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Maps



Definition

Def 1. A map is a gluing of polygons giving a connected surface
without boundary.



Definition

Def 1. A map is a gluing of polygons giving a connected surface
without boundary.

Def 2. A map is a connected graph embedded in a surface (with
simply connected faces) considered up to homeomorphism.
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Definition

Def 3. An orientable map is a connected graph + a cyclic order-
ing of the half-edges around each vertex (the clockwise ordering).

Def 1. An orientable map is a gluing of polygons giving a con-
nected orientable surface without boundary.

Def 2. An orientable map is a connected graph embedded in an
orientable surface considered up to homeomorphism.



Counting problem

Question: Among all the one-face maps obtained from a 2n-gon,
how many times do we get each surface?



Counting problem

Orientable gluing Non-orientable gluing

Each pair of edges can be glued in a orientable or non-orientable way.
The surface is orientable if and only if each gluing is orientable.

Question: Among all the one-face maps obtained from a 2n-gon,
how many times do we get each surface?

(2n− 1)!! = (2n− 1)(2n− 3) · · · 1 ways of getting orientable surface.
2n(2n− 1)!! ways of getting general surface.



Counting problem

Question: Among all the one-face maps obtained from a 2n-gon,
how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability
and the number of vertices of the one-face map.
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Question: Among all the one-face maps obtained from a 2n-gon,
how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability
and the number of vertices of the one-face map.



Counting problem

Question: Among all the one-face maps obtained from a 2n-gon,
how many times do we get each surface?

Remark 2. The number of ways of getting the sphere is the Catalan
number Cat(n) = 1

n+1

(
2n
n

)
.

Remark 1. The surface obtained is characterized by its orientability
and the number of vertices of the one-face map.



Results



Colored gluings

Question: What is the number of one-face maps on orientable surfaces
with n edges and v vertices ?



Colored gluings

Question: What is the number of one-face maps on orientable surfaces
with n edges and v vertices ?

Theorem [Harer, Zagier 86].

∑
orientable one-face maps

p#vertices =

p∑
q=1

(
p

q

)
2q−1

(
n

q − 1

)
(2n− 1)!!



Colored gluings

Question: What is the number of one-face maps on orientable surfaces
with n edges and v vertices ?

Theorem [Harer, Zagier 86].

∑
orientable one-face maps

p#vertices =

p∑
q=1

(
p

q

)
2q−1

(
n

q − 1

)
(2n− 1)!!

Combinatorial interpretation: the number of orientable one-face
maps with vertices colored using all the colors in [q] := {1, 2, . . . , q} is

2q−1
(

n

q − 1

)
(2n− 1)!!.
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Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in [q] is

n−q+2∑
r=1

q!r!

2r−1
Pq,r

(
2n

2q + 2r − 4

)
(2n− 2q − 2r + 1)!!

Results



Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in [q] is

n−q+2∑
r=1

q!r!

2r−1
Pq,r

(
2n

2q + 2r − 4

)
(2n− 2q − 2r + 1)!!

Results

where Pq,r is the number of planar maps with q vertices and r faces.

Remark. Pq,r is the coefficient of xqyr in the series P defined by:
27P 4 − (36x+ 36y − 1)P 3

+(24x2y + 24xy2 − 16x3 − 16y3 + 8x2 + 8y2 + 46xy − x− y)P 2

+xy(16x2 + 16y2 − 64xy − 8x− 8y + 1)P
−x2y2(16x2 + 16y2 − 32xy − 8x− 8y + 1) = 0.



Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in [q] is

n−q+2∑
r=1

q!r!

2r−1
Pq,r

(
2n

2q + 2r − 4

)
(2n− 2q − 2r + 1)!!

Results

where Pq,r is the number of planar maps with q vertices and r faces.

Corollary [Ledoux 09] The number µv(n) of one-face maps with n
edges and v vertices satisfies
(n+ 1) ηv(n)=(4n− 1) (2 ηv−1(n−1)− ηv(n−1))

+(2n− 3)
(
(10n2 − 9n) ηv(n−2) + 8 ηv−1(n− 2)− 8 ηv−2(n−2)

)
+5(2n− 3)(2n− 4)(2n− 5) (ηv(n−3)− 2 ηv−1(n−3))
−2(2n− 3)(2n− 4)(2n− 5)(2n− 6)(2n− 7) ηv(n−4).

Sketch of proof:
Recurrence ←→ differential equation for F (x, z)=

∑
n,v ηv(n)x

vzn

(2n)!

←→ differential equation for G(x, z) =
∑
n,q Cn,q

xqzn

(2n)!

←→ differential equation for P (x, y) =
∑
q,r Pq,rx

qyr.
�



Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in [q] is

n−q+2∑
r=1

q!r!

2r−1
Pq,r

(
2n

2q + 2r − 4

)
(2n− 2q − 2r + 1)!!

Results

Other known formulas:
Theorem [Goulden, Jackson 97]∑
one-face map
with n edges

p#vertices = p n!
n∑

k=0

22n−k
n∑

r=0

(n− 1
2

n− r

)(k + r − 1

k

)( p−1
2

r

)

+ p (2n− 1)!!

p−1∑
q=1

2q−1
(p− 1

q

)( n

q − 1

)
.



Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in [q] is

n−q+2∑
r=1

q!r!

2r−1
Pq,r

(
2n

2q + 2r − 4

)
(2n− 2q − 2r + 1)!!

Results

Other known formulas:
Theorem [Goulden, Jackson 97]∑
one-face map
with n edges

p#vertices = p n!
n∑

k=0

22n−k
n∑

r=0

(n− 1
2

n− r

)(k + r − 1

k

)( p−1
2

r

)

+ p (2n− 1)!!

p−1∑
q=1

2q−1
(p− 1

q

)( n

q − 1

)
.

Theorem [B., Chapuy 10] ηv(n) ∼
n→∞cn−v+1n

3(n−v)/24n,

where ct =


2t−2

√
6
t−1

(t−1)!!
if t odd,

3·2t−2

√
π
√
6
t
(t−1)!!

∑t/2−1
i=1

(
2i
i

)
16−i if t even.



Results: Bijections

A tree-rooted map is a map on an orientable surface with a marked
spanning tree.
A planar-rooted map is a map on an orientable surface with a
marked planar connected spanning submap.



Results: Bijections

A tree-rooted map is a map on an orientable surface with a marked
spanning tree.
A planar-rooted map is a map on an orientable surface with a
marked planar connected spanning submap.

The number of tree-rooted maps with q vertices and n edges is

Cat(q − 1)

(
2n

2q

)
(2n− 2q + 1)!! =

2q−1

q!

(
n

q − 1

)
(2n− 1)!!

The number of planar-rooted maps with q vertices, r faces, and n

edges is Pq,r

(
2n

2q + 2r − 4

)
(2n− 2q − 2r + 1)!!



Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between
• one-face maps on orientable surface with n edges and vertices
colored using every color in [q]
• tree-rooted maps with n edges and q labeled vertices.

# edges between colors i and j ↔ # edges between vertices i and j.
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Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between
• one-face maps on orientable surface with n edges and vertices
colored using every color in [q]
• tree-rooted maps with n edges and q labeled vertices.

# edges between colors i and j ↔ # edges between vertices i and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The
number of [q]-colored orientable one-face maps with n edges is

2q−1
(

n

q − 1

)
(2n− 1)!!



Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between
• one-face maps on orientable surface with n edges and vertices
colored using every color in [q]
• tree-rooted maps with n edges and q labeled vertices.

# edges between colors i and j ↔ # edges between vertices i and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The
number of [q]-colored orientable one-face maps with n edges is

2q−1
(

n

q − 1

)
(2n− 1)!!

Refinement. [B.] The number of such map with color degrees

α1, . . . , αq is 2q−nn
(2n− q)!

(n− q + 1)!
.

Proof. Same number for each of the
(
2n−1
q−1

)
possible color degrees .

�



Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between
• one-face maps on orientable surface with n edges and vertices
colored using every color in [q]
• tree-rooted maps with n edges and q labeled vertices.

# edges between colors i and j ↔ # edges between vertices i and j.

Corollary 2 [Jackson 88, Schaeffer ,Vassilieva 08] The number of
bipartite [q], [r]-colored orientable one-face maps with n edges is

n!

(
n− 1

q − 1, r − 1, n− q − r + 1

)
.



Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between
• one-face maps on orientable surface with n edges and vertices
colored using every color in [q]
• tree-rooted maps with n edges and q labeled vertices.

# edges between colors i and j ↔ # edges between vertices i and j.

Corollary 2 [Jackson 88, Schaeffer ,Vassilieva 08] The number of
bipartite [q], [r]-colored orientable one-face maps with n edges is

n!

(
n− 1

q − 1, r − 1, n− q − r + 1

)
.

Refinement. [Morales, Vassilieva 09] The number of such map with

color degrees α1, . . . , αq, β1, . . . , βr is
n (n− q)!(n− r)!
(n− q − r + 1)!

.



Results: Bijections

Thm [B.] There is a q!r!21−r-to-1 correspondence between
• one-face maps on general surfaces with n edges and vertices
colored using every color in [q]
• planar-rooted maps with with n edges, q vertices, and r faces.

Moreover, # edges incident to color i ↔ #edges incident to vertex i.



Results: Bijections

Thm [B.] There is a q!r!21−r-to-1 correspondence between
• one-face maps on general surfaces with n edges and vertices
colored using every color in [q]
• planar-rooted maps with with n edges, q vertices, and r faces.

Moreover, # edges incident to color i ↔ #edges incident to vertex i.

Corollary:The number of [q]-colored rooted one-face maps with n
edges on general surfaces is:

n−q+2∑
r=1

q!r!

2r−1
Pq,r

(
2n

2q + 2r − 4

)
(2n− 2q − 2r + 1)!!

where Pq,r is the number of planar maps with q vertices and r faces.



Sketch of proof - Orientable case



Idea 1: Colored unicellular map ↔ Eulerian tour

Def. An Eulerian tour of a directed graph is a walk starting and
ending at the same vertex and using every arc exactly once.

v0

1

4

5
10
2

9

7
12

11
3

6
8



Idea 1: Colored unicellular map ↔ Eulerian tour

Def. An Eulerian tour of an undirected graph is a walk starting
and ending at the same vertex and using every direction of every edge
exactly once.
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Idea 1: Colored unicellular map ↔ Eulerian tour

Def. An Eulerian tour of an undirected graph is a walk starting
and ending at the same vertex and using every direction of every edge
exactly once.

Lemma [Lass 01]. Bijection between [q]-colored one-face maps and
set of pairs (G,E), where G is an undirected graph with vertex set [q]
and E is an Eulerian tour.
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Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Fix ~G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of ~G starting and ending at v0 are in bijec-
tion with pairs (T,R), where T is a spanning tree oriented toward
v0 and R is an ordering around each vertex of the outgoing arc not in T .

v0



Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Fix ~G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of ~G starting and ending at v0 are in bijec-
tion with pairs (T,R), where T is a spanning tree oriented toward
v0 and R is an ordering around each vertex of the outgoing arc not in T .
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Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Fix ~G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of ~G starting and ending at v0 are in bijec-
tion with pairs (T,R), where T is a spanning tree oriented toward
v0 and R is an ordering around each vertex of the outgoing arc not in T .

Corollary. The Eulerian tours of an undirected graph G are in
bijection with pairs (T,R), where
- T is a spanning tree (rooted as v0)
- R is an order at each vertex v, of all the edges incident to v except

the parent edge of v in T .
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Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Fix ~G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of ~G starting and ending at v0 are in bijec-
tion with pairs (T,R), where T is a spanning tree oriented toward
v0 and R is an ordering around each vertex of the outgoing arc not in T .
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431 87

Corollary. The Eulerian tours of an undirected graph G are in
bijection with pairs (T,R), where
- T a spanning tree + a marked half-edge at v0,
- R a cyclic ordering of the half-edges at each vertex.

3
1
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1
2

3

4

tree-rooted map



Summary: Bijection between rooted one-face maps colored using
every color in [q] with n edges on orientable surfaces and tree-rooted
maps with q labelled vertices and n edges.

1

3

2

6

5

6

7

8

4

2

5

431 87

Summary for orientable gluings



Sketch of proof - general case



Idea 1: Colored unicellular map ↔ bi-Eulerian tour

Def. A bi-Eulerian tour of an undirected graph is a walk starting and
ending at the same vertex and using every edge twice.
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Idea 1: Colored unicellular map ↔ bi-Eulerian tour

Def. A bi-Eulerian tour of an undirected graph is a walk starting and
ending at the same vertex and using every edge twice.

Lemma [adapting Lass 01]. Bijection between [q]-colored one-face
maps and set of pairs (G,E), where G is a graph with vertex set [q]
and E is a bi-Eulerian tour.

Moreover, the map is on an orientable surface if and only if no edge is
used twice in the same direction.
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A bi-oriented tree-rooted map is a rooted map on orientable surface
+ spanning tree + partial orientation such that
• indegree=outdegree for every vertex
• oriented edges in the spanning tree are oriented toward parent.

Idea 2: BEST Theorem (adapted to general situation)



A bi-oriented tree-rooted map is a rooted map on orientable surface
+ spanning tree + partial orientation such that
• indegree=outdegree for every vertex
• oriented edges in the spanning tree are oriented toward parent.

Idea 2: BEST Theorem (adapted to general situation)
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Corollary of BEST. Let G be an undirected graph.
There is a 1-to-2r correspondence between the bi-Eulerian tours of G
and the bi-oriented tree-rooted map on G with r oriented edges
outside of the spanning tree.



Idea 3: cutting and pasting

Def. Let B be a bi-oriented tree-rooted map. The planar-rooted map
P = Ψ(B) is obtained by cutting the oriented external edges in their
middle and regluing them according to the parenthesis system they
form around the tree (and then forgetting the tree + orientation).

(r−1)!-to-1 r-to-1



Idea 3: cutting and pasting

Def. Let B be a bi-oriented tree-rooted map. The planar-rooted map
P = Ψ(B) is obtained by cutting the oriented external edges in their
middle and regluing them according to the parenthesis system they
form around the tree (and then forgetting the tree + orientation).

Theorem: The mapping Ψ is r!-to-1 between bi-oriented tree-rooted
maps with r − 1 oriented edges outside of the spanning tree and planar-
rooted map with r sub-faces.

(r−1)!-to-1 r-to-1



Idea 3: cutting and pasting

12
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2 23
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1
1

1

1 12
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1

1

Underlying thm (related to [Bouttier, Di Francesco, Guitter 02]):
Bijection between planar maps with a marked face and partially ori-
ented plane-tree with additional oriented half-edges such that inde-
gree=outdegree at each vertex.



Summary: There is a q!r!2r−1-to-1 correspondence between rooted
one-face maps colored using every color in [q] with n edges on general
surfaces and planar-rooted maps with q vertices, r faces, and n edges.
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q!-to-1
1-to-2r−1

r!-to-1

Summary for general gluings



One-face constellations

Joint work with Alejandro Morales



A k-constellation is a map on an orientable surface with black-white
coloring of faces, in which vertices have a type in {1, . . . , k}, such
that every black faces has degree k, with vertices of type 1, 2, . . . , k
clockwise.

Constellations (= drawings of factorizations)

Type 2
Type 3

Type 1

Example of 3-constellation:



Constellations (= drawings of factorizations)

Type 2
Type 3

Type 1

Example of 3-constellation:

Relation with permutations:
k-constellations with ←→ Tuples (π1, . . . , πk) of permutations
n labelled black faces acting transitively on {1, 2, . . . , n}

Vertex of type t ←→ Cycle of πt

White faces ←→ Cycle of product π1π2 · · ·πk

4

3 1 5

2

π1 = (1, 2, 5)(3, 4)
π2 = (1, 3)(2)(4)(5)
π3 = (1, 4)(2)(3)(5)
π1π2π3 = (1, 3, 2, 5)(4)



Constellations (= drawings of factorizations)

Relation with permutations:
k-constellations with ←→ Tuples (π1, . . . , πk) of permutations
n labelled black faces acting transitively on {1, 2, . . . , n}

Vertex of type t ←→ Cycle of πt

White faces ←→ Cycle of product π1π2 · · ·πk

Conclusion for one-face constellations:

one-face k-constellations with ←→ Tuples (π1, . . . , πk) such that
a marked black face π1π2 · · ·πk = (1, 2, . . . , k).

1



Jackson formula

Question: Let λ1, . . . , λk be partitions of n.
How many factorizations π1π2 . . . πk = (1, 2, . . . , n) are there with
permutation πt of cycle type λt?
←→ How many one-face k-constellations with vertices of type t
having degrees given by λt?



Jackson formula

Question: Let λ1, . . . , λk be partitions of n.
How many factorizations π1π2 . . . πk = (1, 2, . . . , n) are there with
permutation πt of cycle type λt?
←→ How many one-face k-constellations with vertices of type t
having degrees given by λt?

Reformulation with colors.
As before, the nice formulas are for vertex-colored constellations.

Equivalent question: Let λ1, . . . , λk be partitions of n.
How many vertex-colored one-face k-constellations with vertices of
type t having color degrees λt?

1

Type 2 (colors

Type 3 (colors

Type 1 (colors

)

)

)



Jackson formula

Theorem [Jackson 88] Let q1, . . . , qk > 0.
The number of vertex-colored one-face k-constellations with vertices
of type t using all the colors in [qt] is

n!k−1[xq1−11 · · ·xqk−1k ]

(
k∏
t=1

(1 + xt)−
k∏
t=1

xt

)n−1
.



Jackson formula

Theorem [Jackson 88] Let q1, . . . , qk > 0.
The number of vertex-colored one-face k-constellations with vertices
of type t using all the colors in [qt] is

n!k−1[xq1−11 · · ·xqk−1k ]

(
k∏
t=1

(1 + xt)−
k∏
t=1

xt

)n−1
.

#{(S1, . . . , Sn−1)| Si ( [n], and ∀t ∈ [k], t appears in qk−1 subsets}

Bijective proof?



We have already solved the case k = 2!
Indeed one-face 2-constellations identify with one-face bipartite maps.

Case k = 2



We have already solved the case k = 2!
Indeed one-face 2-constellations identify with one-face bipartite maps.

Case k = 2

Theorem [Jackson 88, Schaeffer ,Vassilieva 08] The number of
bipartite [q], [r]-colored orientable one-face maps with n edges is

n!

(
n− 1

q − 1, r − 1, n− q − r + 1

)
.

Refinement. [Morales, Vassilieva 09] The number of such map with

color degrees α1, . . . , αq, β1, . . . , βr is
n (n− q)!(n− r)!
(n− q − r + 1)!

.



General k ≥ 2

A tree-rooted k-constellation is a rooted k-constellation with a
marked spanning tree such that the type of each vertex is the type of
its parent - 1.

(4)



Theorem [B., Morales] One-face k-constellations with vertices
colored using colors [q1], [q2], . . . , [qk] are in bijection with tree-rooted
k-constellations with qt labelled vertices of type t.
Moreover, the color degree in one-face constellation = degree in
tree-rooted constellation.

General k ≥ 2

1
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3
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6
78
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10 4
11

12
(4)

A tree-rooted k-constellation is a rooted k-constellation with a
marked spanning tree such that the type of each vertex is the type of
its parent - 1.



Theorem [B., Morales] One-face k-constellations with vertices
colored using colors [q1], [q2], . . . , [qk] are in bijection with tree-rooted
k-constellations with qt labelled vertices of type t.
Moreover, the color degree in one-face constellation = degree in
tree-rooted constellation.

General k ≥ 2

A tree-rooted k-constellation is a rooted k-constellation with a
marked spanning tree such that the type of each vertex is the type of
its parent - 1.

Corollary [B., Morales] The number of vertex-colored k-
constellations with color degree λ1, . . . , λk only depends on
`(λ1), . . . , `(λk).
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Sketch of proof:
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Sketch of proof:

Related construction [Vassilieva 2014?].



Relation with Jackson formula?
Not easy to see that tree-rooted k-constellations with n edges and qt
labelled vertices of type t are counted by

n!k−1[xq1−11 · · ·xqk−1k ]

(
k∏
t=1

(1 + xt)−
k∏
t=1

xt

)n−1
.
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For instance, recursive decomposition of tree-rooted constellation+ La-
grange inversion gives an expression which is more complicated than
Jackson’s formula [Vassilieva 2014?]
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Additional ideas: the dual of tree rooted maps are some kind of one-
face maps, and one can reuse the BEST theorem again. . .
 bijection with a third class of objects we called ”biddings”.
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Additional ideas: the dual of tree rooted maps are some kind of one-
face maps, and one can reuse the BEST theorem again. . .
 bijection with a third class of objects we called ”biddings”.

Biddings are easier to count . . . but still not exactly Jackson formula.
 Probabilistic puzzle (solved [B., Morales]).



Thanks.



Probabilistic puzzle:

i

i+1

i+2

j

i−1

i, i+1 /∈ Si

i+1, i+2 ∈ Si
i, i+3 /∈ Si

i+1 ∈ Si, i, i+2 /∈ Si

i+1, . . . , j ∈ Si
i, j+1 /∈ Si

i ∈ Si or Si = [k]−{i}

Theorem: Let S1, . . . , Sk−1 ( [k] with t appearing qt times.
Probability of getting a tree from the rule below is the same as proba
that S1 = ∅.


