Convergence of simple Triangulations

Marie Albenque (CNRS, LIX, École Polytechnique)
Louigi Addario-Berry (McGill University Montréal)

Planar Maps - Triangulations.

A planar map is the embedding of a connected graph in the sphere up to continuous deformations.

Triangulation $=$ all faces are triangles.

Planar Maps - Triangulations.

A planar map is the embedding of a connected graph in the sphere up to continuous deformations.

Triangulation $=$ all faces are triangles.
Plane maps are rooted. Face that contains the root $=$ outer face
Distance between two vertices $=$ number of edges between them.
Planar map $=$ Metric space

Planar Maps - Triangulations.

A planar map is the embedding of a connected graph in the sphere up to continuous deformations.

Triangulation $=$ all faces are triangles.

Simple map $=$ no loops nor multiple edges

Model + Motivation

Euler Formula : $v+f=2+e$ Triangulation : $2 e=3 f$
$M_{n}=$ Random element of \mathcal{M}_{n}

What is the behavior of M_{n} when n goes to infinity ? typical distances ? convergence towards a continuous object ?

Model + Motivation

$$
\begin{aligned}
& \mathcal{M}_{n}=\{\text { Simple triangulations of size } n\} \\
& M_{n}=\text { Random element of } \mathcal{M}_{n}
\end{aligned}
$$

What is the behavior of M_{n} when n goes to infinity ? typical distances ? convergence to a continuous object?

One motivation: Circle-packing theorem
Each simple triangulation M has a unique (up to Möbius transformations and reflections) circle packing whose tangency graph is M. [Koebe-Andreev-Thurston]

Gives a canonical embedding of simple triangulations in the sphere and possibly of their limit.

Random circle packing

Random circle packing $=$ canonical embedding of random simple triangulation in the sphere.

Gives a way to define a canonical embedding of their limit?

Team effort : code by Kenneth Stephenson, Eric Fusy and our own.

Convergence of uniform quadrangulations

- [Chassaing, Schaeffer '04] :

Typical distance is $n^{1 / 4}+$ convergence of the profile

Convergence of uniform quadrangulations

- [Chassaing, Schaeffer '04] :

Typical distance is $n^{1 / 4}+$ convergence of the profile

- [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

Convergence of uniform quadrangulations

- [Chassaing, Schaeffer '04] :

Typical distance is $n^{1 / 4}+$ convergence of the profile

- [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

- [Le Gall '07] :

Hausdorff dimension of the Brownian map is 4.

- [Le Gall-Paulin '08, Miermont '08] :

Topology of Brownian map $=$ sphere

Convergence of uniform quadrangulations

- [Chassaing, Schaeffer '04] :

Typical distance is $n^{1 / 4}+$ convergence of the profile

- [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

- [Le Gall '07] :

Hausdorff dimension of the Brownian map is 4.

- [Le Gall-Paulin '08, Miermont '08] :

Topology of Brownian map $=$ sphere

- [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map (quadrangulations +2 p -angulations and triangulations)

Convergence of uniform quadrangulations

- [Chassaing, Schaeffer '04] :

Typical distance is $n^{1 / 4}+$ convergence of the profile

- [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

- [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map (quadrangulations +2 p -angulations and triangulations)

Idea: The Brownian map is a universal limiting object. All "reasonable models" of maps (properly rescaled) are expected to converge towards it.

Convergence of uniform quadrangulations

- [Chassaing, Schaeffer '04] :

Typical distance is $n^{1 / 4}+$ convergence of the profile

- [Marckert, Mokkadem '06] :

1st Def of Brownian map + weak convergence of quadrangulations.

- [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map (quadrangulations +2 p -angulations and triangulations)

Idea: The Brownian map is a universal limiting obiect All "reasonable models" of maps (proper expected to converge towards it.
general maps
NOT simple maps

Problem : These results relie on nice bijections between maps and labeled trees [Schaeffer '98], [Bouttier-Di Francesco-Guitter '04].

The result

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right),
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

The result

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right),
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

- same scaling $n^{1 / 4}$ as for general maps

The result

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right),
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

- same scaling $n^{1 / 4}$ as for general maps
- distance between compact spaces.

The result

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right)
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

- same scaling $n^{1 / 4}$ as for general maps
- distance between compact spaces.
- The Brownian Map

The result

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right)
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

- same scaling $n^{1 / 4}$ as for general maps
- distance between compact spaces.
- The Brownian Map

Exactly the same kind of result as Le Gall and Miermont's.

Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

$$
d_{H}(X, Y)=\max \left\{\sup _{x \in X} d(x, Y), \sup _{y \in Y} d(y, X)\right\}
$$

Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

$$
d_{H}(X, Y)=\max \left\{\sup _{x \in X} d(x, Y), \sup _{y \in Y} d(y, X)\right\}
$$

Gromov-Hausdorff distance btw two compact metric spaces E and F :

$$
\mathbf{d}_{\mathbf{G H}}(\mathbf{E}, \mathbf{F})=\inf \mathbf{d}_{\mathbf{H}}(\phi(\mathbf{E}), \psi(\mathbf{F}))
$$

Infimum taken on :

- all the metric spaces M
- all the isometric embeddings $\phi, \psi: E, F \rightarrow M$.

Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

$$
d_{H}(X, Y)=\max \left\{\sup _{x \in X} d(x, Y), \sup _{y \in Y} d(y, X)\right\}
$$

Gromov-Hausdorff distance btw two compact metric spaces E and F :

$$
\mathbf{d}_{\mathbf{G H}}(\mathbf{E}, \mathbf{F})=\inf \mathbf{d}_{\mathbf{H}}(\phi(\mathbf{E}), \psi(\mathbf{F}))
$$

\{isometry classes of compact metric spaces with GH distance\} $=$ complete and separable ($=$ "Polish") space.

The result

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right),
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

Idea of proof:

- encode the simple triangulations by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.

From blossoming trees to simple triangulations

plane tree:
plane map that is a tree
rooted plane tree:
one corner is distinguished
2-blossoming tree: planted plane tree such that each vertex carries two leaves

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat!

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat!

When finished two vertices have still two leaves and others have one.

Tree balanced $=$ root corner has two leaves

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat!

When finished two vertices have still two leaves and others have one.

Tree balanced $=$ root corner has two leaves

- label A and A^{\star}, the vertices with two leaves,

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat!

When finished two vertices have still B^{\square} two leaves and others have one.

Tree balanced $=$ root corner has two leaves

- label A and A^{\star}, the vertices with two leaves,
- Add two new vertices in the outer face,

\square

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat!

When finished two vertices have still B two leaves and others have one.

Tree balanced $=$ root corner has two leaves

- label A and A^{\star}, the vertices with two leaves
- Add two new vertices in the outer face,
- Connect leaves to the vertex on their side,

From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

- If a leaf is followed by two internal edges,
- close it to make a triangle.
- and repeat!

When finished two vertices have still B two leaves and others have one.

Tree balanced $=$ root corner has two leaves

- label A and A^{\star}, the vertices with two leaves
- Add two new vertices in the outer face,
- Connect leaves to the vertex on their side,

- Connect B and C.

From blossoming trees to simple triangulations

Simple triangulation endowed with its unique orientation such that :

- out $(v)=3$ for v an inner vertex
- out $(A)=2, \operatorname{out}(B)=1$ and out $(C)=0$
- no counterclockwise cycle

A

From blossoming trees to simple triangulations

Simple triangulation endowed with its unique orientation such that :

- out $(v)=3$ for v an inner vertex
- out $(A)=2, \operatorname{out}(B)=1$ and out $(C)=0$
- no counterclockwise cycle

The orientations characterize simple triangulations [Schnyder]

A

From blossoming trees to simple triangulations

Simple triangulation endowed with its unique orientation such that :

- out $(v)=3$ for v an inner vertex
- $\operatorname{out}(A)=2, \operatorname{out}(B)=1$ and out $(C)=0$
- no counterclockwise cycle

The orientations characterize simple triangulations [Schnyder]

Given the orientation the blossoming tree is the leftmost spanning tree of the map (after removing B and C).

A

From blossoming trees to simple triangulations

Proposition: [Poulalhon, Schaeffer '07]

The closure operation is a bijection between balanced 2-blossoming trees and simple triangulations.

A

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1 .
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1 .
- Non-leaf to non-leaf, label decreases by 1 .

Aside: Tree is balanced \Leftrightarrow all labels ≥ 2
+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

Same bijection with corner labels

Aside: Tree is balanced \Leftrightarrow all labels ≥ 2
+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

Same bijection with corner labels

Aside: Tree is balanced \Leftrightarrow

all labels ≥ 2

+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

From blossoming trees to labeled trees

From blossoming trees to labeled trees

From blossoming trees to labeled trees

- Can retrieve the blossoming tree from the labeled tree.
- Labeled tree $=$ GW trees + random displacements on edges uniform on

$$
\{(-1,-1, \ldots,-1,0,0, \ldots, 0,1,1 \ldots, 1)\} .
$$

almost the setting of [Janson-Marckert] and [Marckert-Miermont] but r.v are not "locally centered" \Rightarrow symmetrization required

Convergence of labeled trees

Theorem : [Addario-Berry, A.]
For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}
$$

Convergence of labeled trees

Theorem : [Addario-Berry, A.]
For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}
$$

Contour and label proçesses of a labeled tree

Convergence of labeled trees

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

Convergence of labeled trees

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

Convergence of labeled trees

Theorem: [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

Convergence of labeled trees

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process

Convergence of labeled trees

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process

Convergence of labeled trees

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process
If T is a labeled tree, $\left(C_{n}(i), Z_{n}(i)\right)=$ contour and label processes

Convergence of labeled trees

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process
If T is a labeled tree, $\left(C_{n}(i), Z_{n}(i)\right)=$ contour and label processes

Convergence of labeled trees

Theorem : [Addario-Berry, A.]

For a sequence of simple random triangulations $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow{(d)}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}
$$

Contour and label processes of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process
If T is a labeled tree, $\left(C_{n}(i), Z_{n}(i)\right)=$ contour and label processes

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

$\left(e_{t}\right)_{0 \leq t \leq 1}=$ Brownian excursion

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$
1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

2nd step: Brownian labels
Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t)$
$Z \sim$ Brownian motion on the tree

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

2nd step: Brownian labels
Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t)$
$Z \sim$ Brownian motion on the tree
Theorem : [Addario-Berry, A.]

$$
\left((3 n)^{-1 / 2} C_{\lfloor n t\rfloor},(4 n / 3)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Idea of proof :

Start with one of "our" tree and apply a random permutation at each vertex

Idea of proof :

Start with one of "our" tree and apply a random permutation at each vertex
New tree satisfies the assumptions of [Marckert-Miermont]
\Rightarrow convergence result known
But modification too important to derive some properties of first model.

Idea of proof :

Start with one of "our" tree and apply a random permutation at each vertex
New tree satisfies the assumptions of [Marckert-Miermont]
\Rightarrow convergence result known
But modification too important to derive some properties of first model.

Solution: - consider subtree $T\langle k\rangle$ spanned by k random vertices

- permute displacements and edges only outside $\langle T\rangle$.
- permute only displacements on $\langle T\rangle$.

Gives a coupling between "our" model and the fully permuted model: sufficient control to prove convergence for the true model.

Distances in simple triangulations

$M_{n}=$ simple triangulation
$\left(C_{\lfloor n t\rfloor}, \tilde{Z}_{\lfloor n t\rfloor}\right)=$ contour and label process of the associated tree $Z_{\lfloor n t\rfloor}=$ distance in the map between vertex " $\lfloor n t\rfloor$ " and the root.

Theorem : [Addario-Berry, A.]
$M_{n}=$ random simple triangulation, then for all $\varepsilon>0$:

$$
\mathbb{P}\left(\sup _{0 \leq t \leq 1}\left\{\left|\tilde{Z}_{\lfloor n t\rfloor}-Z_{\lfloor n t\rfloor}\right|\right\} \geq \varepsilon n^{1 / 4}\right) \rightarrow 0 .
$$

i.e. the label process of the tree gives the distance to the root in the map.

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
First observation: In the tree, the labels of two adjacent vertices differ by at most 1 . What can go wrong with closures ?

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$

First observation: In the tree, the labels of two adjacent vertices differ by at most 1 . What can go wrong with closures ?

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$

First observation: In the tree, the labels of two adjacent vertices differ by at most 1 . What can go wrong with closures ?

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

Distances in simple triangulations

Claim 1: $3 d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \geq L_{n}\left(u_{i}\right)$
Claim 2: $d_{M_{n}}\left(\right.$ root,$\left.u_{i}\right) \leq L_{n}\left(u_{i}\right)$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES ... but not too often

Bad configuration = too many windings around the LMP
But w.h.p a winding cannot be too short.
\Longrightarrow w.h.p the number of windings is $o\left(n^{1 / 4}\right)$.

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES ... but not too often
 Bad configuration = too many windings around the LMP

But w.h.p a winding cannot be too short.
\Longrightarrow w.h.p the number of windings is $o\left(n^{1 / 4}\right)$.

Proposition:

For $\varepsilon>0$, let $A_{n, \varepsilon}$ be the event that there exists $u \in M_{n}$ such that $L_{n}(u) \geq d_{M_{n}}(u$,root $)+\varepsilon n^{1 / 4}$. Then under the uniform law on \mathcal{M}_{n}, for all $\varepsilon>0$:

$$
\mathbb{P}\left(A_{n, \varepsilon}\right) \rightarrow 0 .
$$

Distances are tight

Distances are tight

$$
\check{L}_{u, v}=\min \left\{L_{s}, u \leq s \leq v\right\}
$$

Distances are tight

Distances are tight

Distances are tight

Modified LMP:
at each step, we take the first edge in the tree

Distances are tight

$$
\check{L}_{u, v}=\min \left\{L_{s}, u \leq s \leq v\right\}
$$

Modified LMP:
at each step, we take the first edge in the tree

Distances are tight

Distances are tight

Distances are tight

Blue path $=$ path of length $L_{u}+L_{v}-2 \check{L}_{u, v}+2$
Since $\left(n^{-1 / 4} Z_{\lfloor n t\rfloor}\right)$ converges $\Rightarrow\left(d_{n}\right)$ tight

The result for the last time

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right),
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

The Brownian Map ??

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

The Brownian map

$$
\begin{aligned}
& \mathcal{T}_{e}=[0,1] / \sim_{e} \\
& u \sim_{e} v \text { iff } d_{e}(u, v)=0
\end{aligned}
$$

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] .
$$

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
\begin{gathered}
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] \\
D^{*}(a, b)=\inf \left\{\sum_{i=1}^{k-1} D^{\circ}\left(a_{i}, a_{i+1}\right): k \geq 1, a=a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}=b\right\},
\end{gathered}
$$

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
\begin{gathered}
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] . \\
D^{*}(a, b)=\inf \left\{\sum_{i=1}^{k-1} D^{\circ}\left(a_{i}, a_{i+1}\right): k \geq 1, a=a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}=b\right\},
\end{gathered}
$$

Then $M=\left(\mathcal{T}_{e} / \sim_{D^{\star}}, D^{*}\right)$ is the Brownian map.

Perspectives

Same approach works also for simple quadrangulations.
Can it be generalized to other families of maps ?

- Generic bijection between blossoming trees and maps [Bernardi, Fusy] [A.,Poulalhon].
Can we say something about distances ?
- Convergence of Hurwitz maps: bijection also with blossoming trees [Duchi, Poulalhon, Schaeffer].

Can we say something about the embedding of the Brownian map in the sphere via circle packing ?

Perspectives

Same approach works also fnr -:mmlo quadrangulations.
Can it be generalizf

- Generic bije

Thank you!

〉ps ? [A.,Poulalho Can we say sc .es ?- Convergence of Hurwitz maps: bijection also with blossoming trees [Duchi, Poulalhon, Schaeffer].

Can we say something about the embedding of the Brownian map in the sphere via circle packing ?

