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Maps




Definition

Def 1. A map is a gluing of polygons giving a connected surface
without boundary.




Definition

Def 1. A map is a gluing of polygons giving a connected surface
without boundary.

Def 2. A map is a connected graph embedded in a surface (with
simply connected faces) considered up to homeomorphism.



Definition

Def 1. An orientable map is a gluing of polygons giving a con-
nected orientable surface without boundary.

Def 2. An orientable map is a connected graph embedded in an
orientable surface considered up to homeomorphism.

Def 3. An orientable map is a connected graph + a cyclic order-
ing of the half-edges around each vertex (the clockwise ordering).
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Counting problem

Question: Among all the one-face maps obtained from a 2n-gon,
how many times do we get each surface?
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Counting problem
Question: Among all the one-face maps obtained from a 2n-gon,

how many times do we get each surface?

Each pair of edges can be glued in a orientable or non-orientable way.
The surface is orientable if and only if each gluing is orientable.

S O

Orientable gluing Non-orientable gluing

(2n — !l =(2n — 1)(2n — 3) - - - 1 ways of getting orientable surface.
2™ (2n — 1)!! ways of getting general surface.



Counting problem

Question: Among all the one-face maps obtained from a 2n-gon,
how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability
and the number of vertices of the one-face map.
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Counting problem
Question: Among all the one-face maps obtained from a 2n-gon,

how many times do we get each surface?

Remark 1. The surface obtained is characterized by its orientability
and the number of vertices of the one-face map.

Remark 2. The number of ways of getting the sphere is the Catalan

number Cat(n) = %ﬂ(?)
(r
D) >
A



Results



Colored gluings

Question: What is the number of one-face maps on orientable surfaces
with n edges and v vertices ?
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Colored gluings

Question: What is the number of one-face maps on orientable surfaces
with n edges and v vertices ?

Theorem [Harer, Zagier 86].

3 ptvertices zp: (Z > 011 (q " 1) (2n — 1)!!

orientable one-face maps g=1



Colored gluings

Question: What is the number of one-face maps on orientable surfaces
with n edges and v vertices ?

Theorem [Harer, Zagier 86].

3 ptvertices zp: (Z > 011 (q " 1) (2n — 1)!!

orientable one-face maps g=1

Combinatorial interpretation: the number of orientable one-face
maps with vertices colored using all the colors in [¢] := {1,2,....q} is

011 <q " 1) (2n — 1),




Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in |¢| is

qlr! 2n
Y= P, (2q Lo 4> (2n — 2q — 2r + 1)!!

n—q-+2

r=1



Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in |¢| is

nre q'r! 2n
P, ( >(2n—2q—2r+1)!!

2r—1 2q + 2r — 4

r=1

where I, . is the number of planar maps with ¢ vertices and r faces.

Remark. P, . is the coefficient of 29y" in the series I” defined by:
27P* — (36x + 36y — 1) P?

+(24x%y + 24xy? — 162° — 16y + 822 + 8y? + 462y — v — y) P>
+2y(162° 4+ 16y* — 64wy — 8x — 8y + 1) P

—x?y?(162° + 16y* — 322y — 8x — 8y + 1) = 0.



Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in |¢| is

qlr! 2n
oY= P, <2q Lo 4> (2n — 2q — 2r 4+ 1)

n—q-+2

r=1
where I, . is the number of planar maps with ¢ vertices and r faces.

Corollary [Ledoux 09] The number s,(n) of one-face maps with n
edges and v vertices satisfies
(n+1)ny(n)=(4n —1) (21nv-1(n—1) = nv(n—1))
+(2n — 3) ((10n? — 9n) Ny(n—2) + 8ny—1(n — 2) — 8nNy—_2(n—2))
+5(2n —3)(2n —4)(2n — 5) (M (n—3) — 2ny—1(n—3))
—22n —3)2n —4)(2n — 5)(2n — 6)(2n — 7) Ny (n—4).
Sketch of proof:

Recurrence <— differential equation for F'(z, Z):Zn,v nv(n)%

<— differential equation for G(z,2) = ) Cn,q%
<— differential equation for P(z,y) = > Py x%".
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Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in |¢| is

qlr! 2n
P, 2n — 2q — 2 1!
- 27“—1 q, (2q 1 Vo — 4> ( n q T )

Other known formulas:
Theorem [Goulden, Jackson 97]

Z prvertices _ pn,z22n kz<n——)(k+;—1>< 2 )

n—r r
one-face map k=0 r=0

with » edges

n—q-+2




Results

Theorem [B.]: The number of one-face maps with n edges and ver-
tices colored using every color in |¢| is

qlr! 2n
P, 2n — 2q — 2 1)
- 27“—1 q, <2q 1 Vo — 4> ( n q T )

Other known formulas:
Theorem [Goulden, Jackson 97]

Z pruertices _ pn,ZQQn kz(f;:;)(k—l-;—l)( i )

n—q-+2

one-face map k=0 r=0
with » edges
by p—1 n
—1 _
—l—p(Qn—l)!!qz::qu ( ) )(q—1)'

Theorem [B., Chapuy 10] 7, (n) = ¢, in®"=0)/24m,

2 if ¢ odd
where ¢; = VG (! |

3.9t—2 t/2—1 (24 i -
NN T > (3167 if ¢ even.



Results: Bijections

A tree-rooted map is a map on an orientable surface with a marked
spanning tree.

A planar-rooted map is a map on an orientable surface with a
marked planar connected spanning submap.




Results: Bijections

A tree-rooted map is a map on an orientable surface with a marked
spanning tree.

A planar-rooted map is a map on an orientable surface with a
marked planar connected spanning submap.

The number of tree-rooted maps with ¢ vertices and n edges is
2n 24—1 n
C — 1 2n — 2 D! = 2n — 1)!!
g~ 1) (0 )@n-2q+ =20 (" -y
The number of planar-rooted maps with ¢ vertices, r faces, and n

2
edgesis P, (2(] N ; B 4) (2n — 2q — 2r + 1)!!




Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

e one-face maps on orientable surface with n edges and vertices
colored using every color in [g]

e tree-rooted maps with n edges and ¢ labeled vertices.

+# edges between colors 7 and j <+ # edges between vertices 7 and j.




Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

e one-face maps on orientable surface with n edges and vertices
colored using every color in [g]

e tree-rooted maps with n edges and ¢ labeled vertices.

+# edges between colors 7 and j <+ # edges between vertices 7 and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The
number of |g|-colored orientable one-face maps with n edges is

0a-1 <q " 1> (2n — 1)



Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

e one-face maps on orientable surface with n edges and vertices
colored using every color in [g]

e tree-rooted maps with n edges and ¢ labeled vertices.

+# edges between colors 7 and j <+ # edges between vertices 7 and j.

Corollary 1. [Harer-Zagier 86, Lass 01, Goulden, Nica 05] The
number of |g|-colored orientable one-face maps with n edges is

2q1<qff1>(2n-—1)u

Refinement. [B.] The number of such map with color degrees
(2n —q)!
(n—q+1)!

Proof. Same number for each of the (

Oy, ... 0 0s 297

2n—1

1 ) possible color degrees .




Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

e one-face maps on orientable surface with n edges and vertices
colored using every color in [g]

e tree-rooted maps with n edges and ¢ labeled vertices.

+# edges between colors 7 and j <+ # edges between vertices 7 and j.

Corollary 2 [Jackson 88, Schaeffer ,Vassilieva 08] The number of
bipartite |[g|, [r|-colored orientable one-face maps with n edges is

o n—1
\g—-1r—1n—qg—r+1)



Results: Bijections

Thm [Bernardi - Inspired by Lass] Bijection between

e one-face maps on orientable surface with n edges and vertices
colored using every color in [g]

e tree-rooted maps with n edges and ¢ labeled vertices.

+# edges between colors 7 and j <+ # edges between vertices 7 and j.

Corollary 2 [Jackson 88, Schaeffer ,Vassilieva 08] The number of
bipartite |[g|, [r|-colored orientable one-face maps with n edges is

o n—1
\g—-1r—1n—qg—r+1)

Refinement. [Morales, Vassilieva 09] The number of such map with
s n(n—q)l(n— r)!.
(mn—qg—r+1)!

color degrees oy, ..., o, B1,. ..



Results: Bijections

Thm [B.] There is a ¢!r!2'~"-to-1 correspondence between

e one-face maps on general surfaces with n edges and vertices
colored using every color in |¢|

e planar-rooted maps with with n edges, ¢ vertices, and r faces.

Moreover, # edges incident to color 7 <+ #fedges incident to vertex 1.



Results: Bijections

Thm [B.] There is a ¢!r!2'~"-to-1 correspondence between

e one-face maps on general surfaces with n edges and vertices
colored using every color in |¢|

e planar-rooted maps with with n edges, ¢ vertices, and r faces.

Moreover, # edges incident to color 7 <+ #fedges incident to vertex 1.

Corollary:The number of |¢|-colored rooted one-face maps with n
edges on general surfaces is:

fhe ar! om oo
£ 9r—1 q,r(2q+zr_4>( n—aq — 21 + )

where I, . is the number of planar maps with ¢ vertices and r faces.




Sketch of proof - Orientable case



Idea 1: Colored unicellular map <+ Eulerian tour

Def. An Eulerian tour of a directed graph is a walk starting and
ending at the same vertex and using every arc exactly once.




Idea 1: Colored unicellular map <+ Eulerian tour

Def. An Eulerian tour of an undirected graph is a walk starting
and ending at the same vertex and using every direction of every edge
exactly once.




Idea 1: Colored unicellular map <+ Eulerian tour

Def. An Eulerian tour of an undirected graph is a walk starting
and ending at the same vertex and using every direction of every edge
exactly once.

Lemma [Lass 01]. Bijection between [g|-colored one-face maps and
set of pairs (GG, /), where G is an undirected graph with vertex set |¢|
and E is an Eulerian tour.



Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Fix G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of G starting and ending at vy are In bijec-
tion with pairs (7, ), where T" is a spanning tree oriented toward
vy and R is an ordering around each vertex of the outgoing arc not in 7T".
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Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Fix G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of G starting and ending at vy are In bijec-
tion with pairs (7', R), where T is a spanning tree oriented toward
vy and R is an ordering around each vertex of the outgoing arc not in 7T".
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Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)
Fix G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of G starting and ending at vy are In bijec-
tion with pairs (7, ), where T" is a spanning tree oriented toward
vy and R is an ordering around each vertex of the outgoing arc not in 7T".

Corollary. The Eulerian tours of an undirected graph ' are in
bijection with pairs (77, I?), where

- T"is a spanning tree (rooted as )

- R is an order at each vertex v, of all the edges incident to v except

the parent edge of v in 7.




Idea 2: BEST Theorem
BEST Theorem. (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)
Fix G digraph with as many ingoing and outgoing arcs at each vertex.
The Eulerian tours of G starting and ending at vy are In bijec-
tion with pairs (7', R), where T is a spanning tree oriented toward
vy and R is an ordering around each vertex of the outgoing arc not in 7T".

Corollary. The Eulerian tours of an undirected graph ' are in
bijection with pairs (77, I?), where

- I" a spanning tree + a marked half-edge at vy,

- R a cyclic ordering of the half-edges at each vertex.

tree-rooted map



Summary for orientable gluings

Summary: Bijection between rooted one-face maps colored using
every color in |¢| with n edges on orientable surfaces and tree-rooted
maps with ¢ labelled vertices and n edges.




Sketch of proof - general case



Idea 1: Colored unicellular map < bi-Eulerian tour

Def. A bi-Eulerian tour of an undirected graph is a walk starting and
ending at the same vertex and using every edge twice.

— &




Idea 1: Colored unicellular map < bi-Eulerian tour

Def. A bi-Eulerian tour of an undirected graph is a walk starting and
ending at the same vertex and using every edge twice.

Lemma [adapting Lass 01]. Bijection between |[¢|-colored one-face
maps and set of pairs (G, E'), where (G is a graph with vertex set |¢]
and £ is a bi-Eulerian tour.

Moreover, the map is on an orientable surface if and only if no edge is
used twice Iin the same direction.



Idea 2: BEST Theorem (adapted to general situation)

A bi-oriented tree-rooted map is a rooted map on orientable surface
+ spanning tree + partial orientation such that
e indegree=outdegree for every vertex

e oriented edges in the spanning tree are oriented toward parent.




Idea 2: BEST Theorem (adapted to general situation)

A bi-oriented tree-rooted map is a rooted map on orientable surface
+ spanning tree + partial orientation such that

e indegree=outdegree for every vertex

e oriented edges in the spanning tree are oriented toward parent.

Corollary of BEST. Let (¢ be an undirected graph.

There is a 1-to-2" correspondence between the bi-Eulerian tours of ¢
and the bi-oriented tree-rooted map on (G with r oriented edges
outside of the spanning tree.

—




Idea 3: cutting and pasting

Def. Let B be a bi-oriented tree-rooted map. The planar-rooted map
P = WU(B) is obtained by cutting the oriented external edges in their
middle and regluing them according to the parenthesis system they
form around the tree (and then forgetting the tree + orientation).
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Idea 3: cutting and pasting

Def. Let B be a bi-oriented tree-rooted map. The planar-rooted map
P = WU(B) is obtained by cutting the oriented external edges in their
middle and regluing them according to the parenthesis system they
form around the tree (and then forgetting the tree + orientation).

@ —1)lto-1
<>

Theorem: The mapping V is r!-to-1 between bi-oriented tree-rooted
maps with » — 1 oriented edges outside of the spanning tree and planar-
rooted map with r sub-faces.




Idea 3: cutting and pasting

Underlying thm (related to [Bouttier, Di Francesco, Guitter 02]):
Bijection between planar maps with a marked face and partially ori-
ented plane-tree with additional oriented half-edges such that inde-

gree=outdegree at each vertex.
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Summary for general gluings

Summary: There is a ¢!7!2" !-to-1 correspondence between rooted
one-face maps colored using every color in |¢| with n edges on general
surfaces and planar-rooted maps with ¢ vertices, r faces, and n edges.

rl-to-1




One-face constellations

Joint work with Alejandro Morales



Constellations (= drawings of factorizations)

A k-constellation is a map on an orientable surface with black-white
coloring of faces, in which vertices have a type in {1,... Lk}, such

that every black faces has degree k, with vertices of type 1,2,...,k
clockwise.

Example of 3-constellation:

o Type 1
Type 2

aTypes \ 0 AN




Constellations (= drawings of factorizations)

Relation with permutations:

k-constellations with ~ <—  Tuples (7,..., ) of permutations
n labelled black faces acting transitively on {1,2,... n}
Vertex of type ¢ <y Cycle of m;
White faces —— Cycle of product 775 - - -

Example of 3-constellation:




Constellations (= drawings of factorizations)

Relation with permutations:

k-constellations with ~ <—  Tuples (7,..., ) of permutations
n labelled black faces acting transitively on {1,2,... n}
Vertex of type ¢ <y Cycle of m;
White faces —— Cycle of product 775 - - -

Conclusion for one-face constellations:

one-face k-constellations with  <—  Tuples (7, ..., ) such that
a marked black face T e = (1,2,..., k).




Jackson formula

Question: Let )\q,...., \. be partitions of n.

How many factorizations w7 ... 7 = (1,2,...,n) are there with
permutation 7; of cycle type A\,?

+<— How many one-face Fk-constellations with vertices of type ¢
having degrees given by \;?



Jackson formula

Question: Let \q,.... A\, be partitions of n.

How many factorizations w7 ... 7 = (1,2,...,n) are there with
permutation 7; of cycle type A\,?

+<— How many one-face Fk-constellations with vertices of type ¢
having degrees given by \;?

Reformulation with colors.
As before, the nice formulas are for vertex-colored constellations.

O Type 1 (colorsO0Q)
() Type 2 (colors())
/\ Type 3 (colors AAA) 9, j
Equivalent question: Let )\,..., )\, be partitions of n.

How many vertex-colored one-face k-constellations with vertices of
type ¢ having color degrees \;?




Jackson formula

Theorem [Jackson 88| Let ¢1,...,q1 > 0.
The number of vertex-colored one-face k-constellations with vertices
of type t using all the colors in |g;] is

k k "
n!l{i—l[xClll—l .« o ka_l] (H(l -+ th) — H xt)
t=1 t=1

—1



Jackson formula

Theorem [Jackson 88| Let ¢1,...,q1 > 0.
The number of vertex-colored one-face k-constellations with vertices

of type t using all the colors in |g;] is

k
_ —1 ~1
A kL H1+a:t H:z:'t
t=1

.

#{(S1,..., Sn—_1) S; & [n],and Vt € [k], t appearsin qj, — 1 subsets}

Bijective proof?



Case £k =2

We have already solved the case £ = 2!
Indeed one-face 2-constellations identify with one-face bipartite maps.




Case £k =2

We have already solved the case £ = 2!
Indeed one-face 2-constellations identify with one-face bipartite maps.

Theorem [Jackson 88, Schaeffer ,Vassilieva 08] The number of
bipartite |[g|, [r|-colored orientable one-face maps with n edges is

o n—1
\g—-1r—1n—qg—r+1)

Refinement. [Morales, Vassilieva 09] The number of such map with
n(n—q)ln—r)

color degrees oy, ..., 0, B1,..., 3, is .
& ! 0> 1 Br (n—q—r+1)!




General £ > 2

A tree-rooted Fk-constellation is a rooted k-constellation with a
marked spanning tree such that the type of each vertex is the type of
Its parent - 1.




General £ > 2

A tree-rooted k-constellation is a rooted k-constellation with a

marked spanning tree such that the type of each vertex is the type of
Its parent - 1.

Theorem [B., Morales] One-face Fk-constellations with vertices

colored using colors |g1], |q2], ..., |gx| are in bijection with tree-rooted
k-constellations with ¢; labelled vertices of type ¢.
Moreover, the color degree in one-face constellation = degree in

tree-rooted constellation.




General £ > 2

A tree-rooted Fk-constellation is a rooted k-constellation with a
marked spanning tree such that the type of each vertex is the type of
Its parent - 1.

Theorem [B., Morales] One-face k-constellations with vertices

colored using colors |q1], [g2], ..., |qx| are in bijection with tree-rooted
k-constellations with ¢; labelled vertices of type ¢.
Moreover, the color degree in one-face constellation = degree in

tree-rooted constellation.

Corollary [B., Morales] The number of vertex-colored k-
constellations with color degree A{,... . Az only depends on

(A1), L)



Sketch of proof:

O Type 1 (colorsO @)
() Type 2 (colors ())
/\ Type 3 (colors A A)

BEST Theorem
—



Sketch of proof:

O Type 1 (colorsO @)
() Type 2 (colors ())
/\ Type 3 (colors A A)

BEST Theorem

Related construction [Vassilieva 20147].



Relation with Jackson formula?
Not easy to see that tree-rooted k-constellations with n edges and ¢,
labelled vertices of type ¢ are counted by

k
n!k—l[ajclll_l ka_l] (H 1 —I—.flft Hajt>
t=1

n—1



Relation with Jackson formula?
Not easy to see that tree-rooted k-constellations with n edges and ¢,
labelled vertices of type ¢ are counted by

k
1r.q—1 —1
I Pk L Hl—l—:l?t Hil?t
t=1

For instance, recursive decomposition oftree—rooted constellation+ La-
grange inversion gives an expression which is more complicated than
Jackson's formula [Vassilieva 20147]

n—1



Relation with Jackson formula?
Not easy to see that tree-rooted k-constellations with n edges and ¢,
labelled vertices of type ¢ are counted by

k
n!k—l[ajclll_l QjZk 1] (H 1 —I—Zlft Hajt>
t=1

Additional ideas: the dual of tree rooted maps are some kind of one-
face maps, and one can reuse the BEST theorem again. ..
~ bijection with a third class of objects we called " biddings" .
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Relation with Jackson formula?
Not easy to see that tree-rooted k-constellations with n edges and ¢,
labelled vertices of type ¢ are counted by

k
n!k—l[ajclll_l QjZk_l] (H 1 —I—Zlft Hajt>
t=1

Additional ideas: the dual of tree rooted maps are some kind of one-
face maps, and one can reuse the BEST theorem again. ..
~ bijection with a third class of objects we called " biddings" .

n—1

Biddings are easier to count ... but still not exactly Jackson formula.
~+ Probabilistic puzzle (solved [B., Morales]).



Thanks.



Probabilistic puzzle:
Theorem: Let Sy,...,Sk_1 € |k| with ¢t appearing g; times.
Probability of getting a tree from the rule below is the same as proba

that S; = 0.

i+1,i+2 € S
i,i+3 ¢ S,

i+1,...,5 €8y
i,j+1 ¢ S,



