Counting one-face maps and one-face constellations

Olivier Bernardi (Brandeis University)

Journees cartes, June 2013

Maps

Definition

Def 1. A map is a gluing of polygons giving a connected surface without boundary.

Definition

Def 1. A map is a gluing of polygons giving a connected surface without boundary.

Def 2. A map is a connected graph embedded in a surface (with simply connected faces) considered up to homeomorphism.

Definition

Def 1. An orientable map is a gluing of polygons giving a connected orientable surface without boundary.

Def 2. An **orientable map** is a connected graph embedded in an orientable surface considered up to homeomorphism.

Def 3. An orientable map is a connected graph + a cyclic ordering of the half-edges around each vertex (the clockwise ordering).

Question: Among all the one-face maps obtained from a 2n-gon, how many times do we get each surface?

Question: Among all the one-face maps obtained from a 2n-gon, how many times do we get each surface?

Each pair of edges can be glued in a orientable or non-orientable way. The surface is orientable if and only if each gluing is orientable.

Non-orientable gluing

 $(2n-1)!! = (2n-1)(2n-3)\cdots 1$ ways of getting orientable surface. $2^n(2n-1)!!$ ways of getting general surface.

Question: Among all the one-face maps obtained from a 2n-gon, how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability and the number of vertices of the one-face map.

Question: Among all the one-face maps obtained from a 2n-gon, how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability and the number of vertices of the one-face map.

Question: Among all the one-face maps obtained from a 2n-gon, how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability and the number of vertices of the one-face map.

Remark 2. The number of ways of getting the sphere is the Catalan number $Cat(n) = \frac{1}{n+1} {2n \choose n}$.

Colored gluings

Question: What is the number of one-face maps on orientable surfaces with n edges and v vertices ?

Colored gluings

Question: What is the number of one-face maps on orientable surfaces with n edges and v vertices ?

Theorem [Harer, Zagier 86].

$$\sum_{\text{orientable one-face maps}} p^{\#\text{vertices}} = \sum_{q=1}^p \binom{p}{q} 2^{q-1} \binom{n}{q-1} (2n-1)!!$$

Colored gluings

Question: What is the number of one-face maps on orientable surfaces with n edges and v vertices ?

Theorem [Harer, Zagier 86].

$$\sum_{\text{orientable one-face maps}} p^{\#\text{vertices}} = \sum_{q=1}^p \binom{p}{q} 2^{q-1} \binom{n}{q-1} (2n-1)!!$$

Combinatorial interpretation: the number of orientable one-face maps with vertices colored using all the colors in $[q] := \{1, 2, ..., q\}$ is

$$2^{q-1}\binom{n}{q-1}(2n-1)!!.$$

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in [q] is

$$\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q,r} \left(\frac{2n}{2q+2r-4} \right) (2n-2q-2r+1)!!$$

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in [q] is

$$\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q,r} \left(\frac{2n}{2q+2r-4} \right) (2n-2q-2r+1)!!$$

where $P_{q,r}$ is the number of planar maps with q vertices and r faces.

Remark. $P_{q,r}$ is the coefficient of $x^q y^r$ in the series P defined by: $27P^4 - (36x + 36y - 1)P^3$ $+(24x^2y + 24xy^2 - 16x^3 - 16y^3 + 8x^2 + 8y^2 + 46xy - x - y)P^2$ $+xy(16x^2 + 16y^2 - 64xy - 8x - 8y + 1)P$ $-x^2y^2(16x^2 + 16y^2 - 32xy - 8x - 8y + 1) = 0.$

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in [q] is

$$\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q,r} \left(\frac{2n}{2q+2r-4} \right) (2n-2q-2r+1)!!$$

where $P_{q,r}$ is the number of planar maps with q vertices and r faces.

Corollary [Ledoux 09] The number $\mu_v(n)$ of one-face maps with n edges and v vertices satisfies

$$(n+1) \eta_v(n) = (4n-1) (2 \eta_{v-1}(n-1) - \eta_v(n-1)) + (2n-3) ((10n^2 - 9n) \eta_v(n-2) + 8 \eta_{v-1}(n-2) - 8 \eta_{v-2}(n-2)) + 5(2n-3)(2n-4)(2n-5) (\eta_v(n-3) - 2 \eta_{v-1}(n-3)) - 2(2n-3)(2n-4)(2n-5)(2n-6)(2n-7) \eta_v(n-4).$$

Sketch of proof:

Recurrence \longleftrightarrow differential equation for $F(x,z) = \sum_{n,v} \eta_v(n) \frac{x^v z^n}{(2n)!}$ \longleftrightarrow differential equation for $G(x,z) = \sum_{n,q} C_{n,q} \frac{x^q z^n}{(2n)!}$ \longleftrightarrow differential equation for $P(x,y) = \sum_{q,r} P_{q,r} x^q y^r$.

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in [q] is

$$\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q,r} \left(\frac{2n}{2q+2r-4} \right) (2n-2q-2r+1)!!$$

Other known formulas: Theorem [Goulden, Jackson 97]

$$\sum_{\substack{\text{one-face map}\\\text{with } n \text{ edges}}} p^{\#vertices} = p \, n! \sum_{k=0}^{n} 2^{2n-k} \sum_{r=0}^{n} \binom{n-\frac{1}{2}}{n-r} \binom{k+r-1}{k} \binom{\frac{p-1}{2}}{r} + p \, (2n-1)!! \sum_{q=1}^{p-1} 2^{q-1} \binom{p-1}{q} \binom{n}{q-1}.$$

Theorem [B.]: The number of one-face maps with n edges and vertices colored using every color in [q] is

$$\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q,r} \left(\frac{2n}{2q+2r-4} \right) (2n-2q-2r+1)!!$$

Other known formulas: Theorem [Goulden, Jackson 97]

$$\sum_{\substack{\text{one-face map} \\ \text{with } n \text{ edges}}} p^{\#vertices} = p \, n! \sum_{k=0}^{n} 2^{2n-k} \sum_{r=0}^{n} \binom{n-\frac{1}{2}}{n-r} \binom{k+r-1}{k} \binom{\frac{p-1}{2}}{r}$$

+
$$p(2n-1)!!\sum_{q=1}^{p-1} 2^{q-1} \binom{p-1}{q} \binom{n}{q-1}$$
.

Theorem [B., Chapuy 10] $\eta_v(n) \mathop{\sim}_{n \to \infty} c_{n-v+1} n^{3(n-v)/2} 4^n$, where $c_t = \begin{cases} \frac{2^{t-2}}{\sqrt{6}^{t-1}(t-1)!!} & \text{if } t \text{ odd}, \\ \frac{3 \cdot 2^{t-2}}{\sqrt{\pi}\sqrt{6}^t(t-1)!!} \sum_{i=1}^{t/2-1} {2i \choose i} 16^{-i} & \text{if } t \text{ even.} \end{cases}$

A tree-rooted map is a map on an orientable surface with a marked spanning tree.

A **planar-rooted map** is a map on an orientable surface with a marked planar connected spanning submap.

A tree-rooted map is a map on an orientable surface with a marked spanning tree.

A **planar-rooted map** is a map on an orientable surface with a marked planar connected spanning submap.

The number of tree-rooted maps with q vertices and n edges is $\operatorname{Cat}(q-1)\binom{2n}{2q}(2n-2q+1)!! = \frac{2^{q-1}}{q!}\binom{n}{q-1}(2n-1)!!$ The number of planar-rooted maps with q vertices, r faces, and nedges is $P_{q,r}\binom{2n}{2a+2r-4}(2n-2q-2r+1)!!$

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.

edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.

edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The number of [q]-colored orientable one-face maps with n edges is

$$2^{q-1}\binom{n}{q-1}(2n-1)!!$$

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.
- # edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The number of [q]-colored orientable one-face maps with n edges is

$$2^{q-1}\binom{n}{q-1}(2n-1)!!$$

Refinement. [B.] The number of such map with color degrees $\alpha_1, \ldots, \alpha_q$ is $2^{q-n}n \frac{(2n-q)!}{(n-q+1)!}$.

Proof. Same number for each of the $\binom{2n-1}{q-1}$ possible color degrees .

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.

edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 2 [Jackson 88, Schaeffer ,Vassilieva 08] The number of bipartite [q], [r]-colored orientable one-face maps with n edges is $n = \frac{n!}{n!} \left(\begin{array}{c} n-1 \end{array} \right)$

$$\left(q-1, r-1, n-q-r+1\right)$$

Thm [Bernardi - Inspired by Lass] Bijection between

- one-face maps on orientable surface with n edges and vertices colored using every color in [q]
- tree-rooted maps with n edges and q labeled vertices.

edges between colors i and $j \leftrightarrow \#$ edges between vertices i and j.

Corollary 2 [Jackson 88, Schaeffer ,Vassilieva 08] The number of bipartite [q], [r]-colored orientable one-face maps with n edges is $n! \binom{n-1}{q-1, r-1, n-q-r+1}$.

Refinement. [Morales, Vassilieva 09] The number of such map with color degrees $\alpha_1, \ldots, \alpha_q, \beta_1, \ldots, \beta_r$ is $\frac{n (n-q)!(n-r)!}{(n-q-r+1)!}$.

Thm [B.] There is a $q!r!2^{1-r}$ -to-1 correspondence between

- one-face maps on general surfaces with n edges and vertices colored using every color in [q]
- planar-rooted maps with with n edges, q vertices, and r faces.

Moreover, # edges incident to color $i \leftrightarrow \#$ edges incident to vertex i.

Thm [B.] There is a $q!r!2^{1-r}$ -to-1 correspondence between

- one-face maps on general surfaces with n edges and vertices colored using every color in [q]
- planar-rooted maps with with n edges, q vertices, and r faces.

Moreover, # edges incident to color $i \leftrightarrow \#$ edges incident to vertex i.

Corollary: The number of [q]-colored rooted one-face maps with n edges on general surfaces is:

$$\sum_{r=1}^{n-q+2} \frac{q!r!}{2^{r-1}} P_{q,r} \left(\frac{2n}{2q+2r-4} \right) (2n-2q-2r+1)!!$$

where $P_{q,r}$ is the number of planar maps with q vertices and r faces.

Sketch of proof - Orientable case

Idea 1: Colored unicellular map \leftrightarrow Eulerian tour

Def. An **Eulerian tour** of a directed graph is a walk starting and ending at the same vertex and using every arc exactly once.

Idea 1: Colored unicellular map \leftrightarrow Eulerian tour

Def. An **Eulerian tour** of an **undirected graph** is a walk starting and ending at the same vertex and using every direction of every edge exactly once.

Idea 1: Colored unicellular map \leftrightarrow Eulerian tour

Def. An **Eulerian tour** of an **undirected graph** is a walk starting and ending at the same vertex and using every direction of every edge exactly once.

Lemma [Lass 01]. Bijection between [q]-colored one-face maps and set of pairs (G, E), where G is an undirected graph with vertex set [q] and E is an Eulerian tour.

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte) Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_0 are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_0 and R is an ordering around each vertex of the outgoing arc not in T.

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte) Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_0 are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_0 and R is an ordering around each vertex of the outgoing arc not in T.

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte) Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_0 are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_0 and R is an ordering around each vertex of the outgoing arc not in T.

Corollary. The Eulerian tours of an undirected graph G are in bijection with pairs (T,R), where

- T is a spanning tree (rooted as v_0)
- R is an order at each vertex v, of all the edges incident to v except the parent edge of v in T.

BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte) Fix \vec{G} digraph with as many ingoing and outgoing arcs at each vertex. The Eulerian tours of \vec{G} starting and ending at v_0 are in bijection with pairs (T, R), where T is a spanning tree oriented toward v_0 and R is an ordering around each vertex of the outgoing arc not in T.

Corollary. The Eulerian tours of an undirected graph G are in bijection with pairs (T, R), where

- T a spanning tree + a marked half-edge at v_0 ,
- R a cyclic ordering of the half-edges at each vertex.

Summary for orientable gluings

Summary: Bijection between rooted one-face maps colored using every color in [q] with n edges on orientable surfaces and tree-rooted maps with q labelled vertices and n edges.

Sketch of proof - general case

Idea 1: Colored unicellular map \leftrightarrow bi-Eulerian tour

Def. A **bi-Eulerian tour** of an undirected graph is a walk starting and ending at the same vertex and using every edge twice.

Idea 1: Colored unicellular map \leftrightarrow bi-Eulerian tour

Def. A **bi-Eulerian tour** of an undirected graph is a walk starting and ending at the same vertex and using every edge twice.

Lemma [adapting Lass 01]. Bijection between [q]-colored one-face maps and set of pairs (G, E), where G is a graph with vertex set [q] and E is a bi-Eulerian tour.

Moreover, the map is on an orientable surface if and only if no edge is used twice in the same direction.

Idea 2: BEST Theorem (adapted to general situation)

- A **bi-oriented tree-rooted map** is a rooted map on orientable surface
- + spanning tree + partial orientation such that
- indegree=outdegree for every vertex
- oriented edges in the spanning tree are oriented toward parent.

Idea 2: BEST Theorem (adapted to general situation)

A **bi-oriented tree-rooted map** is a rooted map on orientable surface

- + spanning tree + partial orientation such that
- indegree=outdegree for every vertex
- oriented edges in the spanning tree are oriented toward parent.

Corollary of BEST. Let G be an undirected graph.

There is a 1-to- 2^r correspondence between the bi-Eulerian tours of G and the bi-oriented tree-rooted map on G with r oriented edges outside of the spanning tree.

Idea 3: cutting and pasting

Def. Let *B* be a bi-oriented tree-rooted map. The planar-rooted map $P = \Psi(B)$ is obtained by cutting the oriented external edges in their middle and regluing them according to the parenthesis system they form around the tree (and then forgetting the tree + orientation).

Idea 3: cutting and pasting

Def. Let *B* be a bi-oriented tree-rooted map. The planar-rooted map $P = \Psi(B)$ is obtained by cutting the oriented external edges in their middle and regluing them according to the parenthesis system they form around the tree (and then forgetting the tree + orientation).

Theorem: The mapping Ψ is r!-to-1 between bi-oriented tree-rooted maps with r-1 oriented edges outside of the spanning tree and planar-rooted map with r sub-faces.

Idea 3: cutting and pasting

Underlying thm (related to [Bouttier, Di Francesco, Guitter 02]): Bijection between planar maps with a marked face and partially oriented plane-tree with additional oriented half-edges such that indegree=outdegree at each vertex.

Summary for general gluings

Summary: There is a $q!r!2^{r-1}$ -to-1 correspondence between rooted one-face maps colored using every color in [q] with n edges on general surfaces and planar-rooted maps with q vertices, r faces, and n edges.

One-face constellations

Joint work with Alejandro Morales

Constellations (= drawings of factorizations)

A *k*-constellation is a map on an orientable surface with black-white coloring of faces, in which vertices have a *type* in $\{1, \ldots, k\}$, such that every black faces has degree *k*, with vertices of type $1, 2, \ldots, k$ clockwise.

Example of 3-constellation:

Constellations (= drawings of factorizations)

Relation with permutations:

k-constellations with \leftarrow n labelled black faces

Vertex of type $t \longrightarrow$ White faces \longleftrightarrow

 $\longleftrightarrow \quad \text{Tuples } (\pi_1, \dots, \pi_k) \text{ of permutations} \\ \text{ acting transitively on } \{1, 2, \dots, n\}$

 $\begin{array}{cccc} \longleftrightarrow & \longleftrightarrow & & \text{Cycle of } \pi_t \\ \longleftrightarrow & & \text{Cycle of product } \pi_1 \pi_2 \cdots \pi_k \end{array}$

Example of 3-constellation:

Constellations (= drawings of factorizations)

Relation with permutations:

n labelled black faces

k-constellations with \leftrightarrow Tuples (π_1, \ldots, π_k) of permutations acting transitively on $\{1, 2, \ldots, n\}$

Vertex of type $t \longrightarrow$ Cycle of π_t White faces \longleftrightarrow Cycle of product $\pi_1 \pi_2 \cdots \pi_k$

Conclusion for one-face constellations:

one-face k-constellations with \leftrightarrow Tuples (π_1, \ldots, π_k) such that $\pi_1\pi_2\cdots\pi_k=(1,2,\ldots,k).$ a marked black face

Question: Let $\lambda_1, \ldots, \lambda_k$ be partitions of n.

How many factorizations $\pi_1 \pi_2 \dots \pi_k = (1, 2, \dots, n)$ are there with permutation π_t of cycle type λ_t ?

 \longleftrightarrow How many one-face k-constellations with vertices of type t having degrees given by $\lambda_t?$

Question: Let $\lambda_1, \ldots, \lambda_k$ be partitions of n.

How many factorizations $\pi_1 \pi_2 \dots \pi_k = (1, 2, \dots, n)$ are there with permutation π_t of cycle type λ_t ?

 \longleftrightarrow How many one-face k-constellations with vertices of type t having degrees given by $\lambda_t?$

Reformulation with colors.

As before, the nice formulas are for vertex-colored constellations.

Equivalent question: Let $\lambda_1, \ldots, \lambda_k$ be partitions of n. How many vertex-colored one-face k-constellations with vertices of type t having color degrees λ_t ?

Theorem [Jackson 88] Let $q_1, \ldots, q_k > 0$. The number of vertex-colored one-face k-constellations with vertices of type t using all the colors in $[q_t]$ is

$$n!^{k-1}[x_1^{q_1-1}\cdots x_k^{q_k-1}]\left(\prod_{t=1}^k (1+x_t) - \prod_{t=1}^k x_t\right)^{n-1}$$

Theorem [Jackson 88] Let $q_1, \ldots, q_k > 0$. The number of vertex-colored one-face k-constellations with vertices of type t using all the colors in $[q_t]$ is

$$n!^{k-1}[x_1^{q_1-1}\cdots x_k^{q_k-1}]\left(\prod_{t=1}^k (1+x_t) - \prod_{t=1}^k x_t\right)^{n-1}$$

 $\#\{(S_1, \ldots, S_{n-1}) | \ S_i \subsetneq [n], \text{ and } \forall t \in [k], \ t \text{ appears in } q_k - 1 \text{ subsets} \}$

Bijective proof?

Case k = 2

We have already solved the case k = 2!Indeed one-face 2-constellations identify with one-face bipartite maps.

Case k = 2

We have already solved the case k = 2!Indeed one-face 2-constellations identify with one-face bipartite maps.

Theorem [Jackson 88, Schaeffer ,Vassilieva 08] The number of bipartite [q], [r]-colored orientable one-face maps with n edges is $n! \binom{n-1}{q-1, r-1, n-q-r+1}$.

Refinement. [Morales, Vassilieva 09] The number of such map with color degrees $\alpha_1, \ldots, \alpha_q, \beta_1, \ldots, \beta_r$ is $\frac{n(n-q)!(n-r)!}{(n-q-r+1)!}$.

General $k \ge 2$

A tree-rooted k-constellation is a rooted k-constellation with a marked spanning tree such that the type of each vertex is the type of its parent – 1.

General $k \ge 2$

A tree-rooted k-constellation is a rooted k-constellation with a marked spanning tree such that the type of each vertex is the type of its parent – 1.

Theorem [B., Morales] One-face k-constellations with vertices colored using colors $[q_1], [q_2], \ldots, [q_k]$ are in bijection with tree-rooted k-constellations with q_t labelled vertices of type t.

Moreover, the color degree in one-face constellation = degree in tree-rooted constellation.

General $k \ge 2$

A tree-rooted k-constellation is a rooted k-constellation with a marked spanning tree such that the type of each vertex is the type of its parent – 1.

Theorem [B., Morales] One-face k-constellations with vertices colored using colors $[q_1], [q_2], \ldots, [q_k]$ are in bijection with tree-rooted k-constellations with q_t labelled vertices of type t. Moreover, the color degree in one-face constellation = degree in tree-rooted constellation.

Corollary [B., Morales] The number of vertex-colored kconstellations with color degree $\lambda_1, \ldots, \lambda_k$ only depends on $\ell(\lambda_1), \ldots, \ell(\lambda_k)$.

Sketch of proof:

Sketch of proof:

Related construction [Vassilieva 2014?].

Not easy to see that tree-rooted k-constellations with n edges and q_t labelled vertices of type t are counted by

$$n!^{k-1}[x_1^{q_1-1}\cdots x_k^{q_k-1}]\left(\prod_{t=1}^k (1+x_t) - \prod_{t=1}^k x_t\right)^{n-1}$$

Not easy to see that tree-rooted k-constellations with n edges and q_t labelled vertices of type t are counted by

$$n!^{k-1}[x_1^{q_1-1}\cdots x_k^{q_k-1}]\left(\prod_{t=1}^k (1+x_t) - \prod_{t=1}^k x_t\right)^{n-1}$$

For instance, recursive decomposition of tree-rooted constellation+ Lagrange inversion gives an expression which is more complicated than Jackson's formula [Vassilieva 2014?]

Not easy to see that tree-rooted k-constellations with n edges and q_t labelled vertices of type t are counted by

$$n!^{k-1}[x_1^{q_1-1}\cdots x_k^{q_k-1}]\left(\prod_{t=1}^k (1+x_t) - \prod_{t=1}^k x_t\right)^{n-1}$$

Additional ideas: the dual of tree rooted maps are some kind of oneface maps, and one can reuse the BEST theorem again... ~> bijection with a third class of objects we called "biddings".

Not easy to see that tree-rooted k-constellations with n edges and q_t labelled vertices of type t are counted by

$$n!^{k-1}[x_1^{q_1-1}\cdots x_k^{q_k-1}]\left(\prod_{t=1}^k (1+x_t) - \prod_{t=1}^k x_t\right)^{n-1}$$

Additional ideas: the dual of tree rooted maps are some kind of oneface maps, and one can reuse the BEST theorem again... ~> bijection with a third class of objects we called "biddings".

Biddings are easier to count . . . but still not exactly Jackson formula. ~ Probabilistic puzzle (solved [B., Morales]).

Thanks.

Probabilistic puzzle:

Theorem: Let $S_1, \ldots, S_{k-1} \subsetneq [k]$ with t appearing q_t times. Probability of getting a tree from the rule below is the same as proba that $S_1 = \emptyset$.

