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A planar map is the embedding of a connected graph in the
sphere up to continuous deformations.

Planar Maps – Triangulations.

Plane maps are rooted. Face that contains the root = outer face

Triangulation = all faces are triangles.

Distance between two vertices = number of edges between them.
Planar map = Metric space



A planar map is the embedding of a connected graph in the
sphere up to continuous deformations.

Planar Maps – Triangulations.

Triangulation = all faces are triangles.

Simple map = no loops nor multiple edges

Simple
Triangulation



Model + Motivation

Simple
Triangulation

Euler Formula : v + f = 2 + e
Triangulation : 2e = 3f

Mn = {Simple triangulations of size n}
= n+ 2 vertices, 2n faces, 3n edges

Mn = Random element of Mn

What is the behavior of Mn when n goes to infinity ?
typical distances ? convergence towards a continuous object ?



One motivation : Circle-packing theorem

Mn = Random element of Mn

Model + Motivation

Mn = {Simple triangulations of size n}

What is the behavior of Mn when n goes to infinity ?
typical distances ? convergence to a continuous object ?

Each simple triangulation M has a unique (up to
Möbius transformations and reflections) circle
packing whose tangency graph is M .
[Koebe-Andreev-Thurston]

Gives a canonical embedding of simple
triangulations in the sphere and possibly of their
limit.



Random circle packing

Random circle packing =
canonical embedding of
random simple triangulation in
the sphere.

Gives a way to define a
canonical embedding of their
limit ?

Team effort : code by Kenneth Stephenson, Eric
Fusy and our own.
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Convergence of uniform quadrangulations

[Chassaing, Schaeffer ’04] :

Typical distance is n1/4 + convergence of the profile

The Brownian map is a universal limiting object.
All ”reasonable models” of maps (properly rescaled) are
expected to converge towards it.

[Chassaing, Schaeffer ’04] :

[Marckert, Mokkadem ’06] :

1st Def of Brownian map + weak convergence of quadrangulations.

[Miermont ’12, Le Gall ’12] :

Convergence towards the Brownian map
(quadrangulations + 2p-angulations and triangulations)

Idea :

Problem : These results relie on nice bijections between maps and labeled
trees [Schaeffer ’98], [Bouttier-Di Francesco-Guitter ’04].

general maps
NOT simple maps



The result

Theorem : [Addario-Berry, A.]
(Mn) = sequence of random simple triangulations, then:(

Mn,

(
3

4n

)1/4

dMn

)
(d)−−→ (M,D?),

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.
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The result

Theorem : [Addario-Berry, A.]
(Mn) = sequence of random simple triangulations, then:(

Mn,

(
3

4n

)1/4

dMn

)
(d)−−→ (M,D?),

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

• same scaling n1/4 as for general maps

• distance between compact spaces.

• The Brownian Map

Exactly the same kind of result as Le Gall and Miermont’s.



Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

supx∈X d(x, Y )

supy∈Y d(y,X)

X

Y

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)}



Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

supx∈X d(x, Y )

supy∈Y d(y,X)

X

Y

Gromov-Hausdorff distance btw two compact metric spaces E and F :

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)}

dGH(E,F) = inf dH(φ(E), ψ(F))

φ(X)

ψ(Y )

Infimum taken on : • all the metric spaces M
• all the isometric embeddings φ, ψ : E,F →M .



Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

supx∈X d(x, Y )

supy∈Y d(y,X)

X

Y

Gromov-Hausdorff distance btw two compact metric spaces E and F :

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)}

dGH(E,F) = inf dH(φ(E), ψ(F))

φ(X)

ψ(Y )

{isometry classes of compact metric spaces with GH distance}
= complete and separable (= “Polish” ) space.



The result

Theorem : [Addario-Berry, A.]
(Mn) = sequence of random simple triangulations, then:(

Mn,

(
3

4n

)1/4

dMn

)
(d)−−→ (M,D?),

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

Idea of proof :
• encode the simple triangulations by some trees,
• study the limits of trees,
• interpret the distance in the maps by some function of the tree.



From blossoming trees to simple triangulations

2-blossoming tree:
planted plane tree such that each

vertex carries two leaves

plane tree:
plane map that is a tree

rooted plane tree:
one corner is distinguished
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• close it to make a triangle.

• and repeat !
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Tree balanced = root corner has two leaves
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From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

• If a leaf is followed by two internal edges,

• close it to make a triangle.

• and repeat !

When finished two vertices have still
two leaves and others have one.

• label A and A?, the vertices with two leaves ,

• Add two new vertices in the outer face,

• Connect leaves to the vertex on their side,

• Connect B and C.

Tree balanced = root corner has two leaves



• out(v) = 3 for v an inner vertex
A∗

A

B C

From blossoming trees to simple triangulations

Simple triangulation endowed with
its unique orientation such that :

• out(A) = 2, out(B) = 1 and
out(C) = 0

• no counterclockwise cycle
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• no counterclockwise cycle

The orientations characterize simple
triangulations [Schnyder]



• out(v) = 3 for v an inner vertex
A∗

A

B C

From blossoming trees to simple triangulations

Simple triangulation endowed with
its unique orientation such that :

• out(A) = 2, out(B) = 1 and
out(C) = 0

• no counterclockwise cycle

Given the orientation the blossoming
tree is the leftmost spanning tree of
the map (after removing B and C).

The orientations characterize simple
triangulations [Schnyder]



A∗

A

B C

From blossoming trees to simple triangulations

Proposition: [Poulalhon, Schaeffer ’07]

The closure operation is a bijection
between balanced 2-blossoming
trees and simple triangulations.
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Same bijection with corner labels

• Start with a planted 2-blossoming tree.
• Give the root corner label 2.
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From blossoming trees to labeled trees
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3label of a vertex =
minimum label of its corners

In the following:
Labels gives approximate
distances to the root in the map
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From blossoming trees to labeled trees

2
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0
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Generic vertex :

i+1

i
i−1

i−1

i i

i+1
i+1i−1

• Can retrieve the blossoming tree
from the labeled tree.

• Labeled tree = GW trees +
random displacements on edges uniform on

{(−1,−1, . . . ,−1, 0, 0, . . . , 0, 1, 1 . . . , 1)}.

almost the setting of [Janson-Marckert] and [Marckert-Miermont] but
r.v are not ”locally centered” ⇒ symmetrization required



Convergence of labeled trees

Contour and label processes of a labeled tree

Theorem : [Addario-Berry, A.]
For a sequence of simple random triangulations (Mn), the contour
and label process of the associated labeled tree satisfie:(

(3n)−1/2Cbntc, (4n/3)−1/4Z̃bntc

)
0≤t≤1

(d)→
n→∞

(et, Zt)0≤t≤1,
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Idea of proof :

Start with one of “our” tree and apply a random permutation at each vertex
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0 0
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New tree satisfies the assumptions of
[Marckert-Miermont]
⇒ convergence result known

But modification too
important to derive some
properties of first model.



Idea of proof :

Start with one of “our” tree and apply a random permutation at each vertex

0−1 0

−1

−1

1

0

1

0 0

0

1

New tree satisfies the assumptions of
[Marckert-Miermont]
⇒ convergence result known

But modification too
important to derive some
properties of first model.

0−1 0

−101

−10

1

1

0 0

Gives a coupling between “our” model and the fully permuted model:
sufficient control to prove convergence for the true model.

Solution: • consider subtree T 〈k〉 spanned by k random vertices
• permute displacements and edges only outside 〈T 〉.
• permute only displacements on 〈T 〉.



Distances in simple triangulations

Theorem : [Addario-Berry, A.]
Mn= random simple triangulation, then for all ε > 0:

P
(

sup
0≤t≤1

{∣∣∣Z̃bntc − Zbntc∣∣∣} ≥ εn1/4)→ 0.

i.e. the label process of the tree gives the distance to the
root in the map.

Mn = simple triangulation

(Cbntc, Z̃bntc) = contour and label process of the associated tree

Zbntc = distance in the map between vertex ”bntc” and the root.
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First observation : In the tree, the labels of two adjacent vertices
differ by at most 1. What can go wrong with closures ?

Claim 1: 3dMn
(root, ui) ≥ Ln(ui)
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• On the left of a LMP, corner labels
decrease exactly by one.
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to the root face.

• For each inner vertex : 3 LMP
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Distances in simple triangulations

Claim 1: 3dMn
(root, ui) ≥ Ln(ui)

Claim 2 : dMn
(root, ui) ≤ Ln(ui)

• Consider the Left Most Path from (u, v)
to the root face.

• For each inner vertex : 3 LMP

• LMP are not self-intersecting
⇒ they reach the outer face
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LMP are almost geodesic

Euler Formula :
|E(Tq)| = 3|V (Tq)|−3− (`p+`q)

3-orientation + LMP :
|E(Tq)| ≥ 3|V (Tq)| − 2`q − 2

=⇒ `q ≥ `p + 1u

w

Tq

lq

Leftmost path

Another path: can it be shorter ?

lp
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LMP are almost geodesic

Leftmost path

Another path: can it be shorter ?

A

u

`p

`q ≥ `p

A

u

`p
`q

`q ≥ `p + 3

A

u

`p
`q

`q ≥ `p − 2

A

u

`p
`q

`q ≥ `p + 1

YES



LMP are almost geodesic

YES ... but not too often
Leftmost path

Another path: can it be shorter ?

A Bad configuration =
too many windings around the LMP

But w.h.p a winding cannot be too short.

=⇒ w.h.p the number of windings is o(n1/4).



LMP are almost geodesic

Proposition:

For ε > 0, let An,ε be the event that there exists
u ∈Mn such that Ln(u) ≥ dMn(u, root) + εn1/4.
Then under the uniform law on Mn, for all ε > 0:

P (An,ε)→ 0.

YES ... but not too often
Leftmost path

Another path: can it be shorter ?

A Bad configuration =
too many windings around the LMP

But w.h.p a winding cannot be too short.

=⇒ w.h.p the number of windings is o(n1/4).
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Distances are tight

u v

Lu Lv

Lu−1

Lu−2

Ľu,v

Ľu,v = min{Ls, u ≤ s ≤ v}

Ľu,v−1

Blue path = path of length Lu + Lv − 2Ľu,v + 2

Since (n−1/4Zbntc) converges ⇒ (dn) tight



The result for the last time

Theorem : [Addario-Berry, A.]
(Mn) = sequence of random simple triangulations, then:(

Mn,

(
3

4n

)1/4

dMn

)
(d)−−→ (M,D?),

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

The Brownian Map ??
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E[(Zs − Zt)2] = de(s, t) Z ∼ Brownian motion on the tree

The Brownian map
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Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)2] = de(s, t) Z ∼ Brownian motion on the tree

D◦(s, t) = Zs + Zt − 2 max
(

inf
s≤u≤t

Zu, inf
t≤u≤s

Zu

)
, s, t ∈ [0, 1] .

D∗(a, b) = inf
{ k−1∑
i=1

D◦(ai, ai+1) : k ≥ 1, a = a1, a2, . . . , ak−1, ak = b
}
,

The Brownian map

Then M = (Te/ ∼D? , D∗) is the Brownian map.



Perspectives

Same approach works also for simple quadrangulations.

Can it be generalized to other families of maps ?

• Generic bijection between blossoming trees and maps [Bernardi, Fusy]
[A.,Poulalhon].
Can we say something about distances ?

Can we say something about the embedding of the Brownian map in the
sphere via circle packing ?

• Convergence of Hurwitz maps: bijection also with blossoming trees
[Duchi, Poulalhon, Schaeffer].



Perspectives

Same approach works also for simple quadrangulations.

Can it be generalized to other families of maps ?

• Generic bijection between blossoming trees and maps [Bernardi, Fusy]
[A.,Poulalhon].
Can we say something about distances ?

Can we say something about the embedding of the Brownian map in the
sphere via circle packing ?

Thank you !

• Convergence of Hurwitz maps: bijection also with blossoming trees
[Duchi, Poulalhon, Schaeffer].


