then d∗β(1) = (t1 · · · tm−1(tm −
1))ω, otherwise d∗β(1) = dβ(1). A number β > 1 such that dβ(1) is eventually periodic,
that is to say, of the form t1 · · · tm(tm+1 · · · tm+p)

ω is called a Parry number. If dβ(1) is
finite, dβ(1) = t1 · · · tm, then β is a simple Parry number.

Some numbers have more than one (β, Cβ)-representation. The greedy expansion of x
is lexicographically the greatest among all (β, Cβ)-representations of x.

A sequence (xj)j>1 is said to be β-admissible if it is the greedy expansion of some
x ∈ [0, 1). Let us stress that not all sequences over the alphabet Cβ are β-admissible. Parry
in [18] used the quasi-greedy expansion d∗β(1) = (t∗j)j>1 for characterization of β-admissible
sequences: Let s = (sj)j>1 = s1s2s3 · · · be an infinite sequence of non-negative integers.
The sequence s is β-admissible if and only if for all i > 1 the inequality sisi+1 · · · ≺lex d∗β(1)
holds in the lexicographic order.

A (β, Cβ)-representation xnxn−1 . . . x0.x−1x−2 · · · of a number x > 1 is called the β-
greedy expansion of x, if the sequence xnxn−1 . . . x0x−1x−2 · · · is β-admissible.

Some real bases introduced in [12] have a property which is interesting in connection
with parallel addition. A number β > 1 is said to satisfy the (PF) Property if the sum
of any two positive numbers with finite greedy β-expansions in base β has a greedy β-
expansion which is finite as well, that is to say, every element of N[β−1]∩ [0, 1) has a finite
greedy β-expansion. A number β > 1 is said to satisfy the (F) Property if every element
of Z[β−1]∩ [0, 1) has a finite greedy β-expansion. Of course, the (F) Property implies the
(PF) Property.

If β > 1 has the (PF) Property, then β is a Pisot number, but there exist also Pisot
numbers not satisfying the (PF) Property.

In [12], two classes of Pisot numbers with the (PF) Property are presented:

• β has the (F) Property, and thus the (PF) Property as well, if dβ(1) = t1t2 · · · tm
and t1 > t2 > · · · > tm > 1.

• β has the (PF) Property if dβ(1) = t1t2 · · · tmtω and t1 > t2 > · · · > tm > t > 1.

In fact, Akiyama in [1] shows that if β has the (PF) Property but not the (F) Property,
then necessarily dβ(1) = t1t2 · · · tmtω and t1 > t2 > · · · > tm > t > 1. Let us note that
every quadratic Pisot number satisfies the (PF) Property.

2.2. Parallel addition

Let us first formalize the notion of parallel addition as it is considered in most works
concentrated on this topic, including our recent papers.

Definition 2.1. A function ϕ : AZ → BZ is said to be p-local if there exist two non-
negative integers r and t satisfying p = r + t + 1, and a function Φ : Ap → B such
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that, for any u = (uj)j∈Z ∈ AZ and its image v = ϕ(u) = (vj)j∈Z ∈ BZ, we have
vj = Φ(uj+t · · ·uj−r) for every j in Z.

This means that the image of u by ϕ is obtained through a sliding window of length p.
The parameter r is called the memory and the parameter t is called the anticipation of
the function ϕ. Such functions, restricted to finite sequences, are computable by a parallel
algorithm in constant time.

Definition 2.2. Given a base β with |β| > 1 and two alphabets A and B of contiguous
integers containing 0, a digit set conversion in base β from A to B is a function ϕ : AZ →
BZ such that

1. for any u = (uj)j∈Z ∈ AZ with a finite number of non-zero digits, the image v =
(vj)j∈Z = ϕ(u) ∈ BZ has only a finite number of non-zero digits as well, and

2.
∑
j∈Z

vjβ
j =

∑
j∈Z

ujβ
j.

Such a conversion is said to be computable in parallel if it is a p-local function for some
p ∈ N.

Thus, addition in FinA(β) is computable in parallel if there exists a digit set conversion
in base β from A+A to A which is computable in parallel.

Let us stress that all alphabets we use are composed of contiguous integers and con-
tain 0. This restriction already forces the base β to be an algebraic number. In [9] we
give a sufficient condition on β to allow parallel addition:

Theorem 2.3 ([9]). Let β be an algebraic number such that |β| > 1 and all its conju-
gates in modulus differ from 1. Then there exists an alphabet A of contiguous integers
containing 0 such that addition in FinA(β) can be performed in parallel.

The proof of the previous theorem gives a method for finding a suitable alphabet A
and provides an algorithm for parallel addition on this alphabet. But, in general, the
alphabet A obtained in this way is quite large. An exaggerated size of the alphabet
does not allow to compare numbers by means of the lexicographic order on their (β,A)-
representations. For instance, in base β = 2 and alphabet A = {0, 1, 2}, we have 02 ≺lex
10 in the lexicographic order, but x = 0.02 6< y = 0.10.

Therefore, in [10], we have studied the cardinality of minimal alphabets allowing
parallel addition for a given base β. In particular, we have found the following lower
bounds:

Theorem 2.4 ([10]). Let β, with |β| > 1, be an algebraic integer of degree d with minimal
polynomial f . Let A be an alphabet of contiguous integers containing 0 and 1. If addition
in FinA(β) is computable in parallel then #A > |f(1)|. If, moreover, β is a positive real
number, β > 1, then #A > |f(1)|+ 2.

In [14], Kornerup suggested a more general concept of parallel addition. Instead of
manipulating single digits, one works with blocks of digits with fixed block length k. For
the precise description of the Kornerup’s idea, we introduce the notation

A(k) = {a0 + a1β + · · ·+ ak−1β
k−1 | ai ∈ A} ,

where A is an alphabet and k a positive integer. Clearly, A(1) = A.

5



Definition 2.5. Given a base β with |β| > 1 and two alphabets A and B of contiguous
integers containing 0, a digit set conversion in base β from A to B is said to be block
parallel computable if there exists some k ∈ N such that the digit set conversion in base
βk from A(k) to B(k) is computable in parallel. When the specification of k is needed, we
say k-block parallel computable.

In this terminology, the original parallel addition is 1-block parallel addition, and the
results just recalled concern 1-block parallel addition.

Remark 2.6. Suppose that the base is an integer β with |β| > 2. It is known that 1-block
parallel addition is possible on an alphabet of cardinality #A = β + 1 (see [17] and [10]).
But k-block parallel addition on an alphabet A is just 1-block parallel addition in integer
base βk on A(k). Thus k-block parallel addition in integer base β can only be possible on
an alphabet A such that #A(k) > βk + 1. This shows that k-block parallel addition with
k > 2 does not allow the use of any smaller alphabet than already achieved with k = 1.

The bound from Theorem 2.4 on the minimal cardinality of alphabet A cannot be
applied to block parallel addition. This fact can be demonstrated on the Penney numer-
ation system with the complex base β = ı − 1. The minimal polynomial of this base
is f(X) = X2 + 2X + 2. From Theorem 2.4 we get that 1-block parallel addition in
base ı − 1 requires an alphabet of cardinality at least 5, whereas Herreros in [13] gave
an algorithm for 4-block parallel addition on the alphabet {−1, 0, 1}. According to our
up-to-now knowledge, the base β = ı−1 was the only known example where the Kornerup
block approach reduced the size of the needed alphabet. In Corollary 4.6, we provide new
explicit examples of bases for which this phenomenon occurs. And even more such new
examples can be obtained by applying Corollaries 4.4 and 4.5.

3. Necessary conditions for existence of block parallel addition

3.1. General result

In [9] we have shown that the assumption that all the algebraic conjugates of β have
modulus different from 1 enables 1-block parallel addition on FinA(β) for some suitable
alphabet A ⊂ Z. The following theorem shows that this assumption is also necessary and,
even more, the generalization of parallelism via working with k-blocks does not change
the situation.

Theorem 3.1. Let the base β ∈ C, |β| > 1, be an algebraic number with a conjugate γ of
modulus |γ| = 1 and let A ⊂ Z be an alphabet of contiguous integers containing 0. Then
addition on A cannot be block parallel computable.

Proof. Within the proof, we denote by <(x) the real part of a complex number x. Let
us assume that there exist k, p ∈ N such that Φ : (A(k) + A(k))

p → A(k) performs k-

block parallel addition on A. Denote S := max
{∣∣∣pk−1∑

j=0

ajγ
j
∣∣∣ : aj ∈ A

}
. Since there exist
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infinitely many j ∈ N such that <(γj) > 1
2
, one can find N > p and εj ∈ {0, 1} such that

<
(kN−1∑

j=0

εjγ
j
)
> 2S.

Let T := max{
∣∣<(∑kN−1

j=0 bjγ
j
)∣∣ : bj ∈ A}. Then find x =

kN−1∑
j=0

xjβ
j such that

|<(x′)| = T , where x′ denotes the image of x under the field isomorphism Q(β)→ Q(γ).
The choice of N ensures |<(x′)| > 2S. Adding x + x by the k-block p-local function Φ,
we get

x+ x =

k(N+p)−1∑
j=kN

zjβ
j +

kN−1∑
j=0

zjβ
j +

−1∑
j=−kp

zjβ
j , with zj ∈ A .

For the image of x+ x under the field isomorphism, we have

2T = |<(x′ + x′)| 6 |γkN |S + |<(x′)|+ |γ−kp|S = 2S + |<(x′)| = 2S + T < 2T,

which is a contradiction.

As a corollary of Theorems 2.3 and 3.1, we obtain the following result:

Theorem 3.2. Let β be in C, |β| > 1. Then there exists an alphabet A of contiguous
integers containing 0 such that addition on A is block parallel computable if and only if β
is an algebraic number with no conjugate of modulus 1.

If it is the case, then there also exists an alphabet on which addition is 1-block parallel
computable.

3.2. Positive real bases

Since the integer base case has been resolved in Remark 2.6, in the following we
suppose that β is not an integer.

For positive bases β belonging to some classes of Parry numbers we deduce a lower
bound on the size of the alphabet A ⊂ N allowing block parallel addition. For a non-
negative alphabet we utilize the well known properties of the greedy representations,
which are in the lexicographic order the greatest ones among all representations.

At first we state a simple observation we will use in our later considerations.

Lemma 3.3. Let β > 1 be a base and let A = {0, 1, . . . ,M} with M > 1 be an alphabet.
Let z = g0.g1g2 · · · be a (β,A)-representation of z and n > 0 be an integer such that for
all i ∈ N, 0 6 i 6 n the inequality

1.gi+1gi+2gi+3 · · · > 0.Mω (1)

holds true. Then any finite lexicographically smaller (β,A)-representation of z coin-
cides with the original representation on the first n + 1 digits, i.e., it has the form
z = g0.g1g2 · · · gnzn+1zn+2 · · · .
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Proof. Let z = z0.z1z2 · · · znzn+1zn+2 · · · be a finite lexicographically smaller representa-
tion of z and i be the minimal index for which zi < gi. Then

0.Mω > 0.zi+1zi+2 · · · = (gi − zi).gi+1gi+2 · · · > 1.gi+1gi+2 · · · .

Since for i 6 n the opposite inequality (1) holds, necessarily i > n + 1. The choice of i
implies that zj = gj for all j = 0, 1, 2, . . . , n, as was to show.

For the quasi-greedy expansion d∗β(1) = t∗1t
∗
2t
∗
3 · · · we denote

Ti = 0.t∗i t
∗
i+1t

∗
i+2 · · · for i > 1, i ∈ N .

Let us point out some properties which follow directly from the definition of Ti and
will be used in the sequel.

1. T1 = 1 and 0 < Ti 6 1 for any i ∈ N, i > 1. If β /∈ N, then T2 < T1 = 1.

2. βTi = t∗i + Ti+1 for any i ∈ N, i > 1.

3. A base β > 1 is a Parry number if and only if the set {Ti | i ∈ N, i > 1} is finite.

4. Let β /∈ N be a Parry number and j be the smallest index such that Tj = Ti for
some i < j.
If i = 1 then β is a simple Parry number. In this case, as usually, we denote j = m.
We have

dβ(1) = t1t2 · · · tm0ω and d∗β(1) =
(
t1t2 · · · tm−1(tm − 1)

)ω
.

If i > 1 then β is non-simple Parry. In this case, as is the custom, we denote i = m
and j − i = p. We have

dβ(1) = d∗β(1) = t1t2 · · · tm(tm+1 · · · tm+p)
ω .

In the remaining part of this section, β is a Parry number. By Per we denote the
periodic part of the quasi-greedy expansion d∗β(1), i.e.

Per =


t∗m+1t

∗
m+2 · · · t∗m+p = tm+1tm+2 · · · tm+p if d∗β(1) = dβ(1) ;

t∗1t
∗
2 · · · t∗m = t1t2 · · · tm−1(tm − 1) if d∗β(1) 6= dβ(1) .

3.2.1. Non-simple Parry numbers

The main goal of this subsection is to find a good lower bound on the cardinality of
the alphabet A ⊂ N allowing parallel addition in base β. Such a bound is deduced in
Theorem 3.5. Then we concentrate on non-simple quadratic bases β to demonstrate that
in general the bound cannot be improved.

Proposition 3.4. Let β be a non-simple Parry number with dβ(1) = t1t2t3 · · · satisfying
t1 > tj for all j > 2. If block parallel addition in base β can be performed on alphabet
A = {0, 1, . . . ,M}, then

0.(M − t1 + 1)ω > 1−max{Tj | j > 2} .
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Proof. Let us assume the contrary, i.e.

0.Mω < 0.(t1 − 1)ω + 1− 0.tjtj+1tj+2 · · · for all j = 2, 3, 4, . . . . (2)

Since the set {Tj | j > 2} is finite, there exists h ∈ N such that

0.Mω < 0.(t1 − 1)h + 1− 0.tjtj+1tj+2 · · · tj+h for all j = 2, 3, 4, . . . . (3)

Consider y = 0.(t1 − 1)n with n > h.

Statement 1: Any representation of y in base β on A has the form
y = 0.(t1 − 1)n−hyn−h+1yn−h+2 · · · .

Proof. The representation 0.(t1− 1)n is greedy. According to Lemma 3.3, it is enough to
verify that 1.(t1 − 1)n−i > 0.Mω for i = 0, 1, . . . n− h. Thanks to (3), it is satisfied.

Consider z = 0.(M + 1)(t1 − 1)n−1t1 with n > h.

Statement 2: The greedy representation of z is

1.(M + 1− t1)(t1 − 1− t2)(t1 − 1− t3) · · · (t1 − 1− tn)zn+1zn+2 . . . ,

where zn+1zn+2 . . . is the greedy representation of the number 0.t1 − 0.tn+1tn+2 · · · .

Proof. Because of the assumption t1 > tj, every digit in (M + 1− t1)(t1− 1− t2)(t1− 1−
t3) · · · (t1−1−tn) is non-negative. According to (2), the fraction M−t1+1

β−1 = 0.(M−t1+1)ω

is smaller than 1. Consequently, M − t1 + 1 < β − 1 < t1. It means that every digit in
(M +1− t1)(t1−1− t2)(t1−1− t3) · · · (t1−1− tn) is strictly smaller than t1. This already
implies that 1.(M + 1 − t1)(t1 − 1 − t2)(t1 − 1 − t3) · · · (t1 − 1 − tn)zn+1zn+2 . . . , is the
greedy representation of a number. It is easy to check that it is the number z.

Statement 3: Any finite non-greedy representation of z and the greedy representation
of z have a common prefix of length n− h.

Proof. We again use Lemma 3.3. Let us check the assumption of the lemma for i =
0, 1, . . . , n− h.

For i = 0, we have to check that z > 0.Mω. Since also z = 0.(M + 1)(t1− 1)n−1t1, we
have to verify 1.(t1 − 1)n−1t1 > 0.Mω. It follows from (3).

If 1 6 i 6 n−h, we have to check 1.(t1− 1− ti)(t1− 1− ti+1) · · · (t1− 1− tn) > 0.Mω.
This inequality is a consequence of (3) as well.

Now we can deduce the desired contradiction to the assumption of the existence of
a k-block s-local function Φ performing parallel addition on the alphabet {0, 1, . . .M},
where M satisfies (2). Statement 1 implies that necessarily Φ((t1−1)ks) = (t1−1)k. This
fact contradicts to Statement 2 and Statement 3.
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Theorem 3.5. Let β be a non-simple Parry number with dβ(1) = t1t2t3 · · · satisfying
t1 > tj for all j > 2. If block parallel addition in base β can be performed on alphabet
A = {0, 1, . . . ,M}, then

M > 2t1 − t− 1, where t = max{tj | j > 2} .

Proof. Let ` be the index such that T` = max{Tj | j > 2}. Clearly t = t` and Ti > 0 for
all i > 1. According to Proposition 3.4, we have M−t1+1

β−1 > 1− T` or equivalently,

M − t1 + 1 > (β − 1)(1− T`) . (4)

We use twice – for i = 1 and for i = ` – the relation βTi = ti + Ti+1 and we rewrite the
right side of the above inequality:

(β − 1)(1− T`) = t1 − 1 + T2 − t` − T`+1 + T` > t1 − 1 + T2 − t` > t1 − 1− t` .

This together with (4) gives M − t1 + 1 > t1 − 1− t`.

We illustrate on the larger root β of the equation X2 = aX − b, where a, b ∈ N, a >
b + 2, b > 1 that our bound on the cardinality of alphabet in Theorem 3.5 is sharp. The
Rényi expansion of unity is dβ(1) = (a− 1)(a− b− 1)ω.

We show that the smallest possible alphabet A = {0, . . . , a+ b− 2} and the smallest
possible size k = 1 of the block enable parallel addition by a k-block local function.

Proposition 3.6. Let dβ(1) = (a − 1)(a − b − 1)ω, where a > b + 2, b > 1, be the
Rényi expansion of 1 in base β. Parallel addition in base β is possible on the alphabet
A = {0, . . . , a+ b− 2}, namely by means of a 1-block local function.

By Proposition 18 in [10], it is enough to show that the greatest digit elimination from
{0, . . . , a+ b− 1} to {0, . . . , a+ b− 2} = A can be done in parallel:

Algorithm GDE(β2 = aβ−b): Base β > 1 satisfying β2 = aβ−b, with a > b+2, b > 1,
parallel conversion (greatest digit elimination) from {0, . . . , a+b−1} to {0, . . . , a+b−2} =
A.

Input: a finite sequence of digits (zj) from {0, . . . , a+ b− 1}, with z =
∑

j zjβ
j.

Output: a finite sequence of digits (xj) from {0, . . . , a+ b− 2}, with z =
∑

j xjβ
j.

for each j in parallel do

1. case



zj = a+ b− 1

a− 1 6 zj 6 a+ b− 2 and
(
zj+1 > a− 1 or zj−1 > a− 1

)
zj = a− 2 and zj+1 = a+ b− 1 and zj−1 = a+ b− 1
zj = a− 2 and zj+1 = a+ b− 1 and zj−1 > a− 1 and zj−2 > a− 1
zj = a− 2 and zj−1 = a+ b− 1 and zj+1 > a− 1 and zj+2 > a− 1
zj = a− 2 and zj±1 > a− 1 and zj±2 > a− 1


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then qj := 1

else qj := 0

2. xj := zj − aqj + bqj+1 + qj−1

Proof. Let us denote wj := zj − aqj; and remind that qj ∈ {0, 1} for any j, and thus
bqj+1 + qj−1 ∈ {0, 1, b, b+ 1}.

• If zj ∈ {0, . . . , a− 3}, then xj = zj + bqj+1 + qj−1 ∈ {0, . . . , a+ b− 2} = A.

• If zj = a + b − 1, then wj = b − 1, thus 0 6 xj 6 2b 6 a + b − 2 as a > b + 2.
Therefore xj ∈ A.

• When a−1 6 zj 6 a+b−2, and zj−1 > a−1 or zj+1 > a−1, then −1 6 wj 6 b−2
and qj+1 + qj−1 ∈ {1, 2}. Thus xj ∈ {0, . . . , 2b− 1} ⊂ A.

• When a − 1 6 zj 6 a + b − 2 and both its neighbours zj±1 < a − 1, then wj = zj
and qj+1 = qj−1 = 0. Thus xj ∈ A.

• If zj = a − 2 and qj = 1, then necessarily qj±1 = 1. Since wj = −2, we get
xj = b− 1 ∈ A.

• If zj = a− 2 and qj = 0, then wj = a− 2, and qj−1 + qj+1 ∈ {0, 1}. Therefore, the
resulting xj ∈ {a− 2, a− 1, a+ b− 2} ⊂ A.

Lastly, it is obvious that a string of zeroes is not converted into a string of non-zeroes by
this algorithm, so all the necessary conditions of parallel addition are fulfilled.

The previous algorithm acts on alphabet A ⊂ N. Looking for the letters h ∈ A such
that the algorithm keeps unchanged the constant sequences (h)j∈Z allows us to modify
the alphabet of the algorithm:

Definition 3.7. Let A and B be two alphabets containing 0 such that A∪B ⊂ Z[β]. Let
ϕ : AZ → BZ be a s-local function realized by the function Φ : Ap → B. The letter h in
A is said to be fixed by ϕ if ϕ((h)j∈Z) = (h)j∈Z, or, equivalently, Φ(hs) = h.

Proposition 3.8. Let β satisfy β2 = aβ − b, with a > b + 2, b > 1. Parallel addition in
base β is possible on any alphabet of cardinality a+ b− 1 of the form A = {−d, . . . , a+
b− 2− d} for b 6 d 6 a− 2.

Proof. Every letter h, 0 6 h 6 a−2, is fixed by the above algorithm. So for b 6 d 6 a−2,
both letters d and a+ b− 2− d are fixed, and, by Corollary 24 in [10], parallel addition is
possible on any alphabet of the form A = {−d, . . . , a+ b− 2− d} with b 6 d 6 a− 2.

It is an open question to prove that in base β satisfying β2 = aβ − b, with a > b+ 2,
b > 2, parallel addition is not possible on alphabets of positive and negative contiguous
integer digits not containing {−b, . . . , 0, . . . , b}, as it is the case in rational base β = a/b
when b > 2, see [10].
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3.2.2. Parry numbers β with dβ(1) 6= t1 · · · tmtωm+1, tm+1 6= 0

For Parry numbers specified in the title of this subsection, we deduce in Theorem 3.12
a lower bound on the cardinality of the alphabet A ⊂ N allowing parallel addition in base
β. Proof of Theorem 3.12 is rather technical and we split it into several auxiliary claims.
Then we illustrate on quadratic simple Parry bases that in general our bound is the best
possible.

Lemma 3.9. Let β be a Parry number and A = {0, 1, . . . ,M} be an alphabet where
M ∈ N and

0.Mω 6 1 + min{Ti | i > 2} .
Then there exists a constant h ∈ N such that for any integer n > h and any y satisfying 1 6
y < 1+ 1

βn the following implication holds true: If 0.y1y2 · · · yn is a finite representation of

y on A, then the string y1y2 · · · yn−h is a prefix of d∗β(1) or β is simple Parry with dβ(1) =

t1t2 · · · tm0ω and y1y2 · · · yn−h is a prefix of a string (t∗1t
∗
2 · · · t∗m)j t∗1t

∗
2 · · · t∗m−1(t∗m + 1)0ω for

some j ∈ N.

Proof. Denote T` = min{Ti | i > 2}. Consider y = 0.y1y2y3 · · · yn0ω such that 1 6 y <
1 + 1

βn . Let i be the smallest index, 1 6 i 6 n such that yi 6= t∗i . The equality of strings

y1y2y3 · · · yn0ω and d∗β(1) is impossible, as d∗β(1) has infinitely many non-zero entries. We
will discuss two cases: y1y2y3 · · · yn0ω ≺ d∗β(1) and y1y2y3 · · · yn0ω � d∗β(1).

1) Let y1y2y3 · · · yn0ω ≺ d∗β(1). Then y = 0.t∗1 · · · t∗i−1yiyi+1 · · · with yi 6 t∗i − 1 and

y < 0.t∗1 · · · t∗i−1(t∗i−1)Mω < 0.t∗1 · · · t∗i−1+
t∗i − 1

βi
+

1

βi
(1+T`) 6 0.t∗1 · · · t∗i−1t∗i t∗i+1 · · · = 1

– a contradiction with the assumption y > 1.

2) Let y1y2y3 · · · yn0ω � d∗β(1). Then y = 0.t∗1 · · · t∗i−1yiyi+1 · · · with yi = t∗i + c where
c ∈ N, c > 1. Denote µ = max{Tj | j > 2 and Tj < 1}. Set h to be the smallest
integer such that βh(1− µ) > 1. Then

y = 0.t∗1 · · · t∗i−1t∗i +
1

βi
(c+ 0.yi+1yi+2 . . . yn) = 1 +

1

βi
(c−Ti+1) +

1

βi
(0.yi+1yi+2 · · · yn)

(5)
As Ti+1 6 1, for c > 2, we have y > 1 + 1

βi . The assumptions 1 + 1
βn > y forces

i > n. Hence it suffices to consider c = 1.

If Ti+1 < 1 then y > 1 + 1
βi (1− µ) > 1 + 1

βi+h . The assumption 1 + 1
βn > y implies

i > n− h as we want to show.

It remains to discuss the case Ti+1 = 1. This means that β is simple Parry and
i = 0 mod m. The representation of y has the form 0. (t∗1t

∗
2 · · · t∗m)j t∗1t

∗
2 · · · t∗m−1(t∗m+

1)yi+1yi+2 · · · yn for some j ∈ N. To finish the proof we need to show that yk = 0
for all k ∈ N, i < k 6 n− h. Let K > i+ 1 be the minimal index for which yK > 1.
Using (5) we deduce y > 1 + yK

βK . This inequality together with the assumption

1 + 1
βn > y implies K > n.
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Proposition 3.10. Let β be a Parry number and let the shortest period of the quasi-
greedy expansion d∗β(1) be longer than 1. If block parallel addition can be performed on
alphabet A = {0, 1, . . . ,M}, then

M > (β − 1)
(
1 + min{Ti | i > 2}

)
.

Proof. Let Φ : (A(k) +A(k))
s → A(k) be the function performing k-block parallel addition

on the alphabet A = {0, 1, . . . ,M}. Let us suppose that the proposition does not hold.
It means

0.Mω < 1.t∗i t
∗
i+1t

∗
i+2 · · · for all i = 2, 3, . . . . (6)

Since the set {Ti | i > 1} is finite and T1 = 1 > Ti for any i = 2, 3, . . . there exists H ∈ N
such that

0.Mω < 1.t∗i t
∗
i+1 · · · t∗i+H for all i = 1, 2, 3, . . . . (7)

Let us fix n ∈ N such that n > H and n > h, where h is given by statement of Lemma
3.9. Consider the two numbers

z = 0.t∗1t
∗
2t
∗
3 · · · t∗n and y = 0.(M + 1)t∗2t

∗
3 · · · t∗n−1t∗n(t∗n+1 + 1) .

If n is sufficiently large, then the above representations of y and z contain many repetitions
of the string Per.
Statement 1: Any finite representation of z in base β on A = {0, 1, . . . ,M} has the
form z = 0.t∗1t

∗
2t
∗
3 · · · t∗n−s−1zn−szn−s+1 · · ·

Proof. The representation 0.t∗1t
∗
2t
∗
3 · · · t∗n is the greedy representation of z. Thanks to (7),

the indices i = 1, 2, . . . , n− s satisfy

0.Mω < 1.t∗i t
∗
i+1 · · · t∗i+s 6 1.t∗i t

∗
i+1 · · · t∗n .

Statement 1 follows by Lemma 3.3.

Statement 2: The greedy representation of y has the form

y = 1.(M + 1− t∗1)0nyn+2yn+3 · · · ,

where 0.yn+2yn+3 · · · is the greedy representation of the number 1− Tn+2.

Proof. It is easy to check that 1.(M +1− t∗1)0nyn+2yn+3 · · · represents the number y. The
inequality (6) implies M 6 (1 + Ti)(β− 1) 6 2(β− 1) < 2t∗1. It gives M − t∗1 + 1 6 t∗1 and
thus the string 1(M + 1− t∗1)0nyn+2yn+3 · · · fulfils the Parry condition.

Statement 3: Any finite non-greedy representation of y in base β on {0, 1, . . . ,M} has

• either the form 1.(M + 1− t∗1)0nỹn+2ỹn+3 · · · ,

• or the form 1.(M− t∗1)x1x2x3 . . ., where x1x2x3 . . . xn+1−h is a prefix of d∗β(1) or β is

simple Parry and x1x2x3 . . . xn+1−h is a prefix of a string (t∗1t
∗
2 · · · t∗m)j t∗1t

∗
2 · · · t∗m−1(t∗m+

1)0ω for some j ∈ N.
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Proof. Any non-greedy representation of y is lexicographically smaller than the greedy
one.

If a representation of y has the form 1.(M + 1− t∗1)ỹ2ỹ3 · · · then necessarily ỹ2 = ỹ3 =
· · · = ỹn+1 = 0.

If a representation of y has the form 1.(M − t∗1)x1x2x3 . . ., due to Statement 2,
0.x1x2x3 . . . is a representation of the number 1 + 1−Tn+2

βn . Applying Lemma 3.9 we
get Statement 3.

To finish the proof, we have to verify that no representation of y starts with 0. · · ·
and no representation of y starts with 1.x · · · where x < M − t∗1. Both these facts follows
from (6), in particular from 0.Mω < 1 + T2.

Let us now complete the proof of Proposition 3.10. By |Per| we denote the length of
the period Per and by q the length of the preperiod of d∗β(1). For all sufficiently large
n ∈ N, according to Statement 1, the sequence 0.t∗1t

∗
2t
∗
3 · · · t∗n has to be rewritten by the

local function Φ into the sequence with a long common prefix with. It means that the
word Per must be rewritten by Φ into the same word Per and its occurrences start at the
same positions (namely q+i|Per| for i ∈ N) after the fractional point in the original string
as well as in the string rewritten by the function Φ. In particular, Per is not rewritten
into 0|Per|.

Consider now the sequence 0.(M + 1)t∗2t
∗
3 · · · t∗n(t∗n+1 + 1). In this string the periodic

part Per starts at the positions q +mi for i ∈ N, i > 1.
According to Statement 3, the periodic string Per has to be rewritten either as the

string 0|Per| or as the string Per. In the latter case, the string Per starts at the positions
1 + q + i|Per|. Since Per is not a power of a single letter, no such local function Φ can
exist.

For almost all Parry bases β, the lower bound on M from the previous proposition
shall serve us for deducing a good estimate on the cardinality of an alphabet allowing
block parallel addition, see Theorem 3.12. The only exceptions are bases with dβ(1) =
t1 · · · tmtωm+1, where tm+1 6= 0 and dβ(1) = t1t20

ω. In the former case, Proposition 3.10
gives no bound at all. In the latter case, 1 + T2 = 1 + t2

β
= 0.(t1 + t2 − 1)ω and thus

Proposition 3.10 gives the inequality t1 + t2 − 1 6 M which is not the optimal one as
shown in the next proposition.

Proposition 3.11. Let β be a Parry number with dβ(1) = t1t20
ω. If block parallel

addition is performable on the alphabet {0, 1, . . . ,M} then M > t1 + t2.

Proof. We proceed by contradiction. Let there exist k and s in N such that k-block parallel
addition be performable by an s-local function Φ : As(k) 7→ A(k), where A = {0, 1, . . . ,M}
with M = t1 + t2 − 1. Set y = 0.(t1 + t2 − 1)n(t1 + t2)t2. It easy to see that if β differs
from the golden ratio, the representation y = 1.t20

ω is greedy. If β is the golden ratio
then y = 10.0ω is the greedy representation of y.

The digit
∑k−1

j=0 Mβj is the biggest element and 0 is the smallest element of A(k).
According to Claims 13 and 14 in [10], the function Φ assigns to the string containing
only repetitions of the biggest digit neither the biggest digit nor the smallest digit 0,
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i.e., Φ(M sk) 6= Mk and Φ(M sk) 6= 0k. In particular, the string representing y must be
rewritten as a non-greedy (β,A)-representation.

Since 2 > 0.Mω = 1 + t2
β

= y any finite non-greedy (β,A)-representations of y has the

form y = 1.(t2− 1)y2y3 . . . yN for some N ∈ N. Simultaneously, y = 1.t20
ω. It means that

1. = 0.y2y3 . . . yN . By Lemma 3.9 we get that y2y3 . . . yN is a prefix of
(
t1(t2 − 1)

)j
t1t20

ω

for some j ∈ N. The representation of y gained by the block parallel algorithm has the
form y = 1.(t2 − 1)t1(t2 − 1)t1(t2 − 1)t1 · · · . In particular, the length k of blocks must be

even and Φ(Mks) =
(
(t2 − 1)t1

) k
2 .

On the other hand, if we set z = βy = (t1 + t2 − 1).(t1 + t2 − 1)n−1t2, the same con-
sideration leads to the only possible form of z after applying parallel addition algorithm,

namely z = 1(t2 − 1).t1(t2 − 1)t1(t2 − 1)t1 · · · . Consequently, Φ(Mks) =
(
t1(t2 − 1)

) k
2 – a

contradiction.

Theorem 3.12. Let β be a Parry number and dβ(1) 6= t1t2 · · · tmtωm+1, where tm+1 6= 0.
Let us denote

t =

{
min{t2, t3, . . . , tm} if dβ(1) = t1t2 · · · tm0ω ,
min{t2, t3, . . . , tm+p} if dβ(1) = t1t2 · · · tm(tm+1 · · · tm+p)

ω .

If block parallel addition can be performed on alphabet A = {0, 1, . . . ,M}, then M > t1+t.

Proof. We assume dβ(1) 6= t1t20
ω, as the case dβ(1) = t1t20

ω is treated in Proposition
3.11. If t = 0, then the bound M > t1 is trivial (otherwise the set FinA(β) is not closed
under addition). Let us suppose that t > 1. Let ` be the smallest index where min

j>2
Tj is

reached. Using Proposition 3.10, we have M > (β−1)(1+T`). Clearly T` < 1 and t∗` 6 t∗j
for all j > 2. Let us realize that

(β − 1)(1 + T`) = β − 1 + βT` − T` = t1 − 1 + T2 + t∗` + T`+1 − T` . (8)

If ` = 2 then T3 6= 1 (otherwise dβ(1) = t1t20
ω). In this case, t∗` = t∗2 = t2 = t and by (8)

we get

M > (β − 1)(1 + T`) > t1 − 1 + t2 + T`+1 > t1 − 1 + t .

If T2 > T` and T`+1 6= 1, then t∗` = t` = t and

M > (β − 1)(1 + T`) > t1 − 1 + t` = t1 − 1 + t .

If T2 > T` and T`+1 = 1, then β is a simple Parry number, ` = m and t∗` = t∗m = tm − 1.
The inequality Ti 6= Tj for 1 6 j < i 6 m, gives Tm < Tj. Thus

Tm = 0.t∗m
(
t∗1 · · · t∗m

)ω
< Tj = 0.t∗j · · · t∗m

(
t∗1 · · · t∗m

)ω
for 1 < j < m implies t∗m < t∗j = tj

and therefore t = tm 6 tj. Again by (8), we have

M > (β − 1)(1 + T`) > t1 − 1 + tm − 1 + T`+1 = t1 − 1 + t .

All cases lead to the inequality M > t1 − 1 + t. As M is an integer, we can write
M > t1 + t .
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We will illustrate that the lower bound on the cardinality of the alphabet in Theo-
rem 3.12 is sharp, i.e. can be attained, in quadratic cases. In order to do so, we exploit
the positive root of the equation X2 = aX + b.

Let β be the root > 1 of the polynomial X2−aX− b with a and b integers, a > b > 1.
Then dβ(1) = ab. We first recall the case b = 1.

Proposition 3.13 ([10]). Let β satisfy β2 = aβ + 1 with a ∈ N, a > 1. Then 1-block
parallel addition is possible on any alphabet of contiguous integers containing 0 with
cardinality a+ 2, and this cardinality is minimum.

We now consider the case b > 2. First we suppose that a > b+ 1.

Proposition 3.14. Let β satisfy β2 = aβ + b, where a > b+ 1 and b > 2. Then 1-block
parallel addition in base β is possible on the alphabet A = {0, . . . , a+ b}.

By Proposition 18 in [10], it is enough to show that the greatest digit elimination from
{0, . . . , a+ b+ 1} to {0, . . . , a+ b} = A can be done in parallel:

Algorithm GDE(β2 = aβ + b): Base β > 1 satisfying β2 = aβ + b, a > b + 1,
b > 2, 1-block parallel conversion (greatest digit elimination) from {0, . . . , a + b + 1} to
{0, . . . , a+ b} = A.

Input: a finite sequence of digits (zj) from {0, . . . , a+ b+ 1}, with z =
∑

j zjβ
j.

Output: a finite sequence of digits (xj) from {0, . . . , a+ b}, with z =
∑

j xjβ
j.

for each j in parallel do

1. case



zj = a+ b+ 1 and zj+1 6 a+ b
zj = a+ b+ 1 and zj+1 = a+ b+ 1 and zj+2 > a
zj = a+ b and zj+1 6 a− 1
zj = a+ b and a 6 zj+1 6 a+ b and zj−1 > a
zj = a+ b and zj+1 = a+ b+ 1 and zj+2 > a and zj−1 > a
a+ 1 6 zj 6 a+ b− 1 and zj+1 6 a− 1
zj = a and zj+1 6 a− 1 and zj−1 > a


then qj := 1

if zj 6 b− 1 and zj+1 > a+ 1 then qj := −1

else qj := 0
2. xj := zj − aqj − bqj+1 + qj−1

Proof. The formula defining the value xj in Step 2. of the above algorithm guarantees
that the new string (xj) represents the number z as well. It is also obvious that a string
of zeroes cannot be converted by the local function in this algorithm into a string of
non-zeroes.

It remains to show that the new digits xj belong to the alphabet A. For that
purpose, let us denote wj := zj − aqj, and inspect all the possible combinations of
(zj+2, zj+1, zj, zj−1) which can occur:

• zj = a+ b+ 1
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– For zj+1 6 a − 1, we set qj := 1, and obtain wj = b + 1. Both qj+1 and qj−1
are from {−1, 0}, so b 6 xj 6 2b+ 1 and xj ∈ A, as b+ 1 6 a.

– If zj+1 ∈ {a, . . . , a+ b}, or if zj+1 = a+ b+ 1 and zj+2 > a, then qj+1 is limited
to {0, 1}, and we set qj := 1. As a result, wj = b + 1 and 0 6 xj 6 b + 2 is in
A, as 2 6 b < a.

– When zj+1 = a + b + 1 and zj+2 6 a − 1, then qj+1 = 1. Putting qj := 0, we
have wj = a+ b+ 1, and the digit xj ∈ {a, a+ 1, a+ 2} ⊂ A, as 2 6 b.

• zj = a+ b

– For zj+1 6 a − 1, then qj+1 ∈ {−1, 0}, and we set qj := 1, so wj = b. Thus,
b− 1 6 xj 6 2b+ 1 and xj ∈ A, since 2 6 b 6 a− 1.

– Having zj+1 ∈ {a, . . . , a + b}, or zj+1 = a + b + 1 and zj+2 > a, implies
qj+1 ∈ {0, 1}. If, at the same time, zj−1 > a, then qj−1 ∈ {0, 1} too. By setting
qj := 1, we get wj = b, and, finally, 0 6 xj 6 b+ 1 so xj ∈ A.

– For zj+1 ∈ {a, . . . , a+b}, or zj+1 = a+b+1 and zj+2 > a, we have qj+1 ∈ {0, 1}.
If, at the same time, zj−1 6 a − 1, then qj−1 ∈ {−1, 0}. We put qj := 0 and
obtain wj = a+ b. As a result, a− 1 6 xj 6 a+ b.

– If zj+1 = a+ b+ 1 and zj+2 6 a− 1, then qj+1 = 1. With qj := 0, we proceed
via wj = a+ b to xj ∈ {a− 1, a, a+ 1} ⊂ A, as 1 < b.

• zj ∈ {a+ 1, . . . , a+ b− 1}

– When zj+1 6 a − 1, we have qj+1 ∈ {−1, 0} and qj := 1. Consequently,
wj ∈ {1, . . . , b− 1}, and 0 6 xj 6 2b thus xj is in A, as b < a.

– If zj+1 > a, then qj+1 ∈ {0, 1}. By putting qj := 0, we have wj ∈ {a+1, . . . , a+
b− 1}, so a− b 6 xj 6 a+ b.

• zj = a

– For zj+1 6 a − 1, we have qj+1 ∈ {−1, 0}, and zj−1 > a implies qj−1 ∈ {0, 1}.
Setting qj := 1 results in wj = 0, and, finally, 0 6 xj 6 b+ 1 thus xj ∈ A.

– When both zj+1 6 a− 1 and zj−1 6 a− 1, then qj+1 ∈ {−1, 0} and qj−1 = 0.
With qj := 0, we proceed via wj = a to a 6 xj 6 a+ b.

– If zj+1 > a, then both qj+1 and qj−1 are limited to {0, 1}, and we set qj := 0.
Thus, we obtain wj = a, and, finally, a − b 6 xj 6 a + 1 thus xj ∈ A, as
1 < b < a.

• zj ∈ {b, . . . , a− 1}

– Since here we have qj−1 ∈ {0, 1} for any choice of zj−1, we can keep qj := 0
and wj ∈ {b, . . . , a− 1}. Finally, we obtain 0 6 xj 6 a+ b.

• zj ∈ {0, . . . , b− 1}
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– When zj+1 6 a, we have qj+1 ∈ {−1, 0}. As qj−1 ∈ {0, 1}, we keep qj := 0 and
wj ∈ {0, . . . , b− 1}. Then 0 6 xj 6 2b thus xj ∈ A, as b < a.

– If zj+1 > a + 1, then qj+1 ∈ {0, 1}. Also qj−1 ∈ {0, 1}, and we set qj := −1.
Consequently, wj ∈ {a, . . . , a+ b− 1}, so a− b 6 xj 6 a+ b.

Therefore, the algorithm performs a correct digit set conversion from {0, . . . , a + b + 1}
to {0, . . . , a+ b} = A.

The previous algorithm acts on alphabet A ⊂ N. Looking for the letters h ∈ A =
{0, . . . , a + b} such that the algorithm keeps unchanged the constant sequences (h)j∈Z
allows us again to modify the alphabet of the algorithm:

Proposition 3.15. Let β > 1 satisfy β2 = aβ + b, with a > b + 1, b > 2. Then 1-block
parallel addition in base β is possible on any alphabet of cardinality a+b+1 of contiguous
integers containing 0.

Proof. Every letter h, 0 6 h 6 a+b−1, is fixed by the Algorithm GDE(β2 = aβ+b) above.
So, for any d = 1, . . . , a + b− 1, both letters d and a + b− d are fixed by the algorithm,
and, by Corollary 24 in [10], 1-block parallel addition is possible on any alphabet of the
form {−d, . . . , a+ b− d} = A, with d ∈ {0, . . . , a+ b}.

For b > 2 and a = b, the lower bound on the cardinality of the alphabet A from Theo-
rem 3.12 is attained as well. It follows from Corollary 4.4, where the existence of k-block
parallel addition for this case is guaranteed on the alphabet A = {0, 1, . . . , 2a}. Besides,
it is believed that also here 1-block parallel addition should be possible on any alphabet
of the minimal cardinality #A = 2a+1, but the algorithm is a lot more complicated than
for the case of a > b+ 1, and it still remains an open task to construct it.

So we finally gather all the cases.

Theorem 3.16. Let β satisfy β2 = aβ + b, where a > b and b > 1. Then block parallel
addition in base β is possible on alphabet A = {0, . . . , a+ b}.

Let us now consider a class of well studied Pisot numbers, generalizing the (quadratic)
golden mean:

Definition 3.17. Let d ∈ N, d > 2. The real root β > 1 of the equation Xd = Xd−1 +
Xd−2 + · · ·+X + 1 is said to be the d-bonacci number. Specifically, the 2-bonacci number
(the golden mean) is called the Fibonacci number, and the 3-bonacci number is called the
Tribonacci number.

Using Theorem 3.12 and the simple fact that dβ(1) = 1d for any d-bonacci number β,
we get the following result:

Corollary 3.18. Let β be the d-bonacci number, d > 2. There exists no k-block p-local
function performing parallel addition in base β on the alphabet A = {0, 1}.
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Remark 3.19. In the case when β is a non-simple Parry number with the period of dβ(1)
longer than 1, one can apply two different lower bounds on cardinality of the alphabet
A = {0, 1, . . . ,M} allowing parallel addition, namely the bound from Theorem 3.5 and
the one from Theorem 3.12.

For example, consider base β with dβ(1) = t1(t2t3)
ω with t1 > t2 > t3. By Theorem

3.5 we get M > 2t1 − t2 − 1 and by Theorem 3.12 we get M > t1 + t3.

4. Upper bounds on minimal alphabet allowing block parallel addition

Theorem 4.1. Given a base β and an alphabet B of contiguous integers containing 0; let
us suppose that there exist non-negative integers ` and s such that for any x = xn · · ·x0.
and y = yn · · · y0. from FinB(β) the sum x+ y has a (β,B)-representation of the form

z = x+ y = zn+` · · · z0.z−1 · · · z−s .

Then there exists a k-block 3-local function performing parallel addition in base β on the
alphabet A = B + B, where k = 2(`+ s).

Proof. According to the assumptions, any x =
∑k−1

j=0 xjβ
j with xj ∈ B+B can be written

as x =
∑k+`−1

j=−s x′jβ
j with x′j ∈ B. And thus any z =

∑k−1
j=0 zjβ

j with zj ∈ A +A can be
written as

z =
k+2`−1∑
j=−2s

z′jβ
j with z′j ∈ B .

It means that for any u ∈ A(k) +A(k) there exist

L(u) ∈ B(2`), C(u) ∈ B(k), and S(u) ∈ B(2s)

such that
u = L(u)βk + C(u) + S(u)β−2s . (9)

It may happen that for u ∈ A(k) +A(k) there exist several triples L(u), C(u), S(u) with
the required property. But for any u, we fix just one triple. We can set

L(u) = S(u) = 0 and C(u) = u for any u ∈ B(k). (10)

In particular, we set L(0) = C(0) = S(0) = 0.
Let us define a 3-local function Φ with domain (A(k) +A(k))

3 by

Φ(f, g, h) = L(h) + C(g) + S(f)β2` . (11)

As k = 2(` + s), B(k) = B(2`) + B(2s)β2`, and the function Φ maps (A(k) + A(k))
3 to

B(k) + B(k) = A(k).
Let · · ·u2u1u0u−1u−2 · · · be a sequence with finitely many non-zero uj ∈ A(k) +A(k).

We show that ∑
j∈Z

ujβ
jk =

∑
j∈Z

vjβ
jk , where vj = Φ(uj+1 uj uj−1).
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Indeed, by (9) and (11), we have∑
j∈Z

ujβ
jk =

∑
j∈Z

L(uj)β
k(j+1) +

∑
j∈Z

C(uj)β
kj +

∑
j∈Z

S(uj)β
kj−2s =

=
∑
j∈Z

L(uj−1)β
kj +

∑
j∈Z

C(uj)β
kj + β2`

∑
j∈Z

S(uj+1)β
kj =

∑
j∈Z

Φ
(
uj+1 uj uj−1

)
βkj.

Our choice L(0) = C(0) = S(0) = 0 guarantees that the sequence · · · v2v1v0v−1v−2 · · ·
has only finitely many non-zero elements as well. Therefore, Φ is the desired k-block
3-local function performing parallel addition in base β on the alphabet A = B + B.

Remark 4.2. From equations (10) and (11) in the previous proof we see that Φ(u, u, u) =
u for any u ∈ B(k). It means that the infinite constant sequence (u)j∈Z is fixed by the
corresponding parallel algorithm for any u ∈ B(k).

Proposition 4.3. Let β > 1 be a number with the (PF) Property. Then there exists
k ∈ N such that k-block parallel addition in base β is possible on the alphabet A =
{0, 1, . . . , 2bβc}, and also on the alphabet A = {−bβc, . . . ,−1, 0, 1, . . . , bβc}.

Proof. Let dβ(1) = t1t2 · · · be the Rényi expansion of unity in base β; obviously, t1 = bβc.
We apply the previous Theorem 4.1 to B = {0, 1, . . . , bβc}. In [5], the numbers x for which
the greedy expansion in base β has a form xnxn−1 · · ·x1x0. were called β-integers. The
set of β-integers is usually denoted Zβ. Using the Parry lexicographical condition, we can
write formally

Zβ =
{ n∑
j=0

xjβ
j | xj ∈ B and xjxj−1 · · ·x1x0 ≺ t1t2t3 · · · for any j = 0, 1, . . . , n

}
.

Let us denote by

B[β] =
{ n∑
j=0

xjβ
j | xj ∈ B

}
.

Clearly, Zβ ⊂ B[β], but, in general, the opposite inclusion does not hold. Nevertheless,
for a given base β with the (PF) Property, there exists a constant h ∈ N such that any
x ∈ B[β] can be written as a sum of at most h elements from Zβ:

• If t1 > 1, then h = 2, since any coefficient xj ∈ B can be written as xj = x′j + x′′j ,
where x′j, x

′′
j < t1. Thus

∑n
j=0 xjβ

j =
∑n

j=0 x
′
jβ

j +
∑n

j=0 x
′′
jβ

j and coefficients in
both sums on the right side satisfy the Parry condition.

• If t1 = 1, then ti ∈ {0, 1} for all i > 2 and B = {0, 1}. We can take as h the minimal
integer h > 2 such that th 6= 0. This choice of h guarantees that dβ(1) = t10

h−2th · · ·
and that any (β,B)-representation znzn−1 · · · z1z0.z−1z−2 · · · of a number z in which
each nonzero coefficient zj = 1 is followed by h−1 zeros zj−1 = zj−2 = · · · = zj−h+1 =
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0, is already the greedy expansion of z. Therefore, any x =
∑n

j=0 xjβ
j ∈ B[β] can

be written as x = x(0) + x(1) + · · ·+ x(h−1), with x(c) =
∑n

j=0 x
(c)
j β

j ∈ Zβ defined by

x
(c)
j =

{
0 if j 6= c mod h
xj if j = c mod h .

Bernat studies in [3] the number of fractional digits in the greedy expansion of x+ y
of two β-integers x and y. He shows that if β is a Perron number (i.e., an algebraic
integer with all its algebraic conjugates of modulus strictly less than β) with no algebraic
conjugate of modulus 1, then there exists a constant L⊕ ∈ N, such that if x+ y has finite
greedy β-expansion, then the number of fractional digits in the greedy expansion of x+ y
is less than or equal to L⊕. Let us stress that the value L⊕ is effectively computable
when β is a Parry number. Since our base β has the (PF) Property, the greedy expansion
of the sum of any two β-integers is finite, and thus we are going to apply the previous
Theorem 4.1 with s = hL⊕.

In order to exploit the Theorem 4.1, we have to find also a suitable `. Let ` be the
smallest integer such that 2bβc

β−1 < β`. Since for any x ∈ B[β] we have x = xn · · ·x0. 6

bβcβn+1−1
β−1 , we can estimate x + y = xn · · ·x0. + yn · · · y0. 6 2bβcβn+1

β−1 < βn+`+1. The

inequality z = x + y < βn+`+1 implies that at least one representation of z (namely
the greedy expansion prolonged to the left by zero coefficients if needed) has the form
z = zn+` · · · z0.z−1z−2 · · · .

Using Theorem 4.1, we have proved that parallel addition is possible on the alphabet
A = {0, 1, . . . , 2bβc}. According to Remark 4.2, the sequence (h)j∈Z is fixed by the algo-
rithm for parallel addition for any h ∈ {0, 1, . . . , bβc} = B. Therefore, due to Corollary 24
in [10], the alphabet A−bβc = {−bβc, . . . , 0, . . . , bβc} allows parallel addition as well.

Combining Proposition 4.3, Theorem 3.5, and Theorem 3.12, we can derive the fol-
lowing conclusions:

Corollary 4.4. Let dβ(1) = t1t2 · · · tm, with t1 > t2 > · · · > tm > 1 be the Rényi
expansion of 1 in base β. Then there exists M ∈ N such that parallel addition by a k-
block local function in a non-integer base β is possible on the alphabet A = {0, 1, . . . ,M}
with t1 + tm 6M 6 2t1.

Corollary 4.5. Let dβ(1) = t1t2 · · · tmtω with t1 > t2 > t2 > · · · > tm > t > 1 be the
Rényi expansion of 1 in base β. Then there exists M ∈ N such that parallel addition
by a k-block local function in base β is possible on the alphabet A = {0, 1, . . . ,M} with
2t1 − t2 − 1 6M 6 2t1.

On those bases β that are d-bonacci numbers we will demonstrate how the concept of
k-block local function can substantially reduce the cardinality of alphabet which allows
parallel addition:

Corollary 4.6. Let β be a d-bonacci number for some d ∈ N, d > 2.
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• If an alphabet A allows 1-block parallel addition in base β, then its cardinality is
#A > d+ 1.

• There exists k ∈ N such that k-block parallel addition in base β is possible on the
alphabets A = {0, 1, 2} and A = {−1, 0, 1}, and these alphabets cannot be further
reduced.

Proof. The minimal polynomial of a d-bonacci number is f(X) = Xd −Xd−1 −Xd−2 −
· · ·−X−1. Theorem 2.4 says that 1-block parallel addition is possible only on an alphabet
with cardinality at least |f(1)|+ 2 = d+ 1.

The Rényi expansion of unity for a d-bonacci number is dβ(1) = 1d, and thus the d-
bonacci number satisfies the (PF) Property. Since bβc = 1, due to Proposition 4.3, k-block
parallel addition in base β is possible on the alphabets A = {0, 1, 2} and A = {−1, 0, 1}.
With respect to Corollary 3.18, this alphabet is minimal.

Example 4.7. In [4], Bernat computes the value of L⊕ (as defined in the proof of Proposi-
tion 4.3) for the Tribonacci base, namely L⊕ = 5. It is readily seen that for the Tribonacci
base, the set of β-integers Zβ defined in the proof of Proposition 4.3 and the set B[β] de-
fined ibidem coincide. Therefore the parameter s in Theorem 4.1 is equal to 5. It is easy
to see that ` = 2. Thus, addition in the Tribonacci base is 14-block 3-local parallel on
the alphabets A = {0, 1, 2} or A = {−1, 0, 1}.

Remark 4.8. Theorem 4.1 requires an alphabet B for which FinB+B(β) = FinB(β) and
also it requires existence of non-negative integers s and ` as defined above. They control
the number of additional positions by which the sum of two elements from FinB(β) is
prolonged to the right and to the left, respectively. To satisfy the assumptions of Theo-
rem 4.1 we suppose in Proposition 4.3 that the base β has the (PF) Property. Although
this property is too restrictive we decided to use it as we did not find any other pub-
lished result which allow us determine s and `. We expect that the (PF) Property can by
replaced by a more suitable assumption.

Remark 4.9. This paper deals mainly with positive bases β. However, Theorem 4.1
can be applied to complex bases as well. One such class of bases defines the so-called
Canonical Number Systems (CNS), see [15] and [16].

An algebraic number β and the alphabet B = {0, 1, . . . , |N(β)| − 1}, where N(β)
denotes the norm of β over Q, form a Canonical Number System, if any element x of
the ring of integers Z[β] has a unique representation in the form x =

∑n
k=0 xkβ

k, where
xk ∈ B and xn 6= 0.

In particular, it means that the sum of two elements of Z[β] has also a finite represen-
tation in the form

∑m
k=0 xkβ

k, where xk ∈ B and xm 6= 0, and thus in Theorem 4.1 we can
set s = 0. It can be proved that in a CNS the constant ` required in that theorem also
exists. We can conclude that, in a CNS, block parallel addition is possible on the alphabet
A = {0, 1, . . . , 2|N(β)| − 2} or on the alphabet A = {−|N(β)|+ 1, . . . , 0, . . . , |N(β)| − 1}.

More specifically for the Penney numeration system, the base β = ı − 1 has norm
N(β) = 2, and together with the alphabet B = {0, 1} forms a CNS. Therefore, due to
Theorem 4.1, block parallel addition in the Penney numeration system is possible not only
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on the alphabet A = {−1, 0, 1} (as shown by Herreros in [13]), but also on the alphabet
A = {0, 1, 2}.

Analogously to the previous remark, the assumption that β defines a CNS is too
restrictive as the set FinB(β) can be closed under addition without being a CNS. This
phenomenon is studied in [1].

5. Comments and open questions

When designing the algorithms for (block) parallel addition in a given base β, we need
to take into consideration three core parameters:

1) the cardinality #A of the used alphabet A,
2) the width p of the sliding window, i.e., the number p appearing in the definition of

the p-local function Φ, and
3) the length k of the blocks in which we group the digits of the (β,A)-representations

for k-block parallel addition.
There are mathematical reasons (for example comparison of numbers) and even more
technical reasons to minimize all these three parameters. But intuitively, the smaller
is one of the parameters, the bigger have to be the other ones. The question of which
relationship binds the values #A, p, and k is far from being answered.

In that respect, we are able to list just several isolated observations made for specific
bases:

• In [9], we studied 1-block parallel addition, i.e., k was fixed to 1. For base β being

the Fibonacci number (i.e. the golden mean 1+
√
5

2
), we gave a parallel algorithm

for addition on the alphabet A = {−3, . . . , 0, . . . , 3} by a 13-local function. On
the other hand, for the same base, we have also described an algorithm for parallel
addition on the minimal alphabet A = {−1, 0, 1}, where the corresponding function
Φ is 21-local.

• The d-bonacci bases illustrate that if we do not care about the length k of the
blocks, the alphabet can be substantially reduced, namely to A = {0, 1, 2}, see
Corollary 4.6. But the price for that is rather high; already for the Tribonacci base
our algorithm requires blocks of length k = 14, see Example 4.7.

• If we fix in the Penney numeration system the value k = 1, an alphabet of cardinal-
ity 5 is necessary for parallel addition. Herreros in [13] provided an algorithm for
parallel addition in the Penney base β = ı−1 on the alphabetA = {−1, 0, 1}, but his
algorithm uses k = 4. This value is not optimal; we have found (not yet published)
that k = 2 is enough to perform parallel addition on the alphabet A = {−1, 0, 1}.

Besides the width p of the sliding window as such, there is another characteristic which
is desired for the algorithms performing parallel addition, namely to be neighbour-free.

This property has to do with the way how one determines the value qj within the first
step of the algorithm. It is in fact the key task of the algorithm. Once having the correct
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set of the values qj after the first step, one only deducts the qj-multiple of an appropriate
form of a representation of zero, and the task is finished.

Being neighbour-free means that the value qj depends only on the digit on the j-th
position of the processed string, irrespective of its neighbours. Note that this is something
else than being 1-local! On the other hand, an algorithm of parallel addition which is not
neighbour-free, is called neighbour-sensitive, see the discussion in [9].

For integer bases, as explained in Remark 2.6, the concept of k-block parallel addition
with k > 2 is not interesting from the point of view of the minimality of the cardinality of
the alphabet. However, grouping of digits into k-blocks can improve the parallel algorithm
in another way, namely with respect to the neighbour-free property.

For instance, in base β = 2, 1-block parallel addition is doable on the minimal
alphabet A = {−1, 0, 1} by the neighbour-sensitive algorithm of Chow and Robert-
son [7]. But 2-block addition here means just addition in base β2 = 4 on alphabet
A(2) = {−3, . . . , 0, . . . , 3}, and is performable by the simpler algorithm of Avizienis [2],
which is neighbour-free.

The most common reason why to work in a numeration system with an algebraic
base β, instead of a system with base 2 or 10, consists in the requirement to perform
precise computations in the algebraic field Q(β). If the base β is not “nice enough”,
we can choose another base γ such that Q(β) = Q(γ) and then work in the numeration
system with the base γ. The question is which base in Q(β) is “nice enough” and how to
find it effectively.

• Certainly, the “beauty” of the Pisot bases is not questionable. Cheng and Zhu in
[6] described an algorithm for finding a Pisot number which generates the whole
algebraic field Q(γ).

• From another point of view, a base allowing parallel addition on a binary alphabet
would be “beautiful” as well; but there is no example of such a base known yet.
May it exist?
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