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ABSTRACT.

Two infinite words that are connected with some significant univoque numbers are

studied. It is shown that their factor and palindromic complexities almost coincide with the factor and
palindromic complexities of the famous Thue-Morse word.
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1. INTRODUCTION

The main result of this paper is the computation of
the factor and palindromic complexity of two infinite
words which appear in [1] as a representation of some
significant univoque numbers. A real number A > 1 is
said to be univoque if 1 admits a unique expansion in
base A of the form

1= Zai)\_i with a; € {0,1,...,[A] — 1}.

i>0

Komornik and Loreti showed in [2] that there is a
smallest univoque number 7 in the interval (1,2). This
number is transcendental [3] and is connected with
the Thue-Morse word in this sense: if 1 =3, aiyt,
then ajasas--- = 11010011 --- = 0~ tury, i.e., the
Thue-Morse word without the leading zero. There are
two generalizations of this result. The first one is the
work of the same authors [4], where they studied the
univoque numbers A € (1,b+ 1), b € N. The second
one is the work of Allouche and Frougny [1]. They
proved that there exists a smallest univoque number
in (b,b+ 1) (this is proved also in [5]) and they also
found the corresponding unique expansion of 1. These
expansions and some other significant words from [1]
are studied in the sequel.

As explained in the concluding remark, at least the
factor complexity could be computed using the com-
mon method employing special factors (see e.g. [6] for
details). However, here we derive both complexities
directly from the definition of words which really en-
lighten the connection between the studied words and
the Thue-Morse word.

2. PRELIMINARIES

An alphabet A is a finite set of letters. A concatenation
of n letters v = vovy -+ v,—1 from A is a (finite)
word over A of length n. An infinite sequence u =
upuiug -+ - is an infinite word over A. Any finite
word v such that v = wgugs1 - Uksn—1 for some
k € N is called a factor of u and ugug41 - Uktn—1

is its occurrence in it. The set of all factors of u
is denoted by L(u), the set £, (u) is the set of all
factors of length n. The factor complezity of an infinite
word u is the function Cy(n) that returns for all n €
N the number of factors of u of length n. Given
a word v = wvgvy - -Vp_1, the word ¥ is defined as
Up_1Un_2 - V1. If v = 0, v is called a palindrome.
The palindromic complezity of an infinite word u is the
function Py (n) that returns for all n € N the number
of factors of u of length n that are palindromes.

All infinite words in question are derived from the
famous Thue-Morse word uty;. The Thue-Morse word
is the fixed point of the Thue-Morse morphism

QQTM(O) = 01
SDTM(l) = 10

starting in the letter 0, i.e.,

urm = nlggo orm(0) =

= 0110100110 -- = EQE1E2€3 - .

We are interested in the factor and palindromic com-
plexity of infinite words w = mgmyms - -+ given by

My =€pt1 — (2t —b— Ve, +¢— 1, (1)

where 2¢t > b > 1. In particular, we want to determine
both complexities for all the three cases stated in [1,
Theorem 2|, i.e., for 2t > b+3,2t = b+2 and 2t = b+1.
If 2t = b+ 1, then m,, = e,41 +1t —1 and so w equals
the word 0~ 1ury (after renaming the letters 0 — t—1
and 1 — t) having the same factor and palindromic
complexity. Analogously, in the other two cases 2t >
b+3 and 2t = b+ 2, it is sufficient to consider only one
choice of parameters ¢ and b satisfying the inequality
and the equality, respectively. That is because the
former formula implies that the word w consists of
four distinct letters b—t < b—t+1 < t—1 < t and the
latter one that the word w consists of three distinct
letters b —t <t —1 < t. If we choose t = b = 3 and
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t = b = 2 respectively, all the other words given by (1)
are (after renaming the letters) equal to the words
corresponding to these two choices of parameters b
and t. Thus, we can simplify the definition of the
infinite words we study as follows.

Definition 1. For a = 1,2, the infinite word w, =
momimes - - - is defined by

My = Ent1 — Ap +a = Eny1 +a(l —ep). (2)
Hence, we get

Wy 210201210120 - -
wy = 310302310230---

As we will see, the factor and palindromic complex-
ity of the word w, will be expressed using the factor
and palindromic complexity of the Thue-Morse word
urym. Therefore we recall the following two theorems.

Theorem 2 ([7], [8]). For the Thue-Morse sequence,
Cury (1) = 2, Cyryy(2) = 4 and, forn > 3, if n =
2"+q+1,7>0,0<¢q< 2", then

_Jex2rl 449 0<g<2m,
CUTm( ) - 27«+2 + 2(] 27._1 < q < 9r.

Theorem 3 ([9]). Let n > 3 and n = 2 x 4% 4 ¢,
keN,0<q<6x 4k, then

4 0<q<3x4k
2 3x4F<qg<3x4Forqg=0.

Puru (2n) = {

Furthermore, Pury (1) = Pury(2) = Pury(3) =
Purn(4) = 2 and there are no palindromes of odd
length greater than 3.

3. FACTOR COMPLEXITY

The following lemma points out the similarity between
the languages of the words ury and wy,.

Lemma 4. There exists a bijective mapping from
Ly (n+1) to Ly, (n) for alln > 2.

Proof. The mapping is defined by (2). We just have
to prove that it is injective. Let mg---mgyr and
My -+~ Mpk e two occurrences of the same factor
of wg, kK > 1, ¢ # p. We prove that the factors
€q€q+1 """ Eqik+1 AN EpEpy1 -+ - Epyrt1 are the same
as well. Obviously, it suffices to prove it for the case
of k =1. Let

mg = g1+ a(l —gg) =
=myp = ept1 +a(l —&p)
and

Mgt1 = g2 +a(l —egq1) =

= Myp41 = Ept2 + a(l — ep4).

Since there are only 8 possible three letter binary
words €pept1Ept2 and €464+164+42, it is easy to find
all solutions of these two equations. If ¢ = 2, then
EpEp+1Ep+2 = EqEq+1Eq+2 is the unique solution of
this system of two equations. If a =1, e = €441 =
€q+2 F €p = E€p41 = Ept2 is the only other solution,
but it is not admissible since neither 000 nor 111 are
factors of urys. u

This lemma allows us to determine the factor com-
plexity Cyw, (n) for n > 2. The case n = 1 is trivial,
Cw, (1) is equal to the number of letters occurring
in wg.

Corollary 5. For both a =1 and a = 2 and for all
n > 2, it holds

Cwa (n) = CUTM (n + 1)
Furthermore, Cy, (1) = 3 and Cy, (1) = 4.

Corollary 6. For both a = 1 and a = 2, w, is
square-free.

Proof. Let ww be a factor of w,, w is of length n,
and let ww = m;---myqo,—1. Then, according to
the previous lemma, there exists a unique factor v of
length n having b as its first letter such that vvb =
€i - Ei1on is a factor of ury;. But this is not possible
since ury is overlap-free (see e.g. [10]), which means
exactly that it does not contain factors of this form. =

4. PALINDROMIC COMPLEXITY

As for the palindromic complexity, the difference be-
tween the cases a = 1 and a = 2 is more significant
than it is for the factor complexity. However, the
result still remains strongly related to the palindromic
complexity of ury;. First simple observation is that,
since w, is square-free for both values of a, it cannot
contain palindromes of even length since such palin-
drome contains the square of a letter in its middle.

Definition 7. Let A= {0,1,...,n},a € Aand v =
v1 U, € A\n,m > 1. Seta =n—a and v =
Ty Uy

Lemma 8. Let p > 2 be even.

A word my,Mp41 ... Mp4p is a palindrome of wo if
and only if

En =En4+2 = " = Entp—2 = Entp; (3)

En4+1 = En43 = " = Entp—1 = En4p+1,

where €11 # €p,.

A word my,mp41 ... Mp4p Is a palindrome of wy if
and only if
En =  Entp+l
(4)
Entl = Entlir-
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Proof. We have for all i =0,1,...,5 -1

Miti = Entit1 + a(l—epypi) =
=Mpip_i = Entp—itl T+ a(lf 5n+p—i) (5)

=entive +a(l—entit1) =

= En4p—i T a(l_ 5n+p7i71)7

My i1

= Mptp—i—1

where M, +; # Myyi41 due to the square-freeness of
w,. These two equations have a trivial solution

En+i = Enti4+2 = Endp—i 7’5 Entit+l =

- 5n+p—i+1 - €n+p—i—1

fori =0,1,...,5 —2. For the case a = 2, it is the
only solution.
If a = 1, we can rewrite (5) as

En+1 + En+p En + Entp+1

Ent2 T Entp—1 = Entl T Entp

Entt +5n+§+1 = 5n+§71+5n+§+2-

Now, considering that €, = €4p+1 leads to inadmis-
sible solution €, = €p41 = -+ = €p4pt1, therefore,
the factor €pep41 - - Entp+1 is a solution if and only
if (4) is satisfied. L]

Thus, in the case of a = 2, the existence of a palin-
drome of odd length p+ 1,p > 2 is equivalent to the
existence of the factors 1010---10 or 0101---01 in
ury of length p + 2. But such words are factors of
ury only for p = 2.

Theorem 9.

4 n=1,
Pws(n) =<2
0 otherwise.

n =3,

In order to describe the relation between the palin-
dromic complexities of wi and ury;, we need to intro-
duce the following definition.

Definition 10. A factor v of an infinite word u is
said to be a C-palindrome if 7 = v. Denote CPy(n)
the number of C-palindromes of length n in u.

Lemma 8 says that there exists a bijective mapping
between the set of palindromes in w; of odd length
p+1, p> 2, and the set of C-palindromes in ury; of
length p + 2.

Corollary 11. Forn > 1
Pw,(2n + 1) = CPypy, (20 + 2).
Lemma 12. For all positive integers n it holds that

CPury (2n) = Pugy (40).

Proof. 1t is readily seen that if v is a C-palindrome
in upy of length 2n | then o\ (v) is a palindrome of
length 4n. Similarly, if v’ is a palindrome of length 4n,
then there exists a unique C-palindrome v of length
2n such that pry(v) =0’ L]

Theorem 13. Forn >1
Pw, (2n + 1) = Puyy, (4n +4),

Pw, (1) = 3. There are no palindromes of even length
in wiy.

5. REMARKS

As remarked in [1, Remark 5], wy = 210201210120 - - -
is exactly the square-free Braunholtz sequence on
three letters given in [11]. Moreover, this sequence is
in fact the sequence u; which can be defined as the
fixed point of Istrail’s substitution 1 +— 102, 0 — 12,
2+ 0 [12], thus we obtain w; from uy by exchanging
letters 1 <+ 2, 2 <+ 0, 0 <> 1. Then, of course, the
factor complexity of u; and wy is the same. The word
u; was studied in [13], where its factor complexity is
computed using the notion of (right) special factors.
In [13] the sequence u; is referred to as the Thue-
Morse word on three symbols and as it is recalled
there it was originally defined by Thue [14, 15] and
later on rediscovered in various contexts by several
authors, such as Morse [16]. Another relation between
u; and ury is also pointed out there: if we define
a (non-primitive) substitution §(1) — 011,5(0) —
01,5(2) — 0, we have 6(u;) = ury. Consequently,
0'(w1) = ury for §'(2) — 011,46’ (1) — 01,6’(0) — 0.
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