An introduction to map enumeration

Guillaume Chapuy, LIAFA, CNRS & Université Paris Diderot
What this course is about (I)

A map is a graph embedded in a surface:

Maps appear (almost?) everywhere in mathematics. Map enumeration alone is an enormous area.

At least three reasons to be interested in it:

- because you would like to start working seriously on the subject.
- because map enumeration contains powerful tools that can be useful to other parts of combinatorics (functional equations, bijective tricks, algebraic tools...).
- because it is likely that your favorite subject is linked to map enumeration in at least some special case: looking at where this problem appears in the world of maps is a very good source of new questions.
What this course is about (II)

Topics not covered: - link with algebraic geometry
 matrix integrals
 string theory
What this course is about (II)

Topics not covered: - link with algebraic geometry
matrix integrals
string theory
- random maps
What this course is about (II)

Topics not covered: - link with algebraic geometry
 - matrix integrals
 - string theory
 - random maps

SEE THE BOOK BY LANDO-ZVONKIN
SEE E.G. SURVEY BY MIERMONT
What this course is about (II)

Topics not covered: - link with algebraic geometry
- matrix integrals
- string theory
- random maps

SEE THE BOOK BY LANDO-ZVONKIN

SEE E.G. SURVEY BY MIERMONT

Topics covered: I – Maps
 II – Tutte equation, counting planar maps
 III – Tutte equation, counting maps on general surfaces
 IV – Bijective counting of maps

The exercises contain entry points to other subjects
 (one-face maps, link with the symmetric group)
Lecture I – What is a map? (the oral tradition)
Rough definition

A map is a graph drawn on a surface.
Rough definition

A map is a graph drawn on a surface.
Rough definition

A map is a graph drawn on a surface.
A map is a graph drawn on a surface.
Rough definition

A map is a graph drawn on a surface.

A surface is a connected, compact, oriented, 2-manifold considered up to oriented homeomorphism.

Example: \(S_g := \) the \(g \)-torus = the sphere with \(g \) handles attached

\[
\begin{align*}
S_0 & \quad S_1 & \quad S_2 & \quad S_3 \ldots
\end{align*}
\]

Theorem of classification: every surface is one of the \(S_g \) for some \(g \geq 0 \) called the genus.
Rough definition

A map is a graph drawn on a surface.

Our graphs are unlabelled, connected, and may have loops or multiple edges.
Rough definition

A **map** is a **graph** drawn on a **surface**.

Our **graphs** are unlabelled, connected, and may have **loops** or **multiple edges**.

Examples:

![Graph Example](image-url)
Rough definition

A map is a graph drawn on a surface.

Our graphs are unlabelled, connected, and may have loops or multiple edges.

Examples:

The degree of a vertex is the number of half-edges incident to it.
Rough definition

A map is a graph drawn on a surface.

Our graphs are unlabelled, connected, and may have loops or multiple edges.

Examples:

The degree of a vertex is the number of half-edges incident to it.

A proper embedding of a graph in a surface is a continuous drawing of the graph on the surface without edge-crossings.
Topological definition of a map

A map is a proper embedding of a graph G in a surface S such that the connected components of $G \setminus S$ (called faces) are topological disks.

(a) not a map

(b) valid map of genus 1
Topological definition of a map

A **map** is a proper embedding of a graph G in a surface S such the connected components of $G \setminus S$ (called **faces**) are **topological disks**.

Maps are considered up to oriented homeomorphisms.
Topological definition of a map

A map is a proper embedding of a graph G in a surface S such the connected components of $G \setminus S$ (called faces) are topological disks.

Maps are considered up to oriented homeomorphisms.

Important notion: a corner is an angular sector delimited by two consecutive half-edges in the neighborhood of a vertex.

There is a canonical bijection between corners and half-edges.
Topological definition of a map

A **map** is a proper embedding of a graph G in a surface S such the connected components of $G \setminus S$ (called faces) are topological disks.

Maps are considered up to oriented homeomorphisms.

Important notion: a **corner** is an angular sector delimited by two consecutive half-edges in the neighborhood of a vertex.

There is a canonical bijection between corners and half-edges.

The **degree** of a vertex (or face) is the number of corners incident to it.

If a map has n edges then:

$$2n = \# \text{ corners} = \# \text{ half-edges} = \sum \text{ face degrees} = \sum \text{ vertex degrees}.$$
Topological definition of a map

A map is a proper embedding of a graph G in a surface S such the connected components of $G \setminus S$ (called faces) are topological disks.

Maps are considered up to oriented homeomorphisms.

Important notion: a corner is an angular sector delimited by two consecutive half-edges in the neighborhood of a vertex. There is a canonical bijection between corners and half-edges. The degree of a vertex (or face) is the number of corners incident to it. If a map has n edges then:

$$2n = \# \text{ corners} = \# \text{ half-edges} = \sum \text{ face degrees} = \sum \text{ vertex degrees}.$$

A rooted map is a map with a distinguished corner (or half-edge)
Example 1: planar maps

Convention The infinite face is taken to be the root face.
Example 1: planar maps

Maps of genus 0 are called planar rather than spherical...

Convention The infinite face is taken to be the root face.

Advertisement for the next lecture:

There are \(\frac{2 \cdot 3^n}{n + 2} \text{Cat}(n) \) rooted planar maps with \(n \) edges

(a nice number)
Maps as polygon gluings

An easy way to construct a map:

start with a family of polygons with $2n$ sides in total and glue them according to your favorite matching – just be careful to obtain something connected.
Maps as polygon gluings

An easy way to construct a map:
start with a family of polygons with $2n$ sides in total and glue them according to your favorite matching – just be careful to obtain something connected.

Claim: provided it is connected, the object we construct is a map.
Maps as polygon gluings

An easy way to construct a map:

- start with a family of polygons with $2n$ sides in total and glue them according to your favorite matching – just be careful to obtain something connected.

Claim: provided it is connected, the object we construct is a map.

Proof: We clearly build a surface with a graph on it, and by construction the faces are our polygons – hence topological disks.
Maps as polygon gluings

An easy way to construct a map:
start with a family of polygons with $2n$ sides in total and glue them according to your favorite matching – just be careful to obtain something connected.

\[
\begin{array}{ccc}
8 & & 10 \\
3 & & 4 \\
2 & 7 & 1 \\
9 & 5 & 6 \\
\end{array}
\]

Claim: provided it is connected, the object we construct is a map.

Proof: We clearly build a surface with a graph on it, and by construction the faces are our polygons – hence topological disks.

Proposition: any map can be obtained in this way.

Heuristic proof: to go from right to left, just cut the surface along the edges of the graph.
Maps as rotation systems

A rotation system on a graph is the data of a cyclic order of the half-edges around each vertex.
Maps as rotation systems

A rotation system on a graph is the data of a cyclic order of the half-edges around each vertex.

Fact: There is a natural mapping:

Maps \(\longrightarrow\) Graphs equipped with a rotation system

...given by the local counterclockwise ordering!
Maps as rotation systems

A rotation system on a graph is the data of a cyclic order of the half-edges around each vertex.

Fact: There is a natural mapping:

\[
\text{Maps} \quad \rightarrow \quad \text{Graphs equipped with a rotation system}
\]

...given by the local counterclockwise ordering!

Proposition: This mapping is a bijection.
Maps as rotation systems

A rotation system on a graph is the data of a cyclic order of the half-edges around each vertex.

Fact: There is a natural mapping:

Maps \rightarrow Graphs equipped with a rotation system

...given by the local counterclockwise ordering!

Proposition: This mapping is a bijection.

Corollary: We can easily draw a map on a sheet of paper by representing the ”surface clockwise order” as the ”paper clockwise” order:
Maps as rotation systems

A rotation system on a graph is the data of a cyclic order of the half-edges around each vertex.

Fact: There is a natural mapping:

Maps \rightarrow Graphs equipped with a rotation system

...given by the local counterclockwise ordering!

Proposition: This mapping is a bijection.

Corollary: We can easily draw a map on a sheet of paper by representing the ”surface clockwise order” as the ’’paper clockwise’’ order:

Reminder: At this stage I should draw more examples on the board
Combinatorial definition with permutations

A labelled map of size n is a triple of permutations (σ, α, ϕ) in \mathfrak{S}_{2n} such that
- $\alpha \sigma = \phi$
- α has cycle type $(2, 2, \ldots, 2)$.
- $\langle \sigma, \alpha, \phi \rangle$ acts transitively on $[1..2n]$.
A labelled map of size \(n \) is a triple of permutations \((\sigma, \alpha, \phi) \) in \(\mathfrak{S}_{2n} \) such that

- \(\alpha \sigma = \phi \)
- \(\alpha \) has cycle type \((2, 2, \ldots, 2) \).
- \(\langle \sigma, \alpha, \phi \rangle \) acts transitively on \([1..2n] \).

\(\text{???)} \)
Combinatorial definition with permutations

A labelled map of size \(n \) is a triple of permutations \((\sigma, \alpha, \phi)\) in \(S_{2n} \) such that

- \(\alpha \sigma = \phi \)
- \(\alpha \) has cycle type \((2, 2, \ldots, 2)\).
- \(\langle \sigma, \alpha, \phi \rangle \) acts transitively on \([1..2n]\).

Thm: There is a bijection between labelled maps of size \(n \) and graphs with rotation systems whose half-edges are labelled from 1 to \(2n \).

\[
\begin{align*}
\sigma &= (1, 8, 10, 5, 2)(3, 9, 6, 7, 4) \\
\alpha &= (1, 10)(2, 6)(3, 7)(4, 8)(5, 9) \\
\phi &= \alpha \sigma = (1, 4, 7, 8)(2, 10, 9)(3, 5, 6)
\end{align*}
\]

Note:
Combinatorial definition with permutations

A labelled map of size n is a triple of permutations (σ, α, ϕ) in \mathfrak{S}_{2n} such that

- $\alpha \sigma = \phi$
- α has cycle type $(2, 2, \ldots, 2)$.
- $\langle \sigma, \alpha, \phi \rangle$ acts transitively on $[1..2n]$.

Thm: There is a bijection between labelled maps of size n and graphs with rotation systems whose half-edges are labelled from 1 to $2n$.

Note:
- vertices = cycles of σ
- edges = cycles of α
- faces = cycles of ϕ
Combinatorial definition with permutations

A labelled map of size n is a triple of permutations (σ, α, ϕ) in \mathfrak{S}_{2n} such that
- $\alpha \sigma = \phi$
- α has cycle type $(2, 2, \ldots, 2)$.
- $\langle \sigma, \alpha, \phi \rangle$ acts transitively on $[1..2n]$.

Thm: There is a bijection between labelled maps of size n and graphs with rotation systems whose half-edges are labelled from 1 to $2n$.

Note: vertices = cycles of σ
edges = cycles of α
faces = cycles of ϕ

A rooted map is an equivalence class of labelled maps under renumbering of $[2..2n]$.

labelled map “=” $(2n - 1)! \times$ rooted map
Duality

A labelled map of size n is a triple of permutations (σ, α, ϕ) in \mathfrak{S}_{2n} such that
- $\alpha \sigma = \phi$
- α has cycle type $(2, 2, \ldots, 2)$.
- $\langle \sigma, \alpha, \phi \rangle$ acts transitively on $[1..2n]$.

The mapping $(\sigma, \alpha, \phi) \rightarrow (\phi, \alpha, \sigma)$ is an involution on maps called duality. It exchanges vertices and faces.
A labelled map of size n is a triple of permutations (σ, α, ϕ) in S_{2n} such that
- $\alpha \sigma = \phi$
- α has cycle type $(2, 2, \ldots, 2)$.
- $\langle \sigma, \alpha, \phi \rangle$ acts transitively on $[1..2n]$.

The mapping $(\sigma, \alpha, \phi) \rightarrow (\phi, \alpha, \sigma)$ is an involution on maps called duality. It exchanges vertices and faces.

There is also a well-known graphical version:
Duality

A labelled map of size n is a triple of permutations (σ, α, ϕ) in S_{2n} such that

- $\alpha \sigma = \phi$
- α has cycle type $(2, 2, \ldots, 2)$.
- $\langle \sigma, \alpha, \phi \rangle$ acts transitively on $[1..2n]$.

The mapping $(\sigma, \alpha, \phi) \rightarrow (\phi, \alpha, \sigma)$ is an **involution** on maps called duality. It exchanges vertices and faces.

There is also a well-known graphical version:
Duality II – dual submap

If \(m \) is a map with underlying graph \(G \) then any subgraph \(H \subset G \) induces a submap of \(G \), with same vertex set, by restricting the cyclic ordering to \(H \).

Note that the submap is not necessarily connected (and can have a different genus).

The dual submap is the submap of \(m^* \) the formed by edges whose dual is not in \(H \).

Proposition: The total number of faces of a submap and its dual submap are equal.
Euler’s formula

For a map of genus g with n edges, f faces, v vertices, we have:

$$v + f = n + 2 - 2g$$

In particular we can recover the genus from the combinatorics (we don’t need to “see” the surface...)
Example II: one-face maps

What is a one-face map? Clear in the “polygon gluing viewpoint”.

Start with a $2n$-gon and glue the edges together according to some matching.
What is a one-face map? Clear in the “polygon gluing viewpoint”.

Start with a $2n$-gon and glue the edges together according to some matching.

Proposition: The number of one-face maps with n edges is $(2n - 1)!! = \frac{(2n)!}{2^n n!}$.
Example II: one-face maps

What is a one-face map? Clear in the “polygon gluing viewpoint”.

Start with a \(2n\)-gon and glue the edges together according to some matching.

Proposition: The number of one-face maps with \(n\) edges is \((2n - 1)!! = \frac{(2n)!}{2^n n!}\).

Other viewpoint: factorisation \(\alpha \sigma = (1, 2, \ldots, 2n)\) where \(\alpha\) is some matching.
Example II: one-face maps

What is a one-face map? Clear in the "polygon gluing viewpoint".

Start with a $2n$-gon and glue the edges together according to some matching.

Proposition: The number of one-face maps with n edges is $(2n - 1)!! = \frac{(2n)!}{2^n n!}$.

Other viewpoint: factorisation $\alpha \sigma = (1, 2, \ldots, 2n)$ where α is some matching.

Much harder: control the genus! (see the exercises)
Example III: planar one-face maps (=plane trees, Catalan trees)

Euler formula: \[v + f = n + 2 - 2g \]

\[f = 1, \; g = 0 \] gives \[v = n + 1 \]

this is a tree!

Tree + root corner + rotation system = plane tree (a.k.a. ordered tree)

Proposition: The number of rooted plane trees with \(n \) edges is \(\text{Cat}(n) = \frac{1}{n+1} \binom{2n}{n} \).
Tomorrow: we start counting!

everything will be planar (no strange surface yet so don’t be afraid)

if you don't know what to do tonight, try exercise 0 from the webpage.