Counting one-face maps and one-face constellations

Olivier Bernardi (Brandeis University)

Journees cartes, June 2013

Maps

Definition

Def 1. A map is a gluing of polygons giving a connected surface without boundary.

Definition

Def 1. A map is a gluing of polygons giving a connected surface without boundary.

Def 2. A map is a connected graph embedded in a surface (with simply connected faces) considered up to homeomorphism.

Definition

Def 1 . An orientable map is a gluing of polygons giving a connected orientable surface without boundary.

Def 2. An orientable map is a connected graph embedded in an orientable surface considered up to homeomorphism.

Def 3. An orientable map is a connected graph + a cyclic ordering of the half-edges around each vertex (the clockwise ordering).

Counting problem
Question: Among all the one-face maps obtained from a $2 n$-gon, how many times do we get each surface?

Counting problem

Question: Among all the one-face maps obtained from a $2 n$-gon, how many times do we get each surface?

Each pair of edges can be glued in a orientable or non-orientable way. The surface is orientable if and only if each gluing is orientable.

Orientable gluing

Non-orientable gluing
$(2 n-1)!!=(2 n-1)(2 n-3) \cdots 1$ ways of getting orientable surface. $2^{n}(2 n-1)!$! ways of getting general surface.

Counting problem

Question: Among all the one-face maps obtained from a $2 n$-gon, how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability and the number of vertices of the one-face map.

Counting problem

Question: Among all the one-face maps obtained from a $2 n$-gon, how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability and the number of vertices of the one-face map.

Counting problem

Question: Among all the one-face maps obtained from a $2 n$-gon, how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability and the number of vertices of the one-face map.

Remark 2. The number of ways of getting the sphere is the Catalan number $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$.

Colored gluings

Question: What is the number of one-face maps on orientable surfaces with n edges and v vertices ?

Colored gluings

Question: What is the number of one-face maps on orientable surfaces with n edges and v vertices ?

Theorem [Harer, Zagier 86].

Colored gluings

Question: What is the number of one-face maps on orientable surfaces with n edges and v vertices ?

Theorem [Harer, Zagier 86].

orientable one-face maps

$$
p^{\# \text { vertices }}=\sum_{q=1}^{p}\binom{p}{q} 2^{q-1}\binom{n}{q-1}(2 n-1)!!
$$

Combinatorial interpretation: the number of orientable one-face maps with vertices colored using all the colors in $[q]:=\{1,2, \ldots, q\}$ is

$$
2^{q-1}\binom{n}{q-1}(2 n-1)!!.
$$

Results

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in $[q]$ is

$$
\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q, r}\binom{2 n}{2 q+2 r-4}(2 n-2 q-2 r+1)!!
$$

Results

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in $[q]$ is

$$
\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q, r}\binom{2 n}{2 q+2 r-4}(2 n-2 q-2 r+1)!!
$$

where $P_{q, r}$ is the number of planar maps with q vertices and r faces.
Remark. $P_{q, r}$ is the coefficient of $x^{q} y^{r}$ in the series P defined by: $27 P^{4}-(36 x+36 y-1) P^{3}$
$+\left(24 x^{2} y+24 x y^{2}-16 x^{3}-16 y^{3}+8 x^{2}+8 y^{2}+46 x y-x-y\right) P^{2}$
$+x y\left(16 x^{2}+16 y^{2}-64 x y-8 x-8 y+1\right) P$
$-x^{2} y^{2}\left(16 x^{2}+16 y^{2}-32 x y-8 x-8 y+1\right)=0$.

Results

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in $[q]$ is

$$
\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q, r}\binom{2 n}{2 q+2 r-4}(2 n-2 q-2 r+1)!!
$$

where $P_{q, r}$ is the number of planar maps with q vertices and r faces. Corollary [Ledoux 09] The number $\mu_{v}(n)$ of one-face maps with n edges and v vertices satisfies

$$
\begin{aligned}
(n+1) \eta_{v}(n) & =(4 n-1)\left(2 \eta_{v-1}(n-1)-\eta_{v}(n-1)\right) \\
& +(2 n-3)\left(\left(10 n^{2}-9 n\right) \eta_{v}(n-2)+8 \eta_{v-1}(n-2)-8 \eta_{v-2}(n-2)\right) \\
& +5(2 n-3)(2 n-4)(2 n-5)\left(\eta_{v}(n-3)-2 \eta_{v-1}(n-3)\right) \\
& -2(2 n-3)(2 n-4)(2 n-5)(2 n-6)(2 n-7) \eta_{v}(n-4) .
\end{aligned}
$$

Sketch of proof:

Recurrence \longleftrightarrow differential equation for $F(x, z)=\sum_{n, v} \eta_{v}(n) \frac{x^{v} z^{n}}{(2 n)!}$
\longleftrightarrow differential equation for $G(x, z)=\sum_{n, q} C_{n, q} \frac{x^{q} z^{n}}{(2 n)!}$
\longleftrightarrow differential equation for $P(x, y)=\sum_{q, r} P_{q, r} x^{q} y^{r}$.

Results

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in $[q]$ is

$$
\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q, r}\binom{2 n}{2 q+2 r-4}(2 n-2 q-2 r+1)!!
$$

Other known formulas:

Theorem [Goulden, Jackson 97]
$\sum_{\text {one-face map }} p^{\# \text { vertices }}=p n!\sum_{k=0}^{n} 2^{2 n-k} \sum_{r=0}^{n}\binom{n-\frac{1}{2}}{n-r}\binom{k+r-1}{k}\binom{\frac{p-1}{2}}{r}$
with n edges

$$
+p(2 n-1)!!\sum_{q=1}^{p-1} 2^{q-1}\binom{p-1}{q}\binom{n}{q-1}
$$

Results

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in $[q]$ is

$$
\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q, r}\binom{2 n}{2 q+2 r-4}(2 n-2 q-2 r+1)!!
$$

Other known formulas:

Theorem [Goulden, Jackson 97]
one-face map

$$
p^{\# \text { vertices }}=p n!\sum_{k=0}^{n} 2^{2 n-k} \sum_{r=0}^{n}\binom{n-\frac{1}{2}}{n-r}\binom{k+r-1}{k}\binom{\frac{p-1}{2}}{r}
$$

with n edges

$$
+p(2 n-1)!!\sum_{q=1}^{p-1} 2^{q-1}\binom{p-1}{q}\binom{n}{q-1}
$$

Theorem [B., Chapuy 10] $\eta_{v}(n) \underset{n \rightarrow \infty}{\sim} c_{n-v+1} n^{3(n-v) / 2} 4^{n}$,
where $c_{t}= \begin{cases}\frac{2^{t-2}}{\sqrt{6}-1}(t-1)!! & \text { if } t \text { odd } \\ \frac{3 \cdot 2^{t-2}}{\sqrt{\pi} \sqrt{6}^{t}(t-1)!!} \sum_{i=1}^{t / 2-1}\binom{2 i}{i} 16^{-i} & \text { if } t \text { even. }\end{cases}$

Results: Bijections

A tree-rooted map is a map on an orientable surface with a marked spanning tree.
A planar-rooted map is a map on an orientable surface with a marked planar connected spanning submap.

Results: Bijections

A tree-rooted map is a map on an orientable surface with a marked spanning tree.
A planar-rooted map is a map on an orientable surface with a marked planar connected spanning submap.

The number of tree-rooted maps with q vertices and n edges is

$$
\operatorname{Cat}(q-1)\binom{2 n}{2 q}(2 n-2 q+1)!!=\frac{2^{q-1}}{q!}\binom{n}{q-1}(2 n-1)!!
$$

The number of planar-rooted maps with q vertices, r faces, and n edges is $P_{q, r}\binom{2 n}{2 q+2 r-4}(2 n-2 q-2 r+1)!$!

Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.
\# edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.
\# edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The number of $[q]$-colored orientable one-face maps with n edges is

$$
2^{q-1}\binom{n}{q-1}(2 n-1)!!
$$

Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.
\# edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The number of $[q]$-colored orientable one-face maps with n edges is

$$
2^{q-1}\binom{n}{q-1}(2 n-1)!!
$$

Refinement. [B.] The number of such map with color degrees $\alpha_{1}, \ldots, \alpha_{q}$ is $2^{q-n} n \frac{(2 n-q)!}{(n-q+1)!}$.
Proof. Same number for each of the $\binom{2 n-1}{q-1}$ possible color degrees.

Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.
\# edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 2 [Jackson 88, Schaeffer, ,Vassilieva 08] The number of bipartite $[q],[r]$-colored orientable one-face maps with n edges is

$$
n!\binom{n-1}{q-1, r-1, n-q-r+1}
$$

Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.
\# edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 2 [Jackson 88, Schaeffer ,Vassilieva 08] The number of bipartite $[q],[r]$-colored orientable one-face maps with n edges is

$$
n!\binom{n-1}{q-1, r-1, n-q-r+1} .
$$

Refinement. [Morales, Vassilieva 09] The number of such map with color degrees $\alpha_{1}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{r}$ is $\frac{n(n-q)!(n-r)!}{(n-q-r+1)!}$.

Results: Bijections

Thm [B.] There is a $q!r!2^{1-r}$-to- 1 correspondence between

- one-face maps on general surfaces with n edges and vertices colored using every color in [q]
- planar-rooted maps with with n edges, q vertices, and r faces.

Moreover, \# edges incident to color $i \leftrightarrow \#$ edges incident to vertex i.

Results: Bijections

Thm [B.] There is a $q!r!2^{1-r}$-to- 1 correspondence between

- one-face maps on general surfaces with n edges and vertices colored using every color in [q]
- planar-rooted maps with with n edges, q vertices, and r faces.

Moreover, \# edges incident to color $i \leftrightarrow$ \#edges incident to vertex i.
Corollary:The number of $[q]$-colored rooted one-face maps with n edges on general surfaces is:

$$
\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q, r}\binom{2 n}{2 q+2 r-4}(2 n-2 q-2 r+1)!!
$$

where $P_{q, r}$ is the number of planar maps with q vertices and r faces.

Sketch of proof - Orientable case

Idea 1: Colored unicellular map \leftrightarrow Eulerian tour

Def. An Eulerian tour of a directed graph is a walk starting and ending at the same vertex and using every arc exactly once.

Idea 1: Colored unicellular map \leftrightarrow Eulerian tour

Def. An Eulerian tour of an undirected graph is a walk starting and ending at the same vertex and using every direction of every edge exactly once.

Idea 1: Colored unicellular map \leftrightarrow Eulerian tour

Def. An Eulerian tour of an undirected graph is a walk starting and ending at the same vertex and using every direction of every edge exactly once.

Lemma [Lass 01]. Bijection between [q]-colored one-face maps and set of pairs (G, E), where G is an undirected graph with vertex set $[q]$ and E is an Eulerian tour.

Idea 2: BEST Theorem

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)
Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_{0} are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_{0} and R is an ordering around each vertex of the outgoing arc not in T.

Idea 2: BEST Theorem

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)
Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_{0} are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_{0} and R is an ordering around each vertex of the outgoing arc not in T.

Idea 2: BEST Theorem

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)
Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_{0} are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_{0} and R is an ordering around each vertex of the outgoing arc not in T.

Corollary. The Eulerian tours of an undirected graph G are in bijection with pairs (T, R), where

- T is a spanning tree (rooted as v_{0})
- R is an order at each vertex v, of all the edges incident to v except the parent edge of v in T.

Idea 2: BEST Theorem

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)
Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_{0} are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_{0} and R is an ordering around each vertex of the outgoing arc not in T.

Corollary. The Eulerian tours of an undirected graph G are in bijection with pairs (T, R), where

- T a spanning tree + a marked half-edge at v_{0},
- R a cyclic ordering of the half-edges at each vertex.

tree-rooted map

Summary for orientable gluings

Summary: Bijection between rooted one-face maps colored using every color in $[q]$ with n edges on orientable surfaces and tree-rooted maps with q labelled vertices and n edges.

Sketch of proof - general case

Idea 1: Colored unicellular map \leftrightarrow bi-Eulerian tour

Def. A bi-Eulerian tour of an undirected graph is a walk starting and ending at the same vertex and using every edge twice.

Idea 1: Colored unicellular map \leftrightarrow bi-Eulerian tour

Def. A bi-Eulerian tour of an undirected graph is a walk starting and ending at the same vertex and using every edge twice.

Lemma [adapting Lass 01]. Bijection between [q]-colored one-face maps and set of pairs (G, E), where G is a graph with vertex set $[q]$ and E is a bi-Eulerian tour.
Moreover, the map is on an orientable surface if and only if no edge is used twice in the same direction.

Idea 2: BEST Theorem (adapted to general situation)
A bi-oriented tree-rooted map is a rooted map on orientable surface + spanning tree + partial orientation such that

- indegree=outdegree for every vertex
- oriented edges in the spanning tree are oriented toward parent.

Idea 2: BEST Theorem (adapted to general situation)

A bi-oriented tree-rooted map is a rooted map on orientable surface + spanning tree + partial orientation such that

- indegree=outdegree for every vertex
- oriented edges in the spanning tree are oriented toward parent.

Corollary of BEST. Let G be an undirected graph.
There is a 1-to- 2^{r} correspondence between the bi-Eulerian tours of G and the bi-oriented tree-rooted map on G with r oriented edges outside of the spanning tree.

Idea 3: cutting and pasting

Def. Let B be a bi-oriented tree-rooted map. The planar-rooted map $P=\Psi(B)$ is obtained by cutting the oriented external edges in their middle and regluing them according to the parenthesis system they form around the tree (and then forgetting the tree + orientation).

Idea 3: cutting and pasting

Def. Let B be a bi-oriented tree-rooted map. The planar-rooted map $P=\Psi(B)$ is obtained by cutting the oriented external edges in their middle and regluing them according to the parenthesis system they form around the tree (and then forgetting the tree + orientation).

Theorem: The mapping Ψ is r !-to- 1 between bi-oriented tree-rooted maps with $r-1$ oriented edges outside of the spanning tree and planarrooted map with r sub-faces.

Idea 3: cutting and pasting

Underlying thm (related to [Bouttier, Di Francesco, Guitter 02]): Bijection between planar maps with a marked face and partially oriented plane-tree with additional oriented half-edges such that indegree=outdegree at each vertex.

Summary for general gluings

Summary: There is a $q!r!2^{r-1}$-to- 1 correspondence between rooted one-face maps colored using every color in $[q]$ with n edges on general surfaces and planar-rooted maps with q vertices, r faces, and n edges.

One-face constellations

Joint work with Alejandro Morales

Constellations (= drawings of factorizations)

A k-constellation is a map on an orientable surface with black-white coloring of faces, in which vertices have a type in $\{1, \ldots, k\}$, such that every black faces has degree k, with vertices of type $1,2, \ldots, k$ clockwise.

Example of 3-constellation:

Constellations (= drawings of factorizations)

Relation with permutations:
k-constellations with
n labelled black faces
Vertex of type t White faces

\longleftrightarrow

Tuples $\left(\pi_{1}, \ldots, \pi_{k}\right)$ of permutations acting transitively on $\{1,2, \ldots, n\}$

Cycle of π_{t}
Cycle of product $\pi_{1} \pi_{2} \cdots \pi_{k}$

Example of 3-constellation:

- Type 1

0 Type 2
\triangle Type 3

Constellations (= drawings of factorizations)

Relation with permutations:
k-constellations with
n labelled black faces
Vertex of type t White faces

Tuples $\left(\pi_{1}, \ldots, \pi_{k}\right)$ of permutations acting transitively on $\{1,2, \ldots, n\}$

Cycle of π_{t}
Cycle of product $\pi_{1} \pi_{2} \cdots \pi_{k}$

Conclusion for one-face constellations:
one-face k-constellations with \longleftrightarrow Tuples $\left(\pi_{1}, \ldots, \pi_{k}\right)$ such that a marked black face $\quad \pi_{1} \pi_{2} \cdots \pi_{k}=(1,2, \ldots, k)$.

Jackson formula

Question: Let $\lambda_{1}, \ldots, \lambda_{k}$ be partitions of n. How many factorizations $\pi_{1} \pi_{2} \ldots \pi_{k}=(1,2, \ldots, n)$ are there with permutation π_{t} of cycle type λ_{t} ?
\longleftrightarrow How many one-face k-constellations with vertices of type t having degrees given by λ_{t} ?

Jackson formula

Question: Let $\lambda_{1}, \ldots, \lambda_{k}$ be partitions of n.
How many factorizations $\pi_{1} \pi_{2} \ldots \pi_{k}=(1,2, \ldots, n)$ are there with permutation π_{t} of cycle type λ_{t} ?
\longleftrightarrow How many one-face k-constellations with vertices of type t having degrees given by λ_{t} ?

Reformulation with colors.
As before, the nice formulas are for vertex-colored constellations.

$$
\begin{aligned}
& \text { O Type } 1(\text { colors } \bigcirc \bigcirc) \\
& \bigcirc \text { Type } 2(\text { colors } \bigcirc) \\
& \triangle \text { Type } 3(\text { colors } \triangle \triangle \Delta)
\end{aligned}
$$

Equivalent question: Let $\lambda_{1}, \ldots, \lambda_{k}$ be partitions of n. How many vertex-colored one-face k-constellations with vertices of type t having color degrees λ_{t} ?

Jackson formula

Theorem [Jackson 88] Let $q_{1}, \ldots, q_{k}>0$.
The number of vertex-colored one-face k-constellations with vertices of type t using all the colors in $\left[q_{t}\right]$ is

$$
n!^{k-1}\left[x_{1}^{q_{1}-1} \cdots x_{k}^{q_{k}-1}\right]\left(\prod_{t=1}^{k}\left(1+x_{t}\right)-\prod_{t=1}^{k} x_{t}\right)^{n-1} .
$$

Jackson formula

Theorem [Jackson 88] Let $q_{1}, \ldots, q_{k}>0$.
The number of vertex-colored one-face k-constellations with vertices of type t using all the colors in $\left[q_{t}\right]$ is

$$
\begin{aligned}
& n!^{k-1}\left[x_{1}^{q_{1}-1} \cdots x_{k}^{q_{k}-1}\right]\left(\prod_{t=1}^{k}\left(1+x_{t}\right)-\prod_{t=1}^{k} x_{t}\right)^{n-1} \\
& \quad \#\left\{\left(S_{1}, \ldots, S_{n-1}\right) \mid S_{i} \subsetneq[n], \text { and } \forall t \in[k], t \text { appears in } q_{k}-1 \text { subsets }\right\}
\end{aligned}
$$

Bijective proof?

Case $k=2$
We have already solved the case $k=2$!
Indeed one-face 2-constellations identify with one-face bipartite maps.

Case $k=2$
We have already solved the case $k=2$!
Indeed one-face 2-constellations identify with one-face bipartite maps.

Theorem [Jackson 88, Schaeffer ,Vassilieva 08] The number of bipartite $[q],[r]$-colored orientable one-face maps with n edges is

$$
n!\binom{n-1}{q-1, r-1, n-q-r+1}
$$

Refinement. [Morales, Vassilieva 09] The number of such map with color degrees $\alpha_{1}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{r}$ is $\frac{n(n-q)!(n-r)!}{(n-q-r+1)!}$.

General $k \geq 2$

A tree-rooted k-constellation is a rooted k-constellation with a marked spanning tree such that the type of each vertex is the type of its parent-1.

General $k \geq 2$

A tree-rooted k-constellation is a rooted k-constellation with a marked spanning tree such that the type of each vertex is the type of its parent-1.

Theorem [B., Morales] One-face k-constellations with vertices colored using colors $\left[q_{1}\right],\left[q_{2}\right], \ldots,\left[q_{k}\right]$ are in bijection with tree-rooted k-constellations with q_{t} labelled vertices of type t. Moreover, the color degree in one-face constellation $=$ degree in tree-rooted constellation.

General $k \geq 2$

A tree-rooted k-constellation is a rooted k-constellation with a marked spanning tree such that the type of each vertex is the type of its parent - 1 .

Theorem [B., Morales] One-face k-constellations with vertices colored using colors $\left[q_{1}\right],\left[q_{2}\right], \ldots,\left[q_{k}\right]$ are in bijection with tree-rooted k-constellations with q_{t} labelled vertices of type t. Moreover, the color degree in one-face constellation $=$ degree in tree-rooted constellation.

Corollary [B., Morales] The number of vertex-colored k constellations with color degree $\lambda_{1}, \ldots, \lambda_{k}$ only depends on $\ell\left(\lambda_{1}\right), \ldots, \ell\left(\lambda_{k}\right)$.

Sketch of proof:

Sketch of proof:

Related construction [Vassilieva 2014?].

Relation with Jackson formula?

Not easy to see that tree-rooted k-constellations with n edges and q_{t} labelled vertices of type t are counted by

$$
n!^{k-1}\left[x_{1}^{q_{1}-1} \cdots x_{k}^{q_{k}-1}\right]\left(\prod_{t=1}^{k}\left(1+x_{t}\right)-\prod_{t=1}^{k} x_{t}\right)^{n-1} .
$$

Relation with Jackson formula?

Not easy to see that tree-rooted k-constellations with n edges and q_{t} labelled vertices of type t are counted by

$$
n!^{k-1}\left[x_{1}^{q_{1}-1} \cdots x_{k}^{q_{k}-1}\right]\left(\prod_{t=1}^{k}\left(1+x_{t}\right)-\prod_{t=1}^{k} x_{t}\right)^{n-1} .
$$

For instance, recursive decomposition of tree-rooted constellation+ Lagrange inversion gives an expression which is more complicated than Jackson's formula [Vassilieva 2014?]

Relation with Jackson formula?

Not easy to see that tree-rooted k-constellations with n edges and q_{t} labelled vertices of type t are counted by

$$
n!^{k-1}\left[x_{1}^{q_{1}-1} \cdots x_{k}^{q_{k}-1}\right]\left(\prod_{t=1}^{k}\left(1+x_{t}\right)-\prod_{t=1}^{k} x_{t}\right)^{n-1} .
$$

Additional ideas: the dual of tree rooted maps are some kind of oneface maps, and one can reuse the BEST theorem again...
\leadsto bijection with a third class of objects we called "biddings".

Relation with Jackson formula?

Not easy to see that tree-rooted k-constellations with n edges and q_{t} labelled vertices of type t are counted by

$$
n!^{k-1}\left[x_{1}^{q_{1}-1} \cdots x_{k}^{q_{k}-1}\right]\left(\prod_{t=1}^{k}\left(1+x_{t}\right)-\prod_{t=1}^{k} x_{t}\right)^{n-1} .
$$

Additional ideas: the dual of tree rooted maps are some kind of oneface maps, and one can reuse the BEST theorem again...
\rightsquigarrow bijection with a third class of objects we called "biddings".
Biddings are easier to count . . . but still not exactly Jackson formula. \rightsquigarrow Probabilistic puzzle (solved [B., Morales]).

Thanks.

Probabilistic puzzle:

Theorem: Let $S_{1}, \ldots, S_{k-1} \subsetneq[k]$ with t appearing q_{t} times.
Probability of getting a tree from the rule below is the same as proba that $S_{1}=\emptyset$.

