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AbstractIn a previous work, we have investigated an automata-theoretic property of nu-meration systems associated with quadratic Pisot units that yields, for every suchnumber �, a certain group G�.In this paper, we characterize a cross-section of a congruence 
� of Z4 that hadarisen when constructing G�. This allows us to completely describe the quotient H�ofZ4 by 
�, that becomes then a second group associated with �. Moreover, the cross-section thus described is very similar to the symbolic dynamical system associated, bya theorem of Parry, with the two numeration systems attached to �.The proof is combinatorial, and based upon rewriting techniques.R�esum�eDans un article pr�ec�edent, nous avions associ�e �a chaque nombre de Pisot quadra-tique unitaire � un certain groupe G� par le biais de la construction d'un automate quir�ealise le passage entre les repr�esentations des entiers dans deux syst�emes de num�era-tion naturellement attach�es �a �.Dans cet article, nous donnons une caract�erisation d'un ensemble de repr�esentantspour une congruence 
� de Z4 qui avait �et�e utilis�ee pour la d�e�nition de G�. Cettecaract�erisation permet la description compl�ete du quotient H� de Z4 par 
�, autregroupe associ�e �a �. Elle est d'autre part remarquablement similaire �a la description,donn�ee par un th�eor�eme de Parry, du syst�eme dynamique symbolique associ�e aux deuxsyst�emes de num�eration attach�es �a �.La preuve est combinatoire et utilise les techniques des syst�emes de r�e�ecriture.

{ 2 {



Two groups associated with quadratic Pisot unitsDedicated to the memory of David KlarnerWe describe here two commutative �nite groups that are associated with quadraticPisot units, via numeration systems.It is straightforward to associate numeration systems to Pisot numbers and recentpublications have shown spectacular appearance of these systems in several questions,putting an emphasis on quadratic Pisot units. For instance, Pisot numbers are involved inthe mathematical description of quasicrystals (see [3]); and every quasicrystal observed sofar in the real world is indeed de�ned by a Pisot number that is quadratic and a unit. Asanother example, these numeration systems are also present in the realization of arithmeticcodings of hyperbolic automorphisms of the torus (see [13]). Along the same line, in [14],a group whose order is equal to the discriminant of � is associated with any Pisot unit �.In the quadratic case this group is sitting between the two groups we describe here (withthe three groups collapsing into one only in the special case of the golden mean).There are indeed two numeration systems associated with every Pisot number. In aprevious work of ours, we showed that, in the case of a quadratic Pisot unit, there existsa �nite two-tape automaton that translates the representation of integers in one systeminto the representation of the same integer in the other system ([6]). The �rst of the twogroups quoted above is the transition monoid of that automaton. In the course of theconstruction, a certain congruence 
� of Z4 has naturally arisen.In the present paper, we characterize a cross-section of 
� from which we are able todescribe the second group, namely the quotient ofZ4 by 
�. A feature of the cross-section,which makes its characterization particularly appealing to us, is a great similarity with atheorem of Parry describing symbolic dynamical systems associated with the same Pisotnumber. *In the �rst section, we recall some de�nitions that will serve as a framework for thede�nition of the congruence 
�. The description of the cross-section for 
� is given inSection 2 (Theorem 1), together with the structure of the group that can be then computed.The proof of Theorem 1 follows then, which is combinatorial, and based upon rewritingtechniques.A preliminary version of this paper has been presented in [7].{ 3 {



1 Two numeration systems and two groupsAs in [6], let us start with the simplest, as well as the most popular, example: the twonumeration systems associated with the golden mean, i.e., the larger zero ' of the poly-nomial P'(X) = X2 �X � 1 .We have �rst the Fibonacci numeration system. The sequence of Fibonacci numbers,F = (Fn)n�0, is a linear recurrent sequence whose characteristic polynomial is P'(X).It is well-known1 that every positive integer is represented, in several di�erent ways, asa sum of Fibonacci numbers, and that | with the convention that F0 = 1 and F1 = 2| every integer has a unique representation, called its Fibonacci representation, with theproperty that no two consecutive Fibonacci numbers occur. For instance, 15 = F5 + F1;thus the Fibonacci representation of 15 is (100010)F .The other numeration system associated with the golden mean ' consists in taking ' asa base: it is known that every positive real number, and thus every integer, is represented,in several di�erent ways, as a sum of powers of ', and that every positive real number, andthus every integer, has a unique representation, called its '-expansion, with the propertythat no two consecutive powers of ' occur (cf. [9]2). For instance,15 = '5 + '2 + '0 + '�3 + '�6 ,thus the '-expansion of 15 is (100101.001001)'.We have shown in [6] that there exists a �nite two-tape automaton A' which mapsthe Fibonacci representation of any positive integer onto its '-expansion, provided thelatter is folded around the radix point, e.g. the Fibonacci representation of 15, 100010, ismapped onto 110000110010.The result in [6] holds indeed for any quadratic Pisot unit as well. In order to explainthis generalization, we have �rst to go quickly through few de�nitions and notations.A Pisot number is an algebraic integer greater than 1 such that every of its algebraicconjugates has a modulus smaller than 1. A quadratic Pisot unit � is thus the root greaterthan 1 of a polynomial P�(X) = X2 � rX � " ,with either: " = +1 and r � 1, and this will be referred to as Case 1,or " = �1 and r � 3, and this will be referred to as Case 2.1And usually credited to Zeckendorf [15]; cf. also [9, Exercise 1.2.8.34].2Exercise 1.2.8.35. { 4 {



As for the golden mean, we consider two numeration systems: the one de�ned bythe base �, and the one de�ned by the linear recurrent sequence U� whose characteristicpolynomial is P� : the sequence U� = (uk)k�0 is de�ned3 by:uk+2 = r uk+1 + " uk , k � 0 ,and by the initial conditions4 u0 = 1 and u1 = [�] + 1:Every positive integer N is equal, in several di�erent ways, to a sum of the uk's withcoe�cients taken in A� = f0; 1; : : : ; [�]g | the canonical alphabet of digits for � | andthus can be represented, in several di�erent ways, as a word over A�; these words are theU�-representations of N . Similarly, every positive integer N is equal, in several di�erentways, to a sum of (positive and negative) powers of � with coe�cients taken in the same A�.Together with a radix point, these words, possibly in�nite, are the �-representations of N .In a way that will be described in Section 3, one of the U�-representations of N isdistinguished and is called the normal U�-representation of N . Likewise, one of the �-representations of N is distinguished and is called the �-expansion of N . It is obtained bythe so-called greedy algorithm, see Section 3.Because � is a quadratic Pisot unit, the �-expansion of any positive integer is �nite(cf. [8]) and can thus be folded around the radix point.The result in [6] can be stated as follows: for any quadratic Pisot unit �, there existsa �nite two tape automaton A� which maps the normal U�-representation of any positiveinteger onto its folded �-expansion.Let us give some ideas on how the contruction works. There is a property of quadraticPisot units which is that the �-expansion of uk, the k-th element of U� has, roughly,period 4. And the succession of digits in a U�-representation corresponds | for therepresented integer | to the summation of elements of U� .The main step in the construction of A� is the construction of another �nite two-tape automaton T� which is much simpler. Building A� from T� is then done by meansof standard automata constructions that are explained in [6]. The automaton T� readswords where the letters have been grouped into blocks of length 4, and with the propertythat there is at most one digit 1 in every block. Stated otherwise, T� reads words writtenon the �ve letter alphabet B = fz; a; b; c; dg with:z = 0 0 0 0 ; a = 0 0 0 1 ; b = 0 0 1 0 ; c = 0 1 0 0 and d = 1 0 0 0 ,and it ouputs some blocks of 4 double digits (taken in an alphabet that depends on � andthat is much larger than A�). The underlying input automaton of T� is the Cayley graphof a certain group G�, which is described by the following5:3cf. [2].4[�] is the integral part of �.5Propositions 11 and 12 in [6]. { 5 {



Proposition 1 Let � be the zero larger than 1 of P�(X) = X2 � rX � " andlet �� = r2 + 4" be the discriminant of P�(X).i) If r is odd, then G� 'Z=��Z.ii) If r is even, then:in Case 1: a) if r = 4m, then G� 'Z=(12��)Z;b) if r = 4m+ 2, then G� ' [Z=(14��)Z]� [Z=2Z] ;in Case 2: G� ' [Z=(12��)Z]� [Z=2Z] .As explained in [6], the states of T�, that is to say, the elements of G�, can be seen aselements of Z4. The transitions of T� , when reading one of the elements a, b, c, d, or zof B correspond to the addition of the current state with certain elements â, b̂, ĉ, d̂ or ẑof Z4. In Case 1, â = 0 r�1 0 1 , b̂ = r�1 0 1 0 , ĉ = 0 1 0 r�1 , d̂ = 1 0 r�1 0 andẑ = 0 0 0 0 ; In Case 2, â = ĉ = 0 1 0 1 and b̂ = d̂ = 1 0 1 0 . This addition is not theusual addition on Z4, but the addition modulo the equivalence 
� on Z4 generated by thefollowing equalities6 :1 �r �" 0 = �r �" 0 1 = �" 0 1 �r = 0 1 �r �" = 0 0 0 0directly deduced from the minimal polynomial of �.Let us denote by H� the quotient of Z4 by 
�. As â + ĉ = b̂ + d̂ = ẑ, G� is thesubgroup of H� generated by â and b̂. This description of G� was aimed at introducingthe congruence 
� and the group H� which are here under investigation.Example 1 : " = +1, r = 1. ThenG' ' [Z=5Z] . 2Example 2 : " = +1, r = 2. Let � be the larger zero of X2 � 2X � 1 = 0. ThenG� ' [Z=2Z]� [Z=2Z] .The Cayley graph of G� with generators 0 1 0 1 and 1 0 1 0 is presented on Figure 1. 22 The group H�In order to describe the group H� = Z4=
�, we �rst characterize a set of representativesfor the congruence 
�. For that purpose we need a few more de�nitions.6With the convention that if n is an integer, �n denotes �n.{ 6 {
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Figure 1: The action of B on G�.The transitions represented are those labelled by â = 01 0 1 (bold arrows), and by b̂ = 10 1 0(dashed arrows).Two words of Z4 are said to be conjugate7 if there exists a circular permutation oftheir digits that sends one onto the other.The de�nition of the set R� of reduced words depends then upon the case we consider:Case 1. r � 1 and " = +1. A word of N4 is in R� if itself and its three conjugates arestrictly smaller than r 0 r 0 in the lexicographic order.Case 2. r � 3 and " = �1. A word of N4 is in R� if itself and its three conjugatesare strictly smaller than r� 1 r� 2 r� 2 r� 2 in the lexicographic order and di�erentfrom r�2 r�2 r�2 r�2 .The main purpose of this paper is to establish the following statement.Theorem 1 Every class of Z4 modulo 
� contains exactly one element in R�.The proof of Theorem 1 we give here | in Section 4 | is purely combinatorial andgoes through the de�nition of a rewriting system associated with �.The enumeration of the elements of R� gives the order of H� . With the notation usedin Proposition 1, we have:Proposition 2 The order of H� is r2��.Proof. In spite of the fact that, remarkably, the expression of the order H� does notdepend on the case considered | this is encoded in the value of �� indeed | the proofitself forces us to distinguish the following two cases.Case 1. r � 1 and " = +1. A word w of N4 is in R� if and only if it, and its threeconjugates, are (strictly) smaller than r 0 r 0 .7Though this is not the conjugacy relation in the group Z4 (which is the identity since Z4 is commuta-tive). { 7 {



There are two possibilities:a) every digit of w is smaller than r: there are r4 such words.b) one digit of w is equal to r; then the next digit has to be a 0 and the other two digitscan take any value smaller than r: there are r2 such words once the position of the digitequal to r is �xed among the 4 possible ones.It then comes jH�j = r4 + 4r2 = r2(r2 + 4) = r2�� .Case 2. r � 3 and " = �1. A word w of N4 is in R� if and only if it, and its threeconjugates, are (strictly) smaller than r�1 r�2 r�2 r�2 and di�erent from r�2 r�2 r�2 r�2 .There are three possibilities:a) every digit of w is smaller than r�1 and not all are equal to r�2: there are (r�1)4�1such words.b) one digit of w is equal to r�1; then the other three digits can take any value smallerthan r�1 and not all are equal to r�2: there are (r�1)3�1 such words once the positionof the digit equal to r � 1 is �xed among the 4 possible ones.c) two digits of w are equal to r � 1; then they cannot be consecutive ones and theother two digits can take any value smaller than r� 2: there are (r� 2)2 such words oncethe position of the digits equal to r � 1 is �xed among the 2 possible ones.It then comesjH�j = [(r� 1)4 � 1] + 4[(r� 1)3 � 1] + 2[(r� 2)2] = r2(r + 2)(r� 2) = r2�� .With the same notation as in Proposition 1 again, it then holds:Theorem 2 Let � be the zero larger than 1 of P�(X) = X2 � rX � " andlet �� = r2 + 4" be the discriminant of P�(X).i) If r is odd, then H� ' [Z=rZ]� [Z=rZ]� [Z=��Z] .ii) If r is even, then:in Case 1: a) if r = 4m, then H� ' [Z=2rZ]� [Z=2rZ]� [Z=(14��)Z] ;b) if r = 4m+ 2, then H� ' [Z=4rZ]� [Z=2rZ]� [Z=(18��)Z] ;in Case 2: H� ' [Z=2rZ]� [Z=2rZ]� [Z=(14��)Z] .Proof. We already know the order of H� and, in every case, the subgroup G� by Pro-position 1. As we can, by Theorem 1, compute in H�, we �nd elements in H� n G� ofsu�ciently large order to give the key to the structure of H� by a simple consideration onthe order of the generated subgroup.Case 1. �� = r2 + 4 and 0 r 0 r = r 0 r 0 = 0 0 0 0 .{ 8 {



i) r is odd; G� 'Z=��Z.We observe that 0 1 0 1 and 1 0 1 0 are both of order r. Hence the set of x y x y ,0 � x; y < r, is isomorphic to J� = [Z=rZ]� [Z=rZ].Since no divisor of r (odd) is a divisor of �� = r2 + 4, the intersection of J� with G�must be the identity. As their product has the same order as H� , the latter is isomorphicto this product: H� ' [Z=rZ]� [Z=rZ]� [Z=��Z] .ii) r = 2p is even; �� = 4(p2 + 1) .We observe that ( 0 0 p 1 ) + ( 0 0 p 1 ) = 0 0 r 2 = 0 1 0 1 which is, as above, oforder r. Hence 0 0 p 1 is of order 2r and J� = [Z=2rZ]� [Z=2rZ] is a subgroup of H� oforder 4r2.a) p = 2m is even; G� ' [Z=12��Z] = [Z=2(p2+ 1)Z] .The square8 of elements9 of G� is of order p2 + 1. No divisor of 2r = 4p is a divisorof p2 + 1 and H� ' [Z=2rZ]� [Z=2rZ]� [Z=14��Z] .b) p = 2m+ 1 is odd; G� ' [Z=14��Z]� [Z=2Z] .As above, ( 0 0 p 1 ) + ( 0 p 1 0 ) = 0 p p+1 1 is of order 2r. We observe then that( 0 m p+m+1 1 ) + ( 0 m p+m+1 1 ) = 0 2m r+p+1 2 = 0 p p+1 1 ,and 0 m p+m+1 1 is of order 4r: J 0� = [Z=4rZ]� [Z=2rZ] is a subgroup of H�.As p2 + 1 is even but not divisible by 4, no divisor of r, di�erent from 2, is a divisorof p2+1. The intersection of J 0� with G� is thus at most of order 4 | and equal to [Z=2Z]�[Z=2Z] | and at least of order 4 because of the order of H�. Thus:H� ' [Z=4rZ]� [Z=2rZ]� [Z=18��Z] .Case 2. �� = r2 � 4 and 0 0 r 0 = 0 1 0 1 , r�2 r�2 r�2 r�2 = 0 0 0 0 .i) r is odd; G� 'Z=��Z.Since 0 0 r r = 1 1 1 1 , it has order r�2. Then 0 0 1 1 has order r(r�2)and 0 0 r�2 r�2 has order r. Similarly, 0 r�2 r�2 0 has order r.Hence the set of elements equivalent to 0 x(r�2) (x+y)(r�2) y(r�2) , 0 � x; y < r,is isomorphic to J� = [Z=rZ]� [Z=rZ].8As G� is written additively, the square of x is x+ x.9Di�erent from the identity of G�, obviously. { 9 {



As in Case 1, since no divisor of r (odd) is a divisor of �� = r2 � 4, the intersectionof J� with G� must be the identity. As their product has the same order as H� , the latteris isomorphic to this product:H� ' [Z=rZ]� [Z=rZ]� [Z=��Z] .ii) r = 2p is even; �� = 4(p2 � 1) and G� ' [Z=12��Z]� [Z=2Z] .We observe that ( 0 0 p�1 p�1 ) + ( 0 0 p�1 p�1 ) = 0 0 r�2 r�2 which is, as above,of order r. Hence 0 0 p�1 p�1 is of order 2r and J� = [Z=2rZ]� [Z=2rZ] is a subgroupof H� of order 4r2.As no divisor of r = 2p, di�erent from 2, is a divisor of p+1 or of p�1, the intersectionof J� with G� is at most of order 4 | and equal to [Z=2Z]� [Z=2Z] | and at least oforder 4 because of the order of H�. Thus:H� ' [Z=2rZ]� [Z=2rZ]� [Z=14��Z] .Example 2 (continued) : " = +1, r = 2. The larger zero of X2 � 2X � 1 = 0 is� = 1+p22 . We have 0 0 2 1 = 0 1 0 0 and, since we are in Case 1, R� is the set ofwords of N4 with the property that they, and all their conjugates, are strictly smallerthan 2 0 2 0 in the lexicographic order.We are in the case i) b. of the proof of Theorem 2, with r = 2, p = 1 and m = 0. Theelements 0 0 1 1 and 0 1 1 0 generate J� = [Z=4Z]� [Z=4Z]. The element 0 m p+m+1 1 =0 0 2 1 = 0 1 0 0 is of order 8. In this case, J 0� = H� and G� is contained in J 0�.J 0� = H� ' [Z=8Z]� [Z=4Z] ,and G� is contained in J 0�.Figure 2 shows the elements of H� with \names" taken in R�. 2
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Figure 2: The group H� ' [Z=8Z]� [Z=4Z].The elements of J� are represented by circles, and those of its coset in H� by ovals. All theseelements are arranged on a torus which is, as usual, represented by a rectangle the edges of whichare identi�ed by pairs. For readability, some of the elements of H� are put on these edges andappear then twice. The �gure shows the intersecting orbits of 0 1 0 0 and 1 0 0 0 (double arrows).The elements of G� are indicated in gray.3 Symbolic dynamical systemsWe now give the de�nitions and results that are necessary in order to present the abovementioned result of Parry, as well as its relationship with Theorem 1. The �-expansion ofa positive real number y can be computed by the so-called \greedy algorithm" that canbe described as follows, see [12]. Let us denote by [x] the integral part and by fxg thefractional part of x. There exists k 2Z such that �k � x < �k+1. Let xk = [x=�k ], andrk = fx=�kg. Then, for i < k, put xi = [�ri+1], and ri = f�ri+1g. We get an expansionx = xk�k + xk�1�k�1 + � � � . If x < 1, then k < 0, and we put x0 = x�1 = � � � = xk+1 = 0.The digits obtained are elements of the alphabet A�.An expansion ending with in�nitely many zeroes is said to be �nite, and the trailingzeroes are omitted.The number 1 is treated as a special case. Let t1 = [�], r1 = f�g, and for i � 2, letti = [ri�1�] and ri = fri�1�g. The in�nite word (ti)i�1 is called the �-expansion of 1 and{ 11 {



is denoted by d�(1). Finally, the sequence d��(1) is de�ned as follows:if d�(1) is in�nite then d��(1) = d�(1) ,if d�(1) = t1 � � � tm then d��(1) = (t1 � � � tm�1(tm � 1))! .For instance, when � is a quadratic Pisot unit, we get :in Case 1, A� = f0; � � � ; rg, d�(1) = r1 and d��(1) = (r0)!;in Case 2, A� = f0; � � � ; r�1g and d�(1) = d��(1) = r�1 (r�2)!.Let D� be the set of �-expansions of numbers in the interval [0; 1[ and let � be the shifton AN� . The result of Parry can then be stated as follows ([11]): A sequence s of AN� is inD� if and only if, for every p � 0, �p(s) is smaller in the lexicographic order than d��(1).A very fundamental property of Pisot numbers (as far as �-expansions are concerned) isgiven by the following result [1]: If � is a Pisot number, then d�(1) is eventually periodic.This property makes it possible to canonically associate a linear recurrent sequence U�with every Pisot number � ([2]). In Section 1, we have given the construction of thesequence U�.By a greedy algorithm, every positive integer has a normal U�-representation (see [5]):given integersm and p, let us denote by q(m; p) and r(m; p) the quotient and the remainderof the Euclidean division of m by p. Let k � 0 such that uk � N < uk+1 and let dk =q(N; uk) and rk = r(N; uk), and, for i = k � 1; � � � ; 0, di = q(ri+1; ui) and ri = r(ri+1; ui).Then N = dkuk + � � �+ d0u0. For the linear recurrent sequences U� considered here, thedigits di belong to A�, and the word dk � � �d0 of A�� is the normal U�-representation ofN . The sequence U� together with the alphabet A� de�ne the linear numeration systemassociated with �.This system U� is characterized by the fact that normal U�-representations and �-expansions are de�ned by the same set of forbidden words [2]. Hence these two numerationsystems de�ne the same symbolic dynamical system. For notions on symbolic dynamicalsystems, for example systems of �nite type, so�c systems, : : : , the reader may consult [10].If � is the root of X2� rX � 1, with r � 1 [Case 1 ], the symbolic dynamical systemassociated with � is the set of bi-in�nite words on A� with no factor greater than or equalto the word r 1 in the lexicographic order. Since it is de�ned by the interdiction of a �nitenumber of words, it is a system of �nite type. It is the set of labels of bi-in�nite paths inthe graph represented Figure 3.If � is the root of X2� rX + 1, with r � 3 [Case 2 ], the symbolic dynamical systemassociated with � is the set of bi-in�nite words on A� with no factor greater than or equalin the lexicographic order to a word of the form r�1 (r�2)n r�1 for some n � 0. It is theset of labels of bi-in�nite paths in the graph represented Figure 4. Since this graph is a�nite automaton, the symbolic dynamical system associated with � is so�c.For the unitary quadratic Pisot numbers, the result of Parry can be expressed asfollows. In Case 1, an in�nite sequence (resp. a �nite word) over A� is a �-expansion{ 12 {



r 00; : : : ; r�1Figure 3: Symbolic dynamical system of �nite type in Case 1r�10; : : : ; r�30; : : : ; r�2 r�2Figure 4: So�c symbolic dynamical system in Case 2(resp. is a normal U�-representation) if and only if this sequence and all the shifted onesare lexicographically smaller than (r 0)!. Similarly in Case 2, an in�nite sequence (resp.a �nite word) over A� is a �-expansion (resp. is a normal U�-representation) if and only ifthis sequence and all the shifted ones are lexicographically smaller than d�(1) = r�1 (r�2)! .Let �� : ZN ! R be the function mapping an in�nite word s = (sn)n�1 onto itsnumerical value Pn�1 sn��n, and let �� be the congruence de�ned by s �� s0 if and onlyif ��(s) = ��(s0). Let I� = fs 2ZN j ��(s) 2 [0; 1[g. Then the result of Parry just recalledcan be formulated as follows, in a manner very similar to Theorem 1:Every class of I� modulo �� contains exactly one element in D�.Let Per4(AN� ) denote the set of periodic words of AN� of period 4. Then from our resultfollows thatD� \ Per4(AN� ) = ( fw! j w 2 R�g in Case 1fw! j w 2 R�g [ ( r�2 r�2 r�2 r�2 )! in Case 2:4 Proof of Theorem 1The proof of Theorem 1 is quite di�erent in Case 1 and in Case 2, much simpler inthe latter case. For Case 1, it is �rst easily established that every class contains at leastone element of R� (Part A). The proof of uniqueness is more involved. An element, orword, of Z4 is said to be positive if all its digits belong to N. We �rst consider only{ 13 {



positive words and we give an orientation to the relations de�ning 
�. If the rewritingsystem obtained that way were con
uent | that is to say, if \no matter how one divergesfrom a common ancestor, there are paths joining at a common descendent" [4] | theuniqueness of a reduced positive word would follow from a standard argument. What isdevelopped in Part B through a detailed analysis is that this reduction \behaves" as ifthe system were con
uent, though it is not. The last (and easy) step amounts to verifythat reduction paths through non-positive words do not bring any further possibilities ofequivalence between words (Part C). For Case 2, we directly derive a con
uent rewritingsystem from the relations de�ning 
�.4.1 Proof for Case 1Notation and conventions. By de�nition, 
� is generated by the following relations:1 �r �1 0 = 0 0 0 0 (1)�r �1 0 1 = 0 0 0 0 (2) �1 0 1 �r = 0 0 0 0 (3)0 1 �r �1 = 0 0 0 0 (4)Any linear combination of these relations gives rise to another relation that is alsosatis�ed by the congruence 
� . In particular (1)+(3), and (2)+(4), yield respectively:0 �r 0 �r = 0 0 0 0 (5) �r 0 �r 0 = 0 0 0 0 (6)The opposite of a relation (�) is another relation, denoted by (�); e.g.�1 r 1 0 = 0 0 0 0 . (1)By abuse, we denote as the sum w + (�) the digit-addition of w and the non-zeromember of the relation (�), 1 � � � 4 ; e.g.if w = x y u t ; then w+ (1) = x+1 y�r u�1 t .The notation extends to subtraction: w � (�) = w + (�).If w0 is obtained from w by adding one of the four relations de�ning 
� or of theiropposites, we write w $ w0; if moreover w and w0 are both positive, we write w , w0.If w0 is obtained by a sequence of such additions we write w �$ w0 and such a sequence iscalled a path from w to w0. If moreover every word encountered on the path is positive,we write w �, w0. By de�nition, w and w0 are equivalent modulo 
� if and only if w �$ w0.The four relations (1) to (4) will also be considered as reductions and written as such:w (�)! w + (�) .If both w and w + (�) are positive, we writew (�)) w + (�){ 14 {



and we say that w is positively reducible by (�). If it is not the case, w, supposed to bepositive, is said to be (�)-irreducible. A positive word is called positively irreducible, orp-irreducible, if no such reduction is possible.Every word in R� is p-irreducible but the converse obviously does not hold;e.g. 0 r+1 0 0 is p-irreducible but not in R�.In addition to the cases described by these general conventions, we shall also write0 r 0 r (5)) 0 0 0 0 and r 0 r 0 (6)) 0 0 0 0 ,which state that 0 r 0 r , and r 0 r 0 , are positively reducible to 0 0 0 0 . But thisword w = 0 r 0 r (resp. w = r 0 r 0 ) is the only one to which the reduction (5), (resp. (6))may be applied, since they would be otherwise even more cases to be analysed later.A positive path between two positive words f and g is thus a sequence of positivereductions following each other either in the direct or in the reverse direction; e.g.f (�)) f + (�) (�)( f + (�) + (�) = g .A last de�nition: the sum of the digits of an element w of Z4 is called the weight of w,and is denoted by W (w). A positive word has positive weight but the converse does nothold. For any w in Z4 and for any reductions �, �, and 
 it holds:W (w + (�)) = W (w + (�) + (�) + (
)) = W (w)� r ,and W (w + (�) + (�)) = W (w) .Part A. Every class modulo 
� contains positive words, by adding (1)+ (3) and (2)+ (4)a su�cient number of times to any word of Z4.We show, by case examination, that for any positive word w not in R�, it is possibleto �nd a positive path (of length 1, 2 or 3) that leads to a word w0 which is either in R�or has a weight reduced by r. Hence, from any positive word there exists a positive pathreaching R�, for otherwise it would be possible to build a positive path reaching a wordof non-positive weight, and thus, non-positive, a contradiction. And then, every classmodulo 
� contains at least one element in R�.Let w = x y u t be in N4 and not in R�. Without loss of generality, one can supposethat x and u on one hand, and y and t on the other hand, are not both greater than r, forotherwise a sequence of reductions (2) + (4) or (1) + (3) could be used10. Similarly, onecan suppose that no digit greater than r is followed by a positive digit for otherwise oneof the reductions (1) to (4) could obviously be used.Since 
� commutes with any circular permutation, one can suppose, without loss ofgenerality, that y u t x is the largest circular factor (in the lexicographic order) of w =10in the case where the other two digits (y and t, or x and u) are 0, this sequence is pre�xed by (1)(resp. (2)) and su�xed by (1) (resp. (2)) { 15 {



x y u t . Since we suppose that w is not in R�, i.e., y u t x is greater than r 0 r 0 inthe lexicographic order, this implies from the above remark thatx � r � 1; y � r + 1; u = 0 and t � r� 1 :We then apply (4) followed by (1):w = x y 0 t (4)( x y�1 r t+1 (1)) x+1 y�r�1 r�1 t+1 = w0 .We have W (w) = W (w0). Which relation can be further applied to w0 then depends onthe actual values of x, y, and t, and we have to examine the di�erent possible cases.1 If t = r � 1, then w0 = x+1 y�r�1 r�1 r (3)) x y�r�1 r 0 = w00 .2 If t � r � 2 (and thus r � 2), then2.1 If x = r � 1, then2.1.1 If y = r + 1, then w0 = r 0 r�1 t+1 is in R� .2.1.2 If y � r + 2, thenw0 = r y�r�1 r�1 t+1 (2)) 0 y�r�2 r�1 t+2 = w002.2 If x � r � 2, then2.2.1 If y � 2r, then w0 = x+1 y�r�1 r�1 t+1 is in R� .2.2.2 If y � 2r + 1, thenw0 = x+1 y�r�1 r�1 t+1 (1)) x+2 y�2r�1 r�2 t+1 = w00is a positive word since r � 2.Thus, as announced, in any case, a positive word w leads either to a word of strictlysmaller weight by a positive path of length 1 or 3 or into R� by a positive path of length 2.Part B. The system de�ned by the relations (1) to (4) | oriented, as in Part A, from leftto right | is not con
uent when it is restricted to positive words. With the hope of makingthe reading easier, we have illustrated, or more exactly, translated, the statements givenin the claims which follow by diagrams. In these diagrams, the hypotheses, namely theexistence of certain reductions, are depicted by solid arrows, and the conclusions, namelythe existence of certain other reductions, are depicted by dashed arrows. In both casesthese are doublelined arrows as they correspond to positive reductions.It is easy to verify, by inspection on the possible values of the digits of w, the �rst twofollowing claims.Claim 1 Let w be a positive word; then, i) w (1)) w0 and w (3)) w00 imply that there existsa (positive) word v such that w0 (3)) v and w00 (1)) v. Similarly, ii) w (2)) w0 and w (4)) w00imply that there exists a (positive) word v such that w0 (4)) v and w00 (2)) v.{ 16 {



ww0 w00v(1) (3)(3) (1) ww0 w00v(2) (4)(4) (2) ww0 w00v(1) (4)(4) (1)Claim 1, i) Claim 1, ii) Claim 2, i)Claim 2 Let w be a positive word and suppose that w (1)) w0 and w (4)) w00 hold. Then:i) w00 (1)-reducible implies that w0 is (4)-reducible and vice versa;ii) w00 (4)-reducible implies that w00 is (1)-reducible as well (and thus w0 is (4)-reducible);iii) w00 (3)-reducible implies that both w and w0 are (3)-reducible;iv) w00 (2)-reducible implies that w is (2)-reducible.ww0 w00v(1) (4)(4) (4)(1) ww0 v w00v0 v00(1) (4) (3)(3) (3) (1) (4) ww0 v0 w00v(1) (4)(2)(2)(4)Claim 2, ii) Claim 2, iii) Claim 2, iv)These �rst two claims deal with the cases where the reduction behaves as if it werecon
uent; the next one describes in detail the case where the reduction is not con
uent:one of the branch happens to be a dead end from where one cannot escape by anotherderivation than the branch itself.Claim 3 Let w be a positive word. Suppose that w (1)) w0 and w (4)) w00 hold and that w00 isp-irreducible. If there exists two (positive) words h and k and two distincts reductions (�)and (�) such that h (�)) w00 and h (�)) k, then necessarilyi) h = w [and (�) = (4)]; ii) if k 6= w0 then (�) = (3).w hw0 w00 k(1) (4) (�) (�) =) w = hw0 k w00(1) (4) = (�)(�)Proof. Let w = x y u t ; thus w00 = x y+1 u�r t�1 .The hypothesis implies that:y � r since w is (1)-reducible; u = r, since w00 is (1)-irreducible and y � r;x < r, since w00 is (2)-irreducible; and t < r + 1, since w00 is (3)-irreducible.{ 17 {



Now, h (3)) w00 is impossible since w00 = x y+1 0 t�1 .Suppose h (2)) w00; then h = x+r y+2 0 t�2 which makes h (4)) k or h (1)) k impossible;h (3)) k is impossible as well since t < r + 1.Suppose h (1)) w00; then h = x�1 y+r+1 1 t�1 which implies r > 1 since x < r.Now h (4)) k is impossible since r > 1; h (3)) k is impossible since t < r + 1 and h (2)) k isimpossible since x < r.The only possibility left by (�) 6= (�) is thus (�) = (4).As before, (�) = (2) is impossible since x < r and the claim is established.A simple veri�cation leads to the following claim.Claim 4 Let w be a positive word; w (1)) w0 and w (4)) w00 imply that w00 does not belongto R�. Similarly, w (4)) w0 and w (3)) w00, or w (3)) w0 and w (2)) w00, or w (2)) w0 and w (1)) w00imply w00 =2 R�.The collection of claims we have just established allows us to adapt the classical schemeof demonstration of the uniqueness of reduced words in a class modulo a con
uent relation.Let us suppose, by way of contradiction, that there exist f and g in R� with the propertythat there exists a positive path between them. [Recall that a positive path is a sequenceof reductions (1), (2), (3) or (4) between positive words | together with the possibleoccurrence of 0 r 0 r (5)) 0 0 0 0 and of r 0 r 0 (6)) 0 0 0 0 | in either directions.]Since f and g are both p-irreducible, such a path � must contain a \peak", that is afactor w0 , w, w00 of the form w0 (�)( w (�)) w00 .The path � thus contains a peak of maximal weight; the weight of such a peak will bethe weight of the path �. Paths are then ordered by weight and paths of equal weight areordered by the number of peaks of maximal weight.In the set of all positive paths between f and g | a non-empty subset by hypothesis |let us choose a minimal path �0 i.e., a path of minimal weight with a minimal number ofpeaks of maximal weight. Let w be one of these peaks of maximal weight and let w (�)) w0and w (�)) w00 be the two reductions that go out of w on �0, which can thus be written inthe following form: f �, w0 (�)( w (�)) w00 �, gBy Claim 1, it is not possible to have � = 1 and � = 3; for otherwise we would have aword v such that w0 (3)) v and w00 (1)) v and thus the pathf �, w0 (3)) v (1)( w00 �, g{ 18 {



is smaller than �0, a contradiction. For the same reason it is not possible to have � = 2and � = 4.Up to a circular permutation of every word on �0, and a possible exchange of f and g,we can assume that � = 1 and � = 4. By Claim 2 i) and ii), and with the same argumentas just above, w00 is neither (1)- nor (4)-reducible. By Claim 2 iii), w00 is not (3)-reduciblefor otherwise we would have w0 (3)) v0, w (3)) v and w00 (3)) v00 and since reductions commutewe would get the path f �, w0 (3)) v0 (1)( v (4)) v00 (3)( w00 �, gwhich again is smaller than �0. We have now to consider the remaining two cases: case a)w00 is not (2)-reducible (and thus w00 is p-irreducible), or case b) w00 is (2)-reducible. Notethat w00 is neither (5) nor (6)-reducible.case a.{ w00 is p-irreducible. By Claim 4, w00 is not in R� and thus not equal to g. Thepath �0 factorizes into f �, w0 (1)( w (4)) w00 (�)( h, k �, g :The only possibilities left by Claim 3 for the reductions w00 (�)( h, k are eithercase a.1.{ w00 (4)( h (1)) k = w0 in which case w00 is indeed a dead end in �0 andf �, w0 �, gis a path smaller than �0, a contradiction; orcase a.2.{ w00 (�)( h (
)( k in which case k has a weight greater than w, another contradic-tion.case b.{ w00 is (2)-reducible. By Claim 2 iv), w is (2)-reducible as well. If w0 is also (2)-reducible the situation is the same as if w00 were (3)-reducible and leads to a contradiction.Let us suppose then that w0 is (2)-irreducible and let us sum up the constraints on thedigits of w = x y u t given by all hypotheses we have made up to this point. We have:w0 = x+1 y�r u�1 t (1)( w = x y u t (4)) w00 = x y+1 u�r t�1 (2)) x�r y u�r tThe hypothesis w00 (1)-irreducible implies u = r and thus w0 is (4)-irreducible;w0 (2)-irreducible implies y = r (and thus w0 is (1)-irreducible). There are thus twopossibilities: case b.1), w0 is (3)-reducible or, case b.2), w0 is p-irreducible.case b.1.{ w0 is (3)-reducible; w00 (3)-irreducible implies t = r. The path �0 reads thenf �, x+1 0 r�1 r (1)( w = x r r r (4)) x r+1 0 r�1 �, g :{ 19 {



If x is greater than r, the pathf �, x+1 0 r�1 r (3)) x 0 r 0 (1)( x�1 r r+1 0 (2)) x�r�1 r�1 r+1 1(3)( x�r r�1 r r+1 (4)) x�1 r 0 r (2)( x r+1 0 r�1 �, gis smaller than �0. If x = r, the pathf �, x+1 0 r�1 r (3)) r 0 r 0 (6)) 0 0 0 0 (5)( 0 r 0 r (2)( x r+1 0 r�1 �, gis again smaller than �0, and of a form consistent with the hypothesis on a positive path.Contradiction for any possible value of x.case b.2.{ w0 is p-irreducible. Since w is (2)-reducible and using Claim 1, we can trans-form the path �0 into a path �00f �, w0 (1)( w (2)) w000 �, gwhich is also minimal. The image of �00 by the permutation ��1 then readsk �, m00 (4)( m (1)) m0 �, lwith k = ��1(f), l = ��1(g), m = ��1(w), m00 = ��1(w0) and m0 = ��1(w000). As w0,m00 is p-irreducible and we are back to case a), that leads to a contradiction.This terminates the proof of the fact that no two distinct elements of R� can be joinedby a positive path.Part C. It remains to show that if two elements f and g of R� are congruent modulo 
�,they are equal. Indeed, f and g are congruent modulo 
� if and only if f �$ g, that is, ifand only if there exists a path � between f and g. The idea is to \lift" the path � intoa positive path � between f and g (as sketched on Figure 5) and the conclusion followsfrom Part B.
ff 0 gg0u vu0 v0R�Figure 5: � lifts to � .The lifting relies on a lemma and a remark.{ 20 {



Lemma 3 Let n be any positive integer and let hn be the wordhn = nr nr nr nr .For any f in R� there exists a positive path f + hn �) f .Proof. If f = 0 0 0 0 one may begin the path with0 0 0 0 (6)( r 0 r 0and thus one can assume that at least one digit of f = x y u t is positive. Up to a circularpermutation, it is possible to suppose that this digit is x. One has the sequence:f = x y u t (1)( x�1 y+r u+1 t (3)( x y+r u t+r(2)( x+r y+r+1 u t+r�1 (4)( x+r y+r u+r t+r = f + h1 .Without any further care on the order of the rewriting one hasf + hi (1)+(2)+(3)+(4)(= f + hi+1for any positive i and then f �( f + hn for any positive n.Remark 1 Let u and v be two non-positive elements of Z4 and k the lower boundof the digits in u and v; let n be a positive integer such that nr > �k. If u (�)! v,then u+ hn (�)) v + hn, for any reduction (�).Let � be any path of reductions that links f and g, which we writef � ! gIt is clear now how to lift �: let k be the lower bound of the digits of the words thatappear in � and let n as above, i.e., such that nr > �k. Let f 0 = f +hn and g0 = g+hn.We have, by Lemma 3, f �( f 0 �+hn ! g0 �) gand by the remark \ � + hn " is a positive path. Thus f �$ g implies f �, g which hasbeen shown impossible and this complete the proof of the theorem in Case 1.4.2 Proof for Case 2Unless otherwise stated, all notations and conventions described in the previous sectionare still valid. The congruence 
� is now generated by the following relations:1 �r 1 0 = 0 0 0 0 (1')�r 1 0 1 = 0 0 0 0 (2') 1 0 1 �r = 0 0 0 0 (3')0 1 �r 1 = 0 0 0 0 (4'){ 21 {



which can be turned into a rewriting system (S) by giving the orientation from left toright: 1 �r 1 0 ! 0 0 0 0 (1') etc.Let us recall also that R� is now the set of words of N4 with the property that they, andall their conjugates, are di�erent from r�2 r�2 r�2 r�2 and strictly smallerthan r�1 r�2 r�2 r�2 in the lexicographic order.It is immediate to check that for any positive word w and any two reductions (�)and (�) in (S), if w (�)) w0 and w (�)) w00 hold, then w0 (�)) v and w00 (�)) v hold as well.This fundamental di�erence with Case 1 can be stated as follows:Claim 5 (S) is con
uent on the set of positive words.We are not yet done, for the rewriting system (S) is not equivalent to 
� on the set ofpositive words. But the solution is at hand and will be reached by the construction of aricher system.Let (T ) be the rewriting system obtained by adding any subset of relations in (S). Weget then the following relations. r�1 r�1 1 1 ! 0 0 0 0 (5')r�1 1 1 r�1 ! 0 0 0 0 (6')1 1 r�1 r�1 ! 0 0 0 0 (7')1 r�1 r�1 1 ! 0 0 0 0 (8')that is : (50) = (10) + (20), (60) = (20) + (30), (70) = (30) + (40) and (80) = (40) + (10).r�1 2 r�1 r�2 ! 0 0 0 0 (9')2 r�1 r�2 r�1 ! 0 0 0 0 (10')r�1 r�2 r�1 2 ! 0 0 0 0 (11')r�2 r�1 2 r�1 ! 0 0 0 0 (12')that is : (90) = (20) + (30) + (40), (100) = (30) + (40) + (10), (110) = (40) + (10) + (20) and(120) = (10) + (20) + (30). And �nally (130) = (10) + (20) + (30) + (40) :r�2 r�2 r�2 r�2 ! 0 0 0 0 (13')A simple case inspection shows thatClaim 6 R� is the set of irreducible words for the system (S + T ).The core of the proof lies then in the following:{ 22 {



Claim 7 (S + T ) is con
uent on the set of positive words.Proof. Since we have not spared him the slightest detail yet, the reader may be scaredby the prospect of checking the 78 critical pairs of the system (S + T ). Hopefully, thanksto the symmetries and the very speci�c form of the relations, the number of cases to beexamined boils down to 11, of which we shall make only 3 explicit.Let w = x y u t be a positive word and suppose that w (�)) w0 and w (�)) w00 hold. ByClaim 5, one can assume that (�) and (�) are not both in (S). Up to an exchange of (�)and (�), we suppose that � is in (T ).1 (�) is in (S). Up to a circular permutation, one can assume that (�) = (10).1.1 (�) \contains" (�), i.e., it exists (
) in (S + T ) such that (�) = (�) + (
).Then, obviously, w0 (
)) w00.1.2 (�) does not \contain" (�); the only possibilities are (�) = (6'), (7'), or (9').Immediate computations show that w0 (�)) v and w00 (�)) v hold as well.For instance, let (�) = (90); it comes:x y u t (10)=) x+1 y�r u+1 t = w0 (14')and x y u t (90)=) x�r+1 y+2 u�r+1 t�r+2 = w00 . (15')From (14') follows y � r and thus w00 (90)=) v; from (15') follows x, u � r�1, t � r�2 andthus w0 (10)=) v.2 (�) is not in (S). By symmetry, one can assume that (�) is as \large" as (�), i.e.,is the sum of as many relations from (S) as (�). Up to a circular permutation, one canassume that (�) = (50) or (90) (since (�) = (130) implies (�) = (130)).2.1 (�) \contains" (�). Same solution as in 1.1.2.2 Case 2.1 does not hold. Then there exist (
), (�) and (") in (S + T ) suchthat (�) = (
) + (�) and (�) = (
) + ("). It is then a matter of immediate computationto verify that, in every case, w0 (")) v and w00 (�)) v hold. The only possibilities are:2.2.1 if (�) = (50), then (�) = (60), (7'), (8'), (9') or (10').For instance, let (�) = (60); it comes:x y u t (50)=) x�r+1 y�r+1 u+1 tpu = w0 (16')and x y u t (60)=) x�r+1 y+1 u+1 t�r+1 = w00 . (17')From (16') follows y � r�1, thus y+1 � r and thus w00 (10)=) v; from (17') follows t � r�1,thus t+1 � r and thus w0 (30)=) v.2.2.2 if (�) = (90), then (�) = (100), (11'), or (12').{ 23 {



For instance, let (�) = (100); it comes:x y u t (90)=) x�r+1 y+2 u�r+1 t�r+2 = w0 (18')and x y u t (100)=) x+2 y�r+1 u�r+2 t�r+1 = w00 . (19')From (18') follows x � r�1, thus y+2 > r and thus w00 (20)=) v; from (19') follows y � r�1,thus y+2 > r and thus w0 (10)=) v.The claim is established.Case 2 is now immediately settled. Every class modulo 
� contains positive words,by adding (130) to any word of Z4, a su�cient number of times. And any positive wordreduces to a unique word in R�, using reductions in (S + T ).Two words f and g of R� are congruent modulo 
� if and only if f �$ g, that is, ifand only if there exists between f and g a path � consisting of reductions of (S) taken ineither directions. As in Case 1, this path � can be \lifted" into a positive path � by usingthe same reduction (13') as before. Since we can use that reduction, the actual value of fhas not to be taken into consideration | in other words, Lemma 3 becomes trivial | andthe lifting is even simpler than in Case 1.By construction, the path � consists of reductions of (S+T ). By Claims 6 and 7, twodistincts words of R� cannot be joined by such a path, hence f = g.And this completes the proof of Theorem 1.AcknowledgementsWe were �xing the last details of this paper when we learn the passing away of ourfriend David Klarner. David was the editor who read the �rst version of our work on thetranslation from the Fibonacci system to the golden mean base by a �nite automaton. Hisadvice and enthusiastic encouragement were of great help to us for giving the �nal shapeto our result. We sorrowfully dedicate this subsequent work to his memory.References[1] A. Bertrand-Mathis, D�eveloppement en base de Pisot et r�epartition modulo 1. C. R.Acad. Sci. Paris S�er. A 285 (1977), 419{421.[2] A. Bertrand-Mathis, Comment �ecrire les nombres entiers dans une base qui n'est pasenti�ere. Acta Math. Hungar. 54 (1989), 237{241.[3] �C. Burd��k, Ch. Frougny, J.-P. Gazeau, and R. Krejcar, Beta-integers as natural count-ing systems for quasicrystals. J. Phys. A: Math. Gen. 31 (1998), 6449{6472.{ 24 {
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