Convergence of simple Triangulations

Marie Albenque (CNRS, LIX, École Polytechnique) Louigi Addario-Berry (McGill University Montréal)

Journées Cartes, 20th June 2013

Planar Maps – Triangulations.

A **planar map** is the embedding of a connected graph in the sphere up to continuous deformations.

Triangulation = all faces are triangles.

Planar Maps – Triangulations.

A **planar map** is the embedding of a connected graph in the sphere up to continuous deformations.

Triangulation = all faces are triangles.

Plane maps are **rooted**. Face that contains the root = **outer face**

Distance between two vertices = number of edges between them. Planar map = Metric space

Planar Maps – Triangulations.

A **planar map** is the embedding of a connected graph in the sphere up to continuous deformations.

Triangulation = all faces are triangles.

Simple map = no loops nor multiple edges

Model + Motivation

Euler Formula : v + f = 2 + eTriangulation : 2e = 3f

 $\mathcal{M}_n = \{ \text{Simple triangulations of size } n \} \\= n + 2 \text{ vertices, } 2n \text{ faces, } 3n \text{ edges}$

 $M_n = \mathsf{Random} \text{ element of } \mathcal{M}_n$

What is the behavior of M_n when n goes to infinity ? typical distances ? convergence towards a continuous object ?

Model + Motivation

 $\mathcal{M}_n = \{ \text{Simple triangulations of size } n \}$ $M_n = \text{Random element of } \mathcal{M}_n$

What is the behavior of M_n when n goes to infinity ? typical distances ? convergence to a continuous object ?

One motivation : Circle-packing theorem

Each simple triangulation M has a unique (up to Möbius transformations and reflections) circle packing whose tangency graph is M. [Koebe-Andreev-Thurston]

Gives a canonical embedding of simple triangulations in the sphere and possibly of their limit.

Random circle packing

Random circle packing = canonical embedding of random simple triangulation in the sphere.

Gives a way to define a canonical embedding of their limit ?

Team effort : code by Kenneth Stephenson, Eric Fusy and our own.

• [Chassaing, Schaeffer '04] :

Typical distance is $n^{1/4}$ + convergence of the profile

• [Chassaing, Schaeffer '04] :

Typical distance is $n^{1/4}$ + convergence of the profile

• [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

• [Chassaing, Schaeffer '04] :

Typical distance is $n^{1/4}$ + convergence of the profile

• [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

• [Le Gall '07] :

Hausdorff dimension of the Brownian map is 4.

• [Le Gall-Paulin '08, Miermont '08] :

Topology of Brownian map = sphere

• [Chassaing, Schaeffer '04] :

Typical distance is $n^{1/4}$ + convergence of the profile

• [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

• [Le Gall '07] :

Hausdorff dimension of the Brownian map is 4.

• [Le Gall-Paulin '08, Miermont '08] :

Topology of Brownian map = sphere

• [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map (quadrangulations + 2p-angulations and triangulations)

• [Chassaing, Schaeffer '04] :

Typical distance is $n^{1/4}$ + convergence of the profile

• [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

• [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map (quadrangulations + 2p-angulations and triangulations)

Idea : The Brownian map is a universal limiting object. All "reasonable models" of maps (properly rescaled) are expected to converge towards it.

• [Chassaing, Schaeffer '04] :

Typical distance is $n^{1/4}$ + convergence of the profile

• [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

• [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map (quadrangulations + 2p-angulations and triangulations)

Idea : The Brownian map is a universal limiting objectAll "reasonable models" of maps (propergeneral mapsexpected to converge towards it.NOT simple maps

Problem : These results relie on nice bijections between maps and labeled trees [Schaeffer '98], [Bouttier-Di Francesco-Guitter '04].

Theorem : [Addario-Berry, A.] $(M_n) =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)} (M, D^*),$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

Theorem : [Addario-Berry, A.] $(M_n) =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)} (M, D^{\star}),$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

• same scaling $n^{1/4}$ as for general maps

Theorem : [Addario-Berry, A.] $(M_n) =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)} (M, D^*),$$

for the distance of **Gromov-Hausdorff** on the isometry classes of compact metric spaces.

- same scaling $n^{1/4}$ as for general maps
- distance between compact spaces.

Theorem : [Addario-Berry, A.] $(M_n) =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)} (M, D^*),$$

for the distance of **Gromov-Hausdorff** on the isometry classes of compact metric spaces.

- same scaling $n^{1/4}$ as for general maps
- distance between compact spaces.
- The Brownian Map

Theorem : [Addario-Berry, A.] $(M_n) =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)} (M, D^*),$$

for the distance of **Gromov-Hausdorff** on the isometry classes of compact metric spaces.

- same scaling $n^{1/4}$ as for general maps
- distance between compact spaces.
- The Brownian Map

Exactly the same kind of result as Le Gall and Miermont's.

Gromov-Hausdorff distance

Gromov-Hausdorff distance

Gromov-Hausdorff distance btw two compact metric spaces E and F:

 $\mathbf{d_{GH}}(\mathbf{E}, \mathbf{F}) = \inf \, \mathbf{d_H}(\phi(\mathbf{E}), \psi(\mathbf{F}))$

Infimum taken on : • all the metric spaces M

• all the isometric embeddings ϕ, ψ : $E, F \to M$.

Gromov-Hausdorff distance

Gromov-Hausdorff distance btw two compact metric spaces E and F:

 $\mathbf{d_{GH}}(\mathbf{E}, \mathbf{F}) = \inf \mathbf{d_H}(\phi(\mathbf{E}), \psi(\mathbf{F}))$

{isometry classes of compact metric spaces with GH distance} = complete and separable (= "Polish") space.

Theorem : [Addario-Berry, A.] $(M_n) =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)} (M, D^*),$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

Idea of proof :

- encode the simple triangulations by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.

plane tree:

plane map that is a tree

rooted plane tree:

one corner is distinguished

2-blossoming tree:

planted plane tree such that each vertex carries two leaves

Given a planted 2-blossoming tree:

• If a leaf is followed by two internal edges,

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat !

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat !

When finished two vertices have still two leaves and others have one.

Tree **balanced** = root corner has two leaves

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat !

When finished two vertices have still two leaves and others have one.

Tree **balanced** = root corner has two leaves

• label A and $A^{\star},$ the vertices with two leaves ,

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat !

When finished two vertices have ${\rm still}^B$ two leaves and others have one.

Tree **balanced** = root corner has two leaves

- label A and $A^{\star},$ the vertices with two leaves ,
- Add two new vertices in the outer face,

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat !

When finished two vertices have still two leaves and others have one.

Tree **balanced** = root corner has two leaves \mathbf{V}

- label A and A^* , the vertices with two leaves
- Add two new vertices in the outer face,
- Connect leaves to the vertex on their side,

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat !

When finished two vertices have still B two leaves and others have one.

Tree **balanced** = root corner has two leaves

- label A and A^* , the vertices with two leaves
- Add two new vertices in the outer face,
- Connect leaves to the vertex on their side,
- Connect B and C.

Simple triangulation endowed with its unique orientation such that :

- out(v) = 3 for v an inner vertex
- $\operatorname{out}(A) = 2$, $\operatorname{out}(B) = 1$ and $\operatorname{out}(C) = 0$
- no counterclockwise cycle

Simple triangulation endowed with its unique orientation such that :

- out(v) = 3 for v an inner vertex
- $\operatorname{out}(A) = 2$, $\operatorname{out}(B) = 1$ and $\operatorname{out}(C) = 0$
- no counterclockwise cycle

The orientations characterize simple triangulations [Schnyder]

Simple triangulation endowed with its unique orientation such that :

- out(v) = 3 for v an inner vertex
- $\operatorname{out}(A) = 2$, $\operatorname{out}(B) = 1$ and $\operatorname{out}(C) = 0$
- no counterclockwise cycle

The orientations characterize simple triangulations [Schnyder]

Given the orientation the blossoming tree is the leftmost spanning tree of the map (after removing B and C).

Proposition: [Poulalhon, Schaeffer '07]

The closure operation is a bijection between balanced 2-blossoming trees and simple triangulations.

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1. 🛩
- Non-leaf to non-leaf, label decreases by 1.

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1. 2
- Non-leaf to non-leaf, label decreases by 1.

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1. 2^{4}
- Non-leaf to non-leaf, label decreases by 1.

3

3

Aside: Tree is balanced \Leftrightarrow all labels > 2

+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

 $\begin{array}{l} \text{all labels} \geq 2 \\ + \text{root corner incident to two stems} \\ \text{Closure: Merge each leaf with the first} \\ \text{subsequent corner with a smaller label.} \end{array}$

Aside: Tree is balanced \Leftrightarrow

all labels ≥ 2 +root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

From blossoming trees to labeled trees

From blossoming trees to labeled trees

From blossoming trees to labeled trees

Generic vertex :

- Can retrieve the blossoming tree from the labeled tree.
- Labeled tree = GW trees + random displacements on edges uniform on

 $\{(-1, -1, \dots, -1, 0, 0, \dots, 0, 1, 1, \dots, 1)\}.$

almost the setting of [Janson-Marckert] and [Marckert-Miermont] but r.v are not "locally centered" \Rightarrow symmetrization required

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2} C_{\lfloor nt \rfloor}, (4n/3)^{-1/4} \tilde{Z}_{\lfloor nt \rfloor} \right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2} C_{\lfloor nt \rfloor}, (4n/3)^{-1/4} \tilde{Z}_{\lfloor nt \rfloor} \right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2} C_{\lfloor nt \rfloor}, (4n/3)^{-1/4} \tilde{Z}_{\lfloor nt \rfloor} \right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2} C_{\lfloor nt \rfloor}, (4n/3)^{-1/4} \tilde{Z}_{\lfloor nt \rfloor} \right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2} C_{\lfloor nt \rfloor}, (4n/3)^{-1/4} \tilde{Z}_{\lfloor nt \rfloor} \right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2}C_{\lfloor nt \rfloor}, (4n/3)^{-1/4}\tilde{Z}_{\lfloor nt \rfloor}\right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2} C_{\lfloor nt \rfloor}, (4n/3)^{-1/4} \tilde{Z}_{\lfloor nt \rfloor} \right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2}C_{\lfloor nt \rfloor}, (4n/3)^{-1/4}\tilde{Z}_{\lfloor nt \rfloor}\right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

If T is a labeled tree, $(C_n(i), Z_n(i)) = \text{contour and label processes}$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2}C_{\lfloor nt \rfloor}, (4n/3)^{-1/4}\tilde{Z}_{\lfloor nt \rfloor}\right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

If T is a labeled tree, $(C_n(i), Z_n(i)) = \text{contour and label processes}$

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations (M_n) , the contour and label process of the associated labeled tree satisfie:

$$\left((3n)^{-1/2}C_{\lfloor nt \rfloor}, (4n/3)^{-1/4}\tilde{Z}_{\lfloor nt \rfloor}\right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

If T is a labeled tree, $(C_n(i), Z_n(i)) = \text{contour and label processes}$

Brownian snake $(e_t, Z_t)_{0 \le t \le 1}$

1st step : the Brownian tree [Aldous]

Brownian snake $(e_t, Z_t)_{0 \le t \le 1}$

1st step : the Brownian tree [Aldous]

2nd step : Brownian labels

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_\rho = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$

 $Z \sim \text{Brownian motion on the tree}$

Brownian snake $(e_t, Z_t)_{0 \le t \le 1}$

1st step : the Brownian tree [Aldous]

2nd step : Brownian labels

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_\rho = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$

 $Z \sim \text{Brownian motion on the tree}$

Theorem : [Addario-Berry, A.]

$$\left((3n)^{-1/2}C_{\lfloor nt \rfloor}, (4n/3)^{-1/4}\tilde{Z}_{\lfloor nt \rfloor}\right)_{0 \le t \le 1} \stackrel{(d)}{\xrightarrow{}} (e_t, Z_t)_{0 \le t \le 1},$$

Idea of proof :

Start with one of "our" tree and apply a random permutation at each vertex

Idea of proof :

Start with one of "our" tree and apply a random permutation at each vertex

Idea of proof :

Start with one of "our" tree and apply a random permutation at each vertex

Solution: • consider subtree $T\langle k \rangle$ spanned by k random vertices

- permute displacements and edges only outside $\langle T \rangle$.
- permute only displacements on $\langle T \rangle$.

Gives a coupling between "our" model and the fully permuted model: sufficient control to prove convergence for the true model.

 $M_n = \text{simple triangulation}$

 $(C_{\lfloor nt \rfloor}, \tilde{Z}_{\lfloor nt \rfloor}) =$ contour and label process of the associated tree

 $Z_{\lfloor nt \rfloor} = \text{distance in the map}$ between vertex " $\lfloor nt \rfloor$ " and the root.

Theorem : [Addario-Berry, A.] M_n = random simple triangulation, then for all $\varepsilon > 0$:

$$\mathbb{P}\left(\sup_{0\leq t\leq 1}\left\{\left|\tilde{Z}_{\lfloor nt\rfloor}-Z_{\lfloor nt\rfloor}\right|\right\}\geq \varepsilon n^{1/4}\right)\to 0.$$

i.e. the label process of the tree gives the distance to the root in the map.

Claim 1: $3d_{M_n}(root, u_i) \ge L_n(u_i)$

First observation : In the tree, the labels of two adjacent vertices differ by at most 1. What can go wrong with closures ?

Claim 1: $3d_{M_n}(root, u_i) \ge L_n(u_i)$

First observation : In the tree, the labels of two adjacent vertices differ by at most 1. What can go wrong with closures ?

Claim 1: $3d_{M_n}(root, u_i) \ge L_n(u_i)$

First observation : In the tree, the labels of two adjacent vertices differ by at most 1. What can go wrong with closures ?

Claim 1: $3d_{M_n}(root, u_i) \ge L_n(u_i)$ Claim 2 : $d_{M_n}(root, u_i) \le L_n(u_i)$

Claim 1: $3d_{M_n}(root, u_i) \ge L_n(u_i)$ Claim 2 : $d_{M_n}(root, u_i) \le L_n(u_i)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
 ⇒ they reach the outer face

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
 ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
 ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
 ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
 ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
 ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

Leftmost path Another path: can it be shorter ?

Euler Formula : $|E(T_q)| = 3|V(T_q)| - 3 - (\ell_p + \ell_q)$ 3-orientation + LMP : $|E(T_q)| \ge 3|V(T_q)| - 2\ell_q - 2$

 $\implies \ell_q \ge \ell_p + 1$

Leftmost path Another path: can it be shorter ?

Leftmost path Another path: can it be shorter ?

Leftmost path

Another path: can it be shorter ? YES

Leftmost path Another path: can it be shorter ? YES ... but not too often Bad configuration = Atoo many windings around the LMP But w.h.p a winding cannot be too short. \implies w.h.p the number of windings is $o(n^{1/4})$.

Leftmost path Another path: can it be shorter ? YES ... but not too often A Bad configuration = too many windings around the LMP But w.h.p a winding cannot be too short. \Rightarrow w.h.p the number of windings is $o(n^{1/4})$. Proposition:

> For $\varepsilon > 0$, let $A_{n,\varepsilon}$ be the event that there exists $u \in M_n$ such that $L_n(u) \ge d_{M_n}(u, root) + \varepsilon n^{1/4}$. Then under the uniform law on \mathcal{M}_n , for all $\varepsilon > 0$:

$$\mathbb{P}(A_{n,\varepsilon}) \to 0.$$

 $\check{L}_{u,v} = \min\{L_s, u \le s \le v\}$

 $\check{L}_{u,v} = \min\{L_s, u \le s \le v\}$

 $\check{L}_{u,v} = \min\{L_s, u \le s \le v\}$

 $\check{L}_{u,v} = \min\{L_s, u \le s \le v\}$

Modified LMP: at each step, we take the first edge **in the tree**

 $\check{L}_{u,v} = \min\{L_s, u \le s \le v\}$

Modified LMP: at each step, we take the first edge **in the tree**

The result for the last time

Theorem : [Addario-Berry, A.] $(M_n) =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)} (M, D^*),$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

The Brownian Map ??

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_\rho = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$ $Z \sim \text{Brownian motion on the tree}$

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_\rho = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$ $Z \sim \text{Brownian motion on the tree}$

$$D^{\circ}(s,t) = Z_s + Z_t - 2\max\left(\inf_{s \le u \le t} Z_u, \inf_{t \le u \le s} Z_u\right), \quad s,t \in [0,1].$$

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_\rho = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$ $Z \sim \text{Brownian motion on the tree}$

$$D^{\circ}(s,t) = Z_s + Z_t - 2 \max\left(\inf_{s \le u \le t} Z_u, \inf_{t \le u \le s} Z_u\right), \quad s,t \in [0,1].$$

$$D^*(a,b) = \inf\left\{\sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : k \ge 1, a = a_1, a_2, \dots, a_{k-1}, a_k = b\right\},\$$

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_\rho = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$ $Z \sim \text{Brownian motion on the tree}$

$$D^{\circ}(s,t) = Z_s + Z_t - 2\max\left(\inf_{s \le u \le t} Z_u, \inf_{t \le u \le s} Z_u\right), \quad s,t \in [0,1].$$

$$D^*(a,b) = \inf\left\{\sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : k \ge 1, a = a_1, a_2, \dots, a_{k-1}, a_k = b\right\},\$$

Then $M = (\mathcal{T}_e / \sim_{D^*}, D^*)$ is the **Brownian map**.

Perspectives

Same approach works also for simple quadrangulations.

Can it be generalized to other families of maps ?

Generic bijection between blossoming trees and maps [Bernardi, Fusy]
 [A.,Poulalhon].

Can we say something about distances ?

• Convergence of Hurwitz maps: bijection also with blossoming trees [Duchi, Poulalhon, Schaeffer].

Can we say something about the embedding of the Brownian map in the sphere via circle packing ?

Perspectives

Same approach works also for simple quadrangulations.

Can it be generalize بps ? • Generic bije Thank you ! rees and maps [Bernardi, Fusy] [A.,Poulalho Can we say sc. es ?

• Convergence of Hurwitz maps: bijection also with blossoming trees [Duchi, Poulalhon, Schaeffer].

Can we say something about the embedding of the Brownian map in the sphere via circle packing ?