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Abstract

In a previous work, we have investigated an automata-theoretic property of nu-
meration systems associated with quadratic Pisot units that yields, for every such
number §, a certain group Gy.

In this paper, we characterize a cross-section of a congruence 4 of Z* that had
arisen when constructing Gy. This allows us to completely describe the quotient Hy
of Z* by 7, that becomes then a second group associated with . Moreover, the cross-
section thus described is very similar to the symbolic dynamical system associated, by
a theorem of Parry, with the two numeration systems attached to 6.

The proof 1s combinatorial, and based upon rewriting techniques.

Résumé

Dans un article précédent, nous avions associé a chaque nombre de Pisot quadra-
tique unitaire # un certain groupe Gy par le biais de la construction d’un automate qui
réalise le passage entre les représentations des entiers dans deux systémes de numéra-
tion naturellement attachés a 6.

Dans cet article, nous donnons une caractérisation d’un ensemble de représentants
pour une congruence vy de Z* qui avait été utilisée pour la définition de Gg. Cette
caractérisation permet la description compléte du quotient Hy de Z* par g, autre
groupe associé a 6. Elle est d’autre part remarquablement similaire a la description,
donnée par un théoréme de Parry, du systéme dynamique symbolique associé aux deux
systémes de numeération attachés a 6.

La preuve est combinatoire et utilise les techniques des systemes de réécriture.



TWO GROUPS ASSOCIATED WITH QUADRATIC PISOT UNITS

Dedicated to the memory of David Klarner

We describe here two commutative finite groups that are associated with quadratic
Pisot units, via numeration systems.

It is straightforward to associate numeration systems to Pisot numbers and recent
publications have shown spectacular appearance of these systems in several questions,
putting an emphasis on quadratic Pisot units. For instance, Pisot numbers are involved in
the mathematical description of quasicrystals (see [3]); and every quasicrystal observed so
far in the real world is indeed defined by a Pisot number that is quadratic and a unit. As
another example, these numeration systems are also present in the realization of arithmetic
codings of hyperbolic automorphisms of the torus (see [13]). Along the same line, in [14],
a group whose order is equal to the discriminant of 8 is associated with any Pisot unit 6.
In the quadratic case this group is sitting between the two groups we describe here (with
the three groups collapsing into one only in the special case of the golden mean).

There are indeed two numeration systems associated with every Pisot number. In a
previous work of ours, we showed that, in the case of a quadratic Pisot unit, there exists
a finite two-tape automaton that translates the representation of integers in one system
into the representation of the same integer in the other system ([6]). The first of the two
groups quoted above is the transition monoid of that automaton. In the course of the
construction, a certain congruence vy of Z* has naturally arisen.

In the present paper, we characterize a cross-section of vy from which we are able to
describe the second group, namely the quotient of Z* by ~4. A feature of the cross-section,
which makes its characterization particularly appealing to us, is a great similarity with a
theorem of Parry describing symbolic dynamical systems associated with the same Pisot
number.

In the first section, we recall some definitions that will serve as a framework for the
definition of the congruence «y. The description of the cross-section for v4 is given in
Section 2 (Theorem 1), together with the structure of the group that can be then computed.
The proof of Theorem 1 follows then, which is combinatorial, and based upon rewriting
techniques.

A preliminary version of this paper has been presented in [7].



1 Two numeration systems and two groups

As in [6], let us start with the simplest, as well as the most popular, example: the two
numeration systems associated with the golden mean, i.e., the larger zero ¢ of the poly-
nomial

P (X)=X?-X-1.

We have first the Fibonacci numeration system. The sequence of Fibonacci numbers,
F = (F,)n>0, is a linear recurrent sequence whose characteristic polynomial is P, (X).
It is well-known' that every positive integer is represented, in several different ways, as
a sum of Fibonacci numbers, and that — with the convention that Fy = 1 and F; = 2
— every integer has a unique representation, called its Fibonacci representation, with the
property that no two consecutive Fibonacci numbers occur. For instance, 15 = Fs + Fi;
thus the Fibonacci representation of 15 is (100010) 7.

The other numeration system associated with the golden mean ¢ consists in taking ¢ as
a base: it is known that every positive real number, and thus every integer, is represented,
in several different ways, as a sum of powers of ¢, and that every positive real number, and
thus every integer, has a unique representation, called its @-expansion, with the property
that no two consecutive powers of ¢ occur (cf. [9]%). For instance,

="+ +¢ "+ +07°

thus the yp-expansion of 15 is (100101.001001).,.

We have shown in [6] that there exists a finite two-tape automaton A, which maps
the Fibonacci representation of any positive integer onto its w-expansion, provided the
latter is folded around the radix point, e.g. the Fibonacci representation of 15, 100010, is

mapped onto 188186.

The result in [6] holds indeed for any quadratic Pisot unit as well. In order to explain
this generalization, we have first to go quickly through few definitions and notations.

A Pisot number is an algebraic integer greater than 1 such that every of its algebraic
conjugates has a modulus smaller than 1. A quadratic Pisot unit € is thus the root greater
than 1 of a polynomial

Py(X)=X?—rX —¢ ,
with either:

€ =41 and r > 1, and this will be referred to as CASE 1,
ore = —1and r > 3, and this will be referred to as CASE 2.

' And usually credited to Zeckendorf [15]; cf. also [9, Exercise 1.2.8.34].
*Exercise 1.2.8.35.



As for the golden mean, we consider two numeration systems: the one defined by
the base 6, and the one defined by the linear recurrent sequence Uy whose characteristic

polynomial is Py: the sequence Uy = (ug)r>0 is defined?® by:

Uk4o = T UL+1 +EUE k>0,

and by the initial conditions®

wp=1 and wuy =[]+ 1.

Every positive integer NV is equal, in several different ways, to a sum of the up’s with
coefficients taken in Ay = {0,1,...,[f]} — the canonical alphabet of digits for § — and
thus can be represented, in several different ways, as a word over Ag; these words are the
Ug-representations of N. Similarly, every positive integer N is equal, in several different
ways, to a sum of (positive and negative) powers of # with coefficients taken in the same Ag.
Together with a radiz point, these words, possibly infinite, are the #-representations of N.

In a way that will be described in Section 3, one of the Upy-representations of N is
distinguished and is called the normal Ug-representation of N. Likewise, one of the -
representations of N is distinguished and is called the @-expansion of N. It is obtained by

the so-called greedy algorithm, see Section 3.

Because 6 is a quadratic Pisot unit, the #-expansion of any positive integer is finite
(cf. [8]) and can thus be folded around the radix point.

The result in [6] can be stated as follows: for any quadratic Pisot unit 0, there exists
a finite two tape automaton Ay which maps the normal Ug-representation of any positive
integer onto its folded 08-expansion.

Let us give some ideas on how the contruction works. There is a property of quadratic
Pisot units which is that the #-expansion of ug, the k-th element of Uy has, roughly,
period 4. And the succession of digits in a Up-representation corresponds — for the
represented integer — to the summation of elements of Uy.

The main step in the construction of Ay is the construction of another finite two-
tape automaton 7y which is much simpler. Building Ay from 7y is then done by means
of standard automata constructions that are explained in [6]. The automaton 75 reads
words where the letters have been grouped into blocks of length 4, and with the property
that there is at most one digit 1 in every block. Stated otherwise, 7y reads words written
on the five letter alphabet B = {z,a,b, ¢, d} with:

z=0000, a=0001, 6=0010, ¢=0100 and d=1000 |,

and it ouputs some blocks of 4 double digits (taken in an alphabet that depends on # and
that is much larger than Ag). The underlying input automaton of 75 is the Cayley graph
of a certain group Gy, which is described by the following®:

2cf. [2].

4[6] is the integral part of 6.
*Propositions 11 and 12 in [6].




Proposition 1 Let 6 be the zero larger than 1 of Py(X)=X%?—-rX —¢ and
let  Ag=r?+4e  be the discriminant of Ps(X).
i) Ifrisodd then Gy~Z/A¢Z .
ii) Ifr is even, then:
in CASE 1:  a) if r=4m, then Go~7/(30¢)Z ;
b) ifr=4m+2, then Gy ~[Z/(30¢)Z] x [Z/27)] ;
in CASE 2: Gy~ [Z/(30¢)Z] x [2/27] .

As explained in [6], the states of Ty, that is to say, the elements of Gy, can be seen as
elements of Z*. The transitions of Ty, when reading one of the elements a, b, ¢, d, or z
of B correspond to the addition of the current state with certain elements a, l;, ¢, dor?
of Z:. In Case 1,a=0r—101,b=r—1010,¢6=010r—1,d=10r—10 and
5=0000;In CASE2,4a=¢=0101andb=d= 1010. This addition is not the
usual addition on Z*, but the addition modulo the equivalence 4 on Z* generated by the
following equalities®:

1760 =701 =01r=017rg=0000

directly deduced from the minimal polynomial of 4.

Let us denote by Hy the quotient of Z* by vy. As a + ¢ = b+d = z, Gy is the
subgroup of Hy generated by a4 and b. This description of (g was aimed at introducing
the congruence 74 and the group Hy which are here under investigation.

Example 1 : ¢=+41,r=1. Then

Gy, ~[Z/5Z)] .

Example 2 : &= +1,r =2. Let « be the larger zero of X? —2X — 1= 0. Then
G, ~|Z/)2Z) X [Z/27] .

The Cayley graph of G, with generators 0101 and 1010 is presented on Figure 1. O

2 The group Hy

In order to describe the group Hg = Z*/v,, we first characterize a set of representatives
for the congruence v4. For that purpose we need a few more definitions.

SWith the convention that if n is an integer, # denotes —n.



Figure 1: The action of B on G,.
The transitions represented are those labelled by @ = 0101 (bold arrows), and by b= 1010

(dashed arrows).

Two words of Z* are said to be conjugate” if there exists a circular permutation of

their digits that sends one onto the other.
The definition of the set Ry of reduced words depends then upon the case we consider:

Case 1. r > 1 and ¢ = +1. A word of N* is in Ry if itself and its three conjugates are

strictly smaller than = 0 r 0 in the lexicographic order.

CasE 2. r > 3 and ¢ = —1. A word of N is in Ry if itself and its three conjugates
are strictly smaller than r—1r—2r—2r—2 in the lexicographic order and different

from r—2r—2r—2z2r—z.

The main purpose of this paper is to establish the following statement.
Theorem 1 Every class of Z* modulo ~g contains exactly one element in Ry.

The proof of Theorem 1 we give here — in Section 4 — is purely combinatorial and

goes through the definition of a rewriting system associated with 6.

The enumeration of the elements of Ry gives the order of Hy. With the notation used

in Proposition 1, we have:
Proposition 2 The order of Hg is 1% Ag.

Proof. In spite of the fact that, remarkably, the expression of the order Hy does not
depend on the case considered — this is encoded in the value of Ay indeed — the proof

itself forces us to distinguish the following two cases.

Cast 1. r > 1and ¢ = +1. A word w of N'is in Ry if and only if it, and its three

conjugates, are (strictly) smaller than r 0 r 0 .

"Though this is not the conjugacy relation in the group Z* (which is the identity since Z* is commuta-

tive).



There are two possibilities:
a) every digit of w is smaller than r: there are r* such words.

b) one digit of w is equal to r; then the next digit has to be a 0 and the other two digits
can take any value smaller than r: there are r? such words once the position of the digit
equal to r is fixed among the 4 possible ones.

It then comes
|Hg| = r* 4+ 4r? = r?(r* +4) = r2 Ay .

Case 2. r >3 and ¢ = —1. A word w of N*is in Ry if and only if it, and its three
conjugates, are (strictly) smaller than r—1 r—2 r—2 r—2 and different from r—2 r—2 r— r—2.

There are three possibilities:

a) every digit of w is smaller than r—1 and not all are equal to r—2: there are (r—1)*—1
such words.

b) one digit of w is equal to » — 1; then the other three digits can take any value smaller
than r — 1 and not all are equal to r —2: there are (r —1)® — 1 such words once the position
of the digit equal to r — 1 is fixed among the 4 possible ones.

¢) two digits of w are equal to r — 1; then they cannot be consecutive ones and the
other two digits can take any value smaller than r — 2: there are (r — 2)? such words once
the position of the digits equal to r — 1 is fixed among the 2 possible ones.

It then comes

Hyl = [0 = D' = 1]+ 40 = 1)° = D+ 20 =22 =2 (0 4+ 2)(r =2 =2y .

With the same notation as in Proposition 1 again, it then holds:

Theorem 2 Let 6 be the zero larger than 1 of Py(X)=X%?—-rX —c and
let  Ag=r?+4e  be the discriminant of Ps(X).
1) Ifrisodd then Hy~[Z/rZ]X[Z/rZ]x [Z]/AZ] .
ii) Ifr is even, then:
in CASE 1: a) if r =4m, then Hy =~ [Z[2rZ) x [Z/2rZ) X [Z/(506)Z] ;
b) ifr=4m+2, then Hy~ [Z[ArZ] x [Z/2rL] x [Z](30¢)Z] ;
in CASE 2:  Hg ~ [Z/2rZ] x [Z/2rZ) x [Z/(526)Z] .

Proof. We already know the order of Hy and, in every case, the subgroup Gy by Pro-
position 1. As we can, by Theorem 1, compute in Hy, we find elements in Hy \ Gy of
sufficiently large order to give the key to the structure of Hy by a simple consideration on
the order of the generated subgroup.

Case 1. Ag=r’4+4and 07 0r=7070=0000 .



i) risodd; Go =7 /A7 .

We observe that 0 1 01 and 1 0 1 0 are both of order r. Hence the set of o y x y,
0 < =z,y < r,is isomorphic to Jg = [Z/rZ] X [Z/rZ].

Since no divisor of r (odd) is a divisor of Ay = 7% + 4, the intersection of Jg with Gy
must be the identity. As their product has the same order as Hy, the latter is isomorphic
to this product:

Hy ~ [Z/rZ) x [Z/rZ] x [Z/AeZ)] .

i) r=2pis even; Ag=4(p*+1).

We observe that (00p1)4+(00p1) =00r2 = 0101 which is, as above, of
order r. Hence 00 p 1 is of order 2r and Jy = [Z/2rZ] X [Z/2rZ] is a subgroup of Hy of
order 4r2.

a) p=2m is even; Gy~ [Z/ANZ) = [Z/2(p* + 1)Z] .
The square® of elements? of Gy is of order p? 4+ 1. No divisor of 2r = 4p is a divisor

ofp2 4+ 1 and

Hy ~ [Z./207) x [Z/2rZ] x [Z./1047] .

b) p=2m+1is odd; G~ [Z/TNZ] x [Z./2Z)] .
As above, (00p 1)+ (0p10)=0pp+11 is of order 2r. We observe then that

(0m ptm+1 1)+ (0mptmti1)=02mrtpt12=0pp+1l

and 0 m p+m+1 1 is of order 4r: J; = [Z/4rZ] x [Z/2rZ] is a subgroup of Hg.

As p* 4+ 1 is even but not divisible by 4, no divisor of r, different from 2, is a divisor
of p*+1. The intersection of .J; with G is thus at most of order 4 — and equal to [Z/2Z] x
[Z /27 — and at least of order 4 because of the order of Hy. Thus:

Hg ~ [Z/ArZ) x [Z)2rZ) x [Z)£A¢Z] .

CasE 2. Ag=7r2—4and 0070 =0101, r—2r—27r—27r—2=0000 .
i) risodd; Go =7 /A7 .
Since 0 0rr = 1111,it has order r—2. Then 00 1 1 has order r(r—2)

and 00 r—2 r—2 has order r. Similarly, 0 r—2 r—2 0 has order r.

Hence the set of elements equivalent to 0 z(r—2) (z+y)(r—2) y(r—2),0<z,y <r,
is isomorphic to Jg = [Z/rZ] X [Z /rZ].

8 As Gy is written additively, the square of & is © + .
°Different from the identity of Gg, obviously.



As in CASE 1, since no divisor of r (odd) is a divisor of Ay = r? — 4, the intersection
of Jg with Gy must be the identity. As their product has the same order as Hy, the latter

is isomorphic to this product:

Hy ~ [Z/rZ] % [Z)rZ]  [Z]AGZ)]

i) r=2pis even; Ag=4(p? — 1) and Gy ~ [Z/FA¢Z] X [Z/2Z)] .

We observe that (00 p—1p—1)+ (00 p—1p—1)= 00 r—2r—2 which is, as above,
of order r. Hence 00 p—1 p—1 is of order 2r and Jy = [Z/2rZ] X [Z/2rZ] is a subgroup
of Hy of order 4r2.

As no divisor of r = 2p, different from 2, is a divisor of p+1 or of p— 1, the intersection
of Jy with Gy is at most of order 4 — and equal to [Z/2Z] x [Z/2Z] — and at least of
order 4 because of the order of Hy. Thus:

Hy =~ [Z)2rZ) X [Z)2rT7) X [Z] sNZ) n

Example 2 (continued): ¢ = +1, r = 2. The larger zero of X* —2X — 1 = 0 is
o= % We have 0021 = 0100 and, since we are in CASE 1, R, is the set of
words of N* with the property that they, and all their conjugates, are strictly smaller
than 2020 in the lexicographic order.

We are in the case i) b. of the proof of Theorem 2, with r =2, p =1 and m = 0. The
elements 0011 and 0110 generate J, = [Z/4Z] x [Z/4Z]. The element 0 m p+m+1 1 =
0021 = 0100 is of order 8. In this case, J! = H, and G, is contained in J/.

J. = H, ~[Z/8Z] % [Z/4Z)] |

and G, is contained in J.,.

Figure 2 shows the elements of H, with “names” taken in R,. a

,10,



Figure 2: The group H, ~ [Z/8Z] X [Z /AZ].

The elements of J, are represented by circles, and those of its coset in H, by ovals. All these
elements are arranged on a torus which is, as usual, represented by a rectangle the edges of which
are identified by pairs. For readability, some of the elements of H, are put on these edges and
appear then twice. The figure shows the intersecting orbits of 0100 and 1000 (double arrows).

The elements of G, are indicated in gray.

3 Symbolic dynamical systems

We now give the definitions and results that are necessary in order to present the above
mentioned result of Parry, as well as its relationship with Theorem 1. The #-expansion of
a positive real number y can be computed by the so-called “greedy algorithm” that can
be described as follows, see [12]. Let us denote by [z] the integral part and by {z} the
fractional part of x. There exists k € Z such that * <z < %!, Let z; = [¢/6*], and
ry = {x/0F}. Then, for i < k, put @; = [fr;11], and r; = {fr;;1}. We get an expansion
= 250" + 25,1051+ ...  If 2 < 1, then k£ < 0, and we put 29 = 2_1 = =2y = 0.
The digits obtained are elements of the alphabet Ag.

An expansion ending with infinitely many zeroes is said to be finite, and the trailing
zeroes are omitted.

The number 1 is treated as a special case. Let t; = [0], r; = {6}, and for i > 2, let
t; = [ri—10] and r; = {r;_10}. The infinite word (¢;);>; is called the #-expansion of 1 and

— 11 -



is denoted by dg(1). Finally, the sequence dj(1) is defined as follows:

(1) Y

1 (b — 1))%

if  dg(1) is infinite then dj(1) =dy
if  de()=ty---ty, then dj(1) = (ty

For instance, when 6 is a quadratic Pisot unit, we get :
in Case 1, Ag=A{0,---,r}, do(1)=r1 and dj(1)=(r0)~;
in Case 2, Ag={0,---,r—1} and do(1) =dj(1) = r—1(r—2)“.

Let Dy be the set of #-expansions of numbers in the interval [0, 1] and let o be the shift
on AY. The result of Parry can then be stated as follows ([11]): A sequence s of A is in
Dy if and only if, for every p > 0, o (s) is smaller in the lexicographic order than dj(1).

A very fundamental property of Pisot numbers (as far as #-expansions are concerned) is
given by the following result [1]: If 8 is a Pisot number, then dg(1) is eventually periodic.
This property makes it possible to canonically associate a linear recurrent sequence Uy
with every Pisot number 6 ([2]). In Section 1, we have given the construction of the
sequence Ug.

By a greedy algorithm, every positive integer has a normal Ug-representation (see [5]):
given integers m and p, let us denote by ¢(m, p) and r(m, p) the quotient and the remainder
of the Euclidean division of m by p. Let k& > 0 such that ur < N < ugyq and let d =
q(N,ug) and rp = r(N,ug), and, for i =k —1,---,0, d; = q(rig1, w;) and r; = r(rig1, w;).
Then N = dpuyp + - - -+ doug. For the linear recurrent sequences Uy considered here, the
digits d; belong to Ag, and the word dj---dy of A} is the normal Ug-representation of
N. The sequence Uy together with the alphabet Ay define the linear numeration system
associated with 6.

This system Upy is characterized by the fact that normal Uj-representations and 6-
expansions are defined by the same set of forbidden words [2]. Hence these two numeration
systems define the same symbolic dynamical system. For notions on symbolic dynamical
systems, for example systems of finite type, sofic systems, ..., the reader may consult [10].

If 6 is the root of X2 —rX — 1, with r > 1 [CasE 1 ], the symbolic dynamical system
associated with # is the set of bi-infinite words on Ay with no factor greater than or equal
to the word r 1 in the lexicographic order. Since it is defined by the interdiction of a finite
number of words, it is a system of finite type. It is the set of labels of bi-infinite paths in

the graph represented Figure 3.

If 6 is the root of X? — rX + 1, with r > 3 [CasE 2 ], the symbolic dynamical system
associated with # is the set of bi-infinite words on Ay with no factor greater than or equal
in the lexicographic order to a word of the form r—1 (r—2)" r—1 for some n > 0. It is the
set of labels of bi-infinite paths in the graph represented Figure 4. Since this graph is a
finite automaton, the symbolic dynamical system associated with 6 is sofic.

For the unitary quadratic Pisot numbers, the result of Parry can be expressed as
follows. In Cask 1, an infinite sequence (resp. a finite word) over Ay is a #-expansion

- 12 -



Figure 3: Symbolic dynamical system of finite type in Cask 1

Figure 4: Sofic symbolic dynamical system in CASE 2

(resp. is a normal Ug-representation) if and only if this sequence and all the shifted ones
are lexicographically smaller than (r0)“. Similarly in CASE 2, an infinite sequence (resp.
a finite word) over Ay is a f-expansion (resp. is a normal Ug-representation) if and only if
this sequence and all the shifted ones are lexicographically smaller than dg(1) = r—1 (r—2)“ .

Let mg: ZY¥ — R be the function mapping an infinite word s = (Sn)nZI onto its
numerical value ) o, 5,077, and let ag be the congruence defined by s ay " if and only
if 7g(s) = mg(s'). Let Iy = {s € Z" | mg(s) € [0,1[}. Then the result of Parry just recalled
can be formulated as follows, in a manner very similar to Theorem 1:

FEvery class of Iy modulo «g contains exactly one element in Dy.

Let Pery(A}) denote the set of periodic words of A} of period 4. Then from our result
follows that

{w¥ | w € Ry} in Casg 1

Dy N Pery(AY) =
¢ ers(Ag) {{w‘”|w€R€}U(7‘_2 r—2r—2r—2)“ in CASE 2.

4 Proof of Theorem 1

The proof of Theorem 1 is quite different in CASE 1 and in CASE 2, much simpler in
the latter case. For CASE 1, it is first easily established that every class contains at least
one element of Ry (Part A). The proof of uniqueness is more involved. An element, or
word, of Z* is said to be positive if all its digits belong to N. We first consider only

,13,



positive words and we give an orientation to the relations defining 4. If the rewriting
system obtained that way were confluent — that is to say, if “no matter how one diverges
from a common ancestor, there are paths joining at a common descendent” [4] — the
uniqueness of a reduced positive word would follow from a standard argument. What is
developped in Part B through a detailed analysis is that this reduction “behaves” as if
the system were confluent, though it is not. The last (and easy) step amounts to verify
that reduction paths through non-positive words do not bring any further possibilities of
equivalence between words (Part C). For CASE 2, we directly derive a confluent rewriting
system from the relations defining ~g.

4.1 Proof for Case 1

Notation and conventions. By definition, vy is generated by the following relations:

1710 =0000 (1)

1 =0000 (2)

=0000 (3)

01
171 =0000 (4)

=3
[l B
S
S
=3
[l B

Any linear combination of these relations gives rise to another relation that is also
satisfied by the congruence 4 . In particular (1)+(3), and (2)4(4), yield respectively:

0F07=0000 (5) FOF0=0000 (6)

The opposite of a relation («) is another relation, denoted by («a); e.g.

1r10=0000 . 1)

By abuse, we denote as the sum w + («) the digit-addition of w and the non-zero
member of the relation (a), 1 < a <4; e.q.

if w=azyut, then w4 (l)=az+1y—ru—1t

The notation extends to subtraction: w — (o) = w + («).

If w’ is obtained from w by adding one of the four relations defining 4 or of their
opposites, we write w ¢ w’; if moreover w and w’ are both positive, we write w < w’.
If w’ is obtained by a sequence of such additions we write w <> w’ and such a sequence is
called a path from w to w’. If moreover every word encountered on the path is positive,
we write w < w’. By definition, w and w’ are equivalent modulo ~4 if and only if w & w'.

The four relations (1) to (4) will also be considered as reductions and written as such:
(@)
w— w+ (a) .

If both w and w + (o) are positive, we write

wg)w—l-(oa)

— 14 -



and we say that w is positively reducible by («). If it is not the case, w, supposed to be
positive, is said to be (a)-irreducible. A positive word is called positively irreducible, or

p-irreducible, if no such reduction is possible.

Every word in Ry is p-irreducible but the converse obviously does not hold;
e.g. 0 r4+10 0 is p-irreducible but not in Ry.

In addition to the cases described by these general conventions, we shall also write

0r0r (:5>)0000 and 7‘07‘0(:6>)00007
which state that 0 » 0 r , and r 0 r 0 , are positively reducible to 00 0 0. But this
word w = 0 r 0 r (resp.w = r 0 r 0)is the only one to which the reduction (5), (resp. (6))
may be applied, since they would be otherwise even more cases to be analysed later.

A positive path between two positive words f and ¢ is thus a sequence of positive
reductions following each other either in the direct or in the reverse direction; e.g.

F9 @Y @+ B =g .

A last definition: the sum of the digits of an element w of Z%is called the weight of w,
and is denoted by W (w). A positive word has positive weight but the converse does not
hold. For any w in Z* and for any reductions o, 3, and + it holds:

W(w + (@) = W(w+ (o) + (8) + (7)) = W(w) =1, o
and Wi(w+ (a) + () = W(w) .
Part A. Every class modulo v contains positive words, by adding (1) + (3) and (2) + (4)

a sufficient number of times to any word of Z*.

We show, by case examination, that for any positive word w not in Ry, it is possible
to find a positive path (of length 1, 2 or 3) that leads to a word w’ which is either in Ry
or has a weight reduced by r. Hence, from any positive word there exists a positive path
reaching Ry, for otherwise it would be possible to build a positive path reaching a word
of non-positive weight, and thus, non-positive, a contradiction. And then, every class
modulo 7y contains at least one element in Rjg.

Let w= 2 y ut bein N* and not in Ry. Without loss of generality, one can suppose
that z and u on one hand, and y and ¢ on the other hand, are not both greater than r, for
otherwise a sequence of reductions (2) + (4) or (1) + (3) could be used!®. Similarly, one
can suppose that no digit greater than r is followed by a positive digit for otherwise one
of the reductions (1) to (4) could obviously be used.

Since vy commutes with any circular permutation, one can suppose, without loss of
generality, that y w ¢ @ is the largest circular factor (in the lexicographic order) of w =

%n the case where the other two digits (y and ¢, or  and u) are 0, this sequence is prefixed by m
(resp. (2)) and suffixed by (1) (resp. (2))
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xyut. Since we suppose that w is not in Ry, t.e., y ut z is greater than r 0 r 0 in
the lexicographic order, this implies from the above remark that

z<r—1, y>r+1, w=0 and t<r—1.

We then apply (4) followed by (1):

_ (4) (1) o
w=2zy0it<= z2y-1ri+1 = 241 y—r—1r—11t4+1 =w .

We have W (w) = W(w'). Which relation can be further applied to w’ then depends on
the actual values of z, y, and ¢, and we have to examine the different possible cases.

3
1 Ift=r—-1, then w'= 2+1 y—r—1r—1r (:>) T y—-r—1r0 =uw".

2 Ift<r-2 (and thus r > 2), then
21 Ifz=r-1, then
211 1fy=r+1, then w = 7r0r—1it+1 isin Rg .
21.2Ify>r+2, then

2
w=ry—r—1r—1tt+1 (:>) 0 y—r—2 r—1 t+2 ="

2.2 Ifz<r-—2, then
221 1Ify<2r, then w' = a+1 y—r—1r—1t+1 isin Ry .
222 1Ify>2r+1, then

1
w = 41 y—r—1 r—1 t+1 (:>) r42 y—or—1 r—2 t+1 = w"

is a positive word since r > 2.

Thus, as announced, in any case, a positive word w leads either to a word of strictly
smaller weight by a positive path of length 1 or 3 or into Ry by a positive path of length 2.

Part B. The system defined by the relations (1) to (4) — oriented, as in Part A, from left
to right — is not confluent when it is restricted to positive words. With the hope of making
the reading easier, we have illustrated, or more exactly, translated, the statements given
in the claims which follow by diagrams. In these diagrams, the hypotheses, namely the
existence of certain reductions, are depicted by solid arrows, and the conclusions, namely
the existence of certain other reductions, are depicted by dashed arrows. In both cases
these are doublelined arrows as they correspond to positive reductions.

It is easy to verify, by inspection on the possible values of the digits of w, the first two
following claims.

(1)

. ., . 3 . .
Claim 1 Let w be a positive word; then, 1) w = w' and w (:>) w” imply that there exists

(3) (1) (2)

., . .. 4
a (positive) word v such that w' = v and w"” = v. Similarly, i) w = w' and w @

(4) (2)

imply that there exists a (positive) word v such that w' = v and w" = v.
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N p N p
N //// Q ////
3) X £ (1) (4)\\\ ¥ (2) (4) 3\ /
v v
Claim 1, i) Claim 1, ii) Claim 2, i)

(:4>) w" hold. Then:

1)-reducible implies that w' is (4)-reducible and vice versa;

. » 1
Claim 2 Let w be a positive word and suppose that w (:>) w’ and w

1) " (
" (

4)-reducible implies that w" is (1)-reducible as well (and thus w' is (4)-reducible);

w
w
w
w//

)
" (3)-reducible implies that both w and w' are (3)-reducible;
(2)

2)-reducible implies that w is (2)-reducible.

(1)

(1) " @) N s @)
AN fx N

(

w (1) w w' v w
\\\ //// // \\ A N

4) N f @ (3 ) 3\ y # (1) ‘\ / (4) \\ . /(2)

Claim 2, ii) Claim 2, iii) Claim 2, iv)

These first two claims deal with the cases where the reduction behaves as if it were
confluent; the next one describes in detail the case where the reduction is not confluent:

one of the branch happens to be a dead end from where one cannot escape by another
derivation than the branch itself.

Claim 3 Let w be a positive word. Suppose that w (:1>) w' and w (:4>) w” hold and that w"

p-irreducible. If there exists two (positive) words h and k and two distincts reductions («)

and (3) such that h @ w” and h (:@ k, then necessarily
1) h=w [and (o) = (4)]; ii) if k# w' then (3) = (3).

w (4) () h (3) (1) )
NN Ve (3)\\

w' w” k w

Proof. Let w= z y ut; thus w'= 2 y+1 u—r t—1 .
The hypothesis implies that:
y>r since wis (1)-reducible; w=r, since w” is (1)-irreducible and y > r;

x <r, since w”is (2)-irreducible; and ¢ <r+1, since w” is (3)-irreducible.
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3
Now, h (:>) w” is impossible since w” = = y+1 0 t—1 .

Suppose h (:2>) w”; then h = z+r y+2 0 t—2 which makes h (:4>) korh (:1>) k impossible;

h (:3>) k is impossible as well since t < r + 1.

Suppose h (:1>) w”; then h = z—1 y+r-+1 1 t—1 which implies r > 1 since = < r.
Now h (:4>) k is impossible since r > 1; h (——3>) k is impossible since t < r 4+ 1 and h (——2>) kis

impossible since z < r.
The only possibility left by («) # (3) is thus (o) = (4).

As before, (8) = (2) is impossible since < r and the claim is established. |

A simple verification leads to the following claim.

(1) G

Claim 4 Let w be a positive word; w = w' and w = w” imply that w" does not belong
(4) G () C 2) ()

to Ry. Similarly, w = w' and w = w"”, or w = w' and w = w”, or w = w' and w = w
imply w” & Ry. [ ]

The collection of claims we have just established allows us to adapt the classical scheme
of demonstration of the uniqueness of reduced words in a class modulo a confluent relation.
Let us suppose, by way of contradiction, that there exist f and ¢ in Rg with the property
that there exists a positive path between them. [Recall that a positive path is a sequence
of reductions (1), (2), (3) or (4) between positive words — together with the possible

occurrence of 0 7 0 r (:5>) 0000 andof 070 (:6>) 0000 — in either directions.]

Since f and g are both p-irreducible, such a path IT must contain a “peak”, that is a
factor

w e we w of the form w’ (é) w (:@ w” .

The path II thus contains a peak of mazimal weight; the weight of such a peak will be
the weight of the path I1. Paths are then ordered by weight and paths of equal weight are
ordered by the number of peaks of maximal weight.

In the set of all positive paths between f and ¢ — a non-empty subset by hypothesis —

let us choose a minimal path [lg ¢.e., a path of minimal weight with a minimal number of

()

peaks of maximal weight. Let w be one of these peaks of maximal weight and let w = w’

and w (:@ w” be the two reductions that go out of w on Ily, which can thus be written in

the following form:

féw’@w(:@w”ég

By Claim 1, it is not possible to have o = 1 and 8 = 3; for otherwise we would have a

word v such that w’ (:3>) v and w” (:1>) v and thus the path
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is smaller than Ilg, a contradiction. For the same reason it is not possible to have o = 2

and g = 4.

Up to a circular permutation of every word on Iy, and a possible exchange of f and g,
we can assume that @« = 1 and 8 = 4. By Claim 2 i) and ii), and with the same argument
as just above, w” is neither (1)- nor (4)-reducible. By Claim 2 iii), w” is not (3)-reducible
for otherwise we would have w’ (:3>) v, w (——3>) v and w” (:3>) v” and since reductions commute
we would get the path

féw'@v'&lz)vgv”@w”ég
which again is smaller than Ily. We have now to consider the remaining two cases: case a)
w” is not (2)-reducible (and thus w” is p-irreducible), or case b) w” is (2)-reducible. Note
that w” is neither (5) nor (6)-reducible.

case a.— w” is p-irreducible. By Claim 4, w” is not in R4 and thus not equal to g. The
path Il factorizes into

féw’g:)w(:@w”(é)h@kég.

The only possibilities left by Claim 3 for the reductions w” (é) h < k are either

case a.1l.— w” (<4:) h (:1>) k = w' in which case w” is indeed a dead end in IIy and

is a path smaller than Ilg, a contradiction; or

(@), 0)

case a.2— w” = h <= k in which case k has a weight greater than w, another contradic-
tion.

case b.— w” is (2)-reducible. By Claim 2 iv), w is (2)-reducible as well. If w’ is also (2)-
reducible the situation is the same as if w” were (3)-reducible and leads to a contradiction.
Let us suppose then that w’ is (2)-irreducible and let us sum up the constraints on the
digits of w = @ y u t given by all hypotheses we have made up to this point. We have:

r_ W ) n_ (2)
w=a+1y—-ru—11{t Ew=zryut 5w =z y+1 u—rt—1 = r—r y u—rt

The hypothesis w” (1)-irreducible implies u = r and thus w’ is (4)-irreducible;
w’ (2)-irreducible implies y = r (and thus w’ is (1)-irreducible). There are thus two
possibilities: case b.1), w’ is (3)-reducible or, case b.2), w’ is p-irreducible.

case b.1.— w' is (3)-reducible; w” (3)-irreducible implies ¢ = r. The path Il reads then

f<§> z+1 0 r—1r glz)w:xrrrg zr+10 r— ég.
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If x is greater than r, the path
f<§> z+1 0 r—1r @xOrOQZ) z—17r r+10 (:2>) z—r-1 r—1 r+1 1
(<3:)$—T‘T‘—17‘T‘—|—1(:4>)$—17‘07‘(<2:)wr‘—l—lOT‘—l Sy

is smaller than Ilg. If = r, the path

S 2410 r—1 7 @rOrO@OOOO@OrOr@ tr+10r—1 Sy
is again smaller than Iy, and of a form consistent with the hypothesis on a positive path.
Contradiction for any possible value of z.

case b.2.- w’ is p-irreducible. Since w is (2)-reducible and using Claim 1, we can trans-
form the path IIy into a path IIy’

1 2
féw’&z)w(:gw”’ég

which is also minimal. The image of IIy’ by the permutation =1 then reads

kém"(f:)m(:lgm’

=Y
with k& = o71(f), I = 07 Yg), m = o7 Hw), m" = o7 (w') and m' = o7 (w"). As w’,

m’" is p-irreducible and we are back to case a), that leads to a contradiction.

This terminates the proof of the fact that no two distinct elements of Ry can be joined
by a positive path.

Part C. It remains to show that if two elements f and ¢ of Ry are congruent modulo g,
they are equal. Indeed, f and ¢ are congruent modulo g if and only if f <& g, that is, if
and only if there exists a path ¥ between f and ¢g. The idea is to “lift” the path X into
a positive path 11 between f and ¢ (as sketched on Figure 5) and the conclusion follows
from Part B.

Figure 5: X lifts to II .

The lifting relies on a lemma and a remark.
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Lemma 3 Let n be any positive integer and let h, be the word
h, = nr nr nr nr

For any f in Ry there exists a positive path f+ h, = f.

Proof. If f= 0000 one may begin the path with
0000 (<6:) r0r0

and thus one can assume that at least one digit of f = 2 y w t is positive. Up to a circular

permutation, it is possible to suppose that this digit is 2. One has the sequence:

f= Q) (3)
=zyut<=zcz—1yt+rutiit < zy+ruit+tr

(2) (4) _
< z+rytr+rut+r—1 < x4+ry+rutrt+r = f+hy .
Without any further care on the order of the rewriting one has

foahy TR p

for any positive ¢ and then f <& f + h, for any positive n. |

Remark 1 Let u and v be two non-positive elements of Z* and %k the lower bound

of the digits in w and v; let n be a positive integer such that nr > —k. If u (i) v,

then v+ A, (é) v+ hy,, for any reduction («).

Let X be any path of reductions that links f and ¢, which we write
%
[y
It is clear now how to lift 3: let k be the lower bound of the digits of the words that

appear in X and let n as above, i.e., such that nr > —k. Let f' = f+h, and ¢’ = g+ h,,.
We have, by Lemma 3,

FEPE g2y
and by the remark “ ¥ + h,, 7 is a positive path. Thus f & ¢ implies f & ¢ which has

been shown impossible and this complete the proof of the theorem in Cask 1. ]

4.2 Proof for Case 2

Unless otherwise stated, all notations and conventions described in the previous section
are still valid. The congruence 74 is now generated by the following relations:

1710 =0000 (1) 1017 =0000 (3"
7101 =0000 (2)) 0171 =0000 (4%)



which can be turned into a rewriting system (S) by giving the orientation from left to
right:

17100000 (1) ete.

Let us recall also that Ry is now the set of words of N* with the property that they, and
all their conjugates, are different from r—2 r—2 r—2 r—2 and strictly smaller
than r—1r—2r—2r—2 in the lexicographic order.

It is immediate to check that for any positive word w and any two reductions («)
and (f) in (S), if w @ @ G

= = = v hold as well.
This fundamental difference with CASE 1 can be stated as follows:

w' and w (:@ w” hold, then v’ = v and w”

Claim 5 (8) is confluent on the set of positive words. [

We are not yet done, for the rewriting system (§) is not equivalent to v4 on the set of
positive words. But the solution is at hand and will be reached by the construction of a

richer system.

Let (7) be the rewriting system obtained by adding any subset of relations in (S). We
get then the following relations.

that is: (5') =

r—1r—111
r—111r—1
11r—1r—1

lr—1r—11

r—12r—1r—2

2r—1r—a2r—1

r—1r—2r—12

r—2r—12r—1

20+ @), (7) =

— 0000
— 0000
— 0000
— 0000

(3") + (4) and (8') = (4') + (1').

—~ 0000 (9")
—~ 0000 (10")
—~ 0000 (11)
—~ 0000 (12))

(9) = (2)+ @)+ ), (10) = 3) + (@) + (1), (1) = (4) + (V') + (2) and
1)+ (2') 4+ (3). And finally (13") = (1) + (2) + (3') + (4) :
r—2r—z2r—2r—2 — 0000 (137
A simple case inspection shows that
Claim 6 Ry is the set of irreducible words for the system (S +T). [ ]

The core of the proof lies then in the following:
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Claim 7 (S+ 7) is confluent on the set of positive words.

Proof. Since we have not spared him the slightest detail yet, the reader may be scared
by the prospect of checking the 78 critical pairs of the system (S + 7). Hopefully, thanks
to the symmetries and the very specific form of the relations, the number of cases to be
examined boils down to 11, of which we shall make only 3 explicit.

Let w = z y u ¢ be a positive word and suppose that w (é) w’ and w (:@ w” hold. By

Claim 5, one can assume that () and () are not both in (S). Up to an exchange of («)
and (), we suppose that 5 is in (7).

1 (a)isin (S). Up to a circular permutation, one can assume that (a) = (1).
1.1 (f) “contains” («), i.e., it exists (y) in (S+ 7T) such that (3) = (a) + (7).

Then, obviously, w’ (%) w”.

1.2 (8) does not “contain” («); the only possibilities are (5) = (67), (7°), or (9).
8) ()

Immediate computations show that w’ = v and w” = v hold as well.

For instance, let (8) = (9); it comes:

Ty ut g 41 y—r ut+1t =w (147
and xyut g T—r4+1 y+2 u—r+1 t—r42 =w" . (157)

From (14°) follows y > r and thus w” g v; from (15°) follows z, u > r—1,t > r—2 and
thus w' 2 v,

2 (o) is not in (S). By symmetry, one can assume that (3) is as “large” as («), i.e.,
is the sum of as many relations from (S§) as (). Up to a circular permutation, one can
assume that () = (5’) or (9') (since (o) = (13") implies (5) = (13')).

2.1 (p) “contains” («). Same solution as in 1.1.

2.2 Case 2.1 does not hold. Then there exist (), (§) and (¢) in (S + 7)) such
that (o) = (v) + (§) and () = (v) + (¢). It is then a matter of immediate computation

to verify that, in every case, w (:>) v and w” (:>) v hold. The only possibilities are:

2.2.1 if (a) = ('), then (8) = (6"), (77), (8"), (9°) or (107).

For instance, let (8) = (6); it comes:

Ty ut g T—r4+1 y—r+1 ut1 tpu =w' (167)
and xyut g r—r4+1 y+1 ut1 t—r+1 =w" . (177

From (16’) follows y > r—1, thus y4+1 > r and thus w” :; v; from (17) follows t > r—1,
thus 41 > r and thus w' :; V.

2.2.2 if (o) = (9'), then (3) = (10'), (117), or (12").
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For instance, let (3) = (10"); it comes:

Ty ut g r—r+1 y+2 u—r+1 t—r+2 =’ (18

and xyut (1:0>) r42 y—r41 u—r+2 t—r+1 =w" . (197

From (18’) follows & > r—1, thus y+2 > r and thus w” g v; from (197) follows y > r—1,
thus y+2 > r and thus w’ (:1; v.

The claim is established. ]

CaAsk 2 is now immediately settled. Every class modulo 74 contains positive words,

by adding (13’) to any word of Z*, a sufficient number of times. And any positive word
reduces to a unique word in Ry, using reductions in (S + 7).

Two words f and g of Ry are congruent modulo v4 if and only if f & g, that is, if
and only if there exists between f and ¢ a path ¥ consisting of reductions of (S) taken in
either directions. Asin CASE 1, this path X can be “lifted” into a positive path II by using
the same reduction (13’) as before. Since we can use that reduction, the actual value of f
has not to be taken into consideration — in other words, Lemma 3 becomes trivial — and
the lifting is even simpler than in CASE 1.

By construction, the path II consists of reductions of (§4 7). By Claims 6 and 7, two
distincts words of Ry cannot be joined by such a path, hence f = g.

And this completes the proof of Theorem 1. [
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