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1  Maps with(out) tubes ...

Definition
Planar maps and substitution

Planar 1-cut lemma
Higher topologies



A	 map	 is	 a	 discrete	 surface	 obtained	 by	 gluing	 along	 edges

faces	 with	 topology	 of	 a	 disk

weight
per	 vertex
t

t11t33t
2
4t5t

2
6weight	 =	 

k

weight
tk
(k ≥ 1)

1. Maps with(out) tubes Definition of a map



weight	 =	 

A	 map	 with	 tubes	 is	 a	 discrete	 surface	 obtained	 by	 gluing	 along	 edges

faces	 with	 topology	 of	 a	 disk

weight

weight

or	 with	 topology	 of	 a	 cylinder

tk

k

k1

k2

(k ≥ 1)

(k1 + k2 ≥ 1)

weight per	 vertext
t22γ3t1t

2
4t5t6t4,8t4,5t6,1

γtk1,k2

1. Maps with(out) tubes Definition of a map with tubes



1. Maps with(out) tubes Planar maps and substitution

Planar	 maps	 are	 those	 which	 can	 be	 embedded	 in	 a	 sphere.

=	 generating	 series	 of	 maps
	 	 	 with	 1	 marked,	 rooted	 face	 of	 perimeter	 �

T�[(tk)k; (tk1,k2)k1,k2 ]

Planar−→

Notion	 of
inside/outside	 a	 tube

Planar	 maps	 with	 tubes
have	 a	 nested	 structure

−→

� = 15

root



1. Maps with(out) tubes Planar maps and substitution

Planar	 maps	 with	 tubes	 have	 a	 nested	 structure

with	 substitution	 of	 tubes	 (rooted	 inside)

map	 with	 large	 faces	 (gasket)

stuffed	 with	 rooted	 maps	 with	 tubes



1. Maps with(out) tubes Planar maps and substitution

Planar	 maps	 with	 tubes	 have	 a	 nested	 structure

rooted
inside tubes stuffed	 with	 rooted	 maps

with	 tubes

with	 substitution	 of	 

Counting	 planar	 maps	 with	 tubes	 is	 reduced	 to	 counting	 planar	 maps	 −→

T�[(tk)k; (tk1,k2)k1,k2 ] = T�[(t̃k)k; 0]

t̃k = tk + γ
�

m

mtk,mTm[(tn)n; (tn1,n2)n1,n2 ]



1. Maps with(out) tubes Admissible weights

Definitions

(tk)k non-negative	 is	 admissible	 when	 	 	 	 	 	 	 	 	 	 ,
(generating	 series	 of	 pointed	 rooted	 planar	 maps)

t∂tT�[(tk)k; 0] < +∞

(tk)k real-valued	 is	 admissible	 when	 	 	 	 	 	 	 	 	 	 	 	 	 	 is	 admissible(|tk|)k

∀l ≥ 1t,

|t|,t,

(tk)kt, , γ, tk1,k2 is	 admissible	 when	 is	 admissiblet, (t̃k)k



1. Maps with(out) tubes Planar 1-cut lemma

Definitions

(tk)k non-negative	 is	 admissible	 when	 	 	 	 	 	 	 	 	 	 ,
(generating	 series	 of	 pointed	 rooted	 planar	 maps)

t∂tT�[(tk)k; 0] < +∞

(tk)k real-valued	 is	 admissible	 when	 	 	 	 	 	 	 	 	 	 	 	 	 	 is	 admissible(|tk|)k

∀l ≥ 1t,

|t|,t,

(tk)kt, , γ, tk1,k2 is	 admissible	 when	 is	 admissiblet, (t̃k)k

Planar	 1-cut	 lemma

If	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 is	 admissible,	 there	 exists	 (tk)kt, , γ, tk1,k2

✹	 is	 holomorphic	 in	 

W 0
1 (x) =

� t

x
+
�

�≥1

T�[(tk)k; (tk1,k2)k1,k2 ]

x�+1

�
dxso	 that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 

C \ [a, b]
✹	 has	 a	 discontinuity	 on	 ]a, b[
✹	 remains	 bounded

a, b ∈ R

GB,	 Bouttier,	 Guitter	 (12)Bousquet-Mélou	 (02),	 



1. Maps with(out) tubes Analytic continuation

conformal	 mapping

−→

z ∈ C \Dx ∈ C \ [a, b]

C

Fact ω0
1(z) = W 0

1 (x(z)) can	 be	 continued	 in	 a	 neighborhood	 	 	 	 of	 C

z ∈ U

−→

analytic	 continuation

C

α β α β

U



1. Maps with(out) tubes Analytic continuation

conformal	 mapping

−→

z ∈ C \Dx ∈ C \ [a, b]

C

z ∈ U

a b
α β

	 determines	 a	 Riemann	 surface,
	 on	 which	 it	 can	 be	 seen	 as	 an	 analytic	 1-form

	 called	 spectral	 curveW 0
1 (x)

−→

analytic	 continuation

exchanging	 interior/exterior	 of	 
z �→ ι(z)We	 have	 an	 involution	 	 	 	 	 	 	 	 	 	 	 	 	 	 so	 that

C
x(z) = x(ι(z))

ι
ι

ι
ιι ι

Fact ω0
1(z) = W 0

1 (x(z)) can	 be	 continued	 in	 a	 neighborhood	 	 	 	 of	 CU



	 called	 spectral	 curve

1. Maps with(out) tubes Higher topologies

	 A	 map	 with(out)	 tubes	 has	 genus	 g	 if	 
	 it	 is	 connected	 and	 can	 be	 embedded	 in	 

	 g	 handles

We	 cannot	 speak	 of	 nesting	 for	 	 	 	 	 	 	 	 	 	 !	 g > 0

Rather	 use	 Tutte	 bijective	 decomposition	 of	 maps	 to	 establish	 functional	 relations

We	 define	 the	 generating	 series	 

W g
n(x1, . . . , xn) =

�

�1,...,�n≥1

� n�

i=1

dxi

x�i+1
i

�
×

generating	 series	 of	 genus	 g	 maps
with	 rooted	 marked	 faces
of	 perimeters	 	 
{

�1, . . . , �n
{

and	 we	 would	 like	 to	 compute	 them	 ...

+	 a	 good	 deal	 of	 complex	 analysis	 ...



1. Maps with(out) tubes Higher topologies

W g
n(x1, . . . , xn) =

�

�1,...,�n≥1

� n�

i=1

dxi

x�i+1
i

�
×

generating	 series	 of	 genus	 g	 maps
with	 rooted	 marked	 faces
of	 perimeters	 	 
{

�1, . . . , �n
{

1-cut	 lemma

If	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 is	 admissible,	 then	 	 (tk)kt, , γ, tk1,k2

✹	 is	 holomorphic	 in	 C \ [a, b]
✹	 has	 a	 discontinuity	 when	 

✹	 can	 be	 analytically	 continued	 to
	 	 	 on	 the	 same	 Riemann	 surface

W g
n(x1, . . . , xn)

ωg
n(z1, . . . , zn)

It	 can	 be	 computed	 by	 a	 recursion	 on	 2g	 -	 2	 +	 n
which	 takes	 a	 universal	 form

Eynard	 (06)for	 maps

for	 maps	 with	 tubes GB,	 Eynard,	 Orantin	 (13)

xi ∈ [a, b]



=

1. Maps with(out) tubes Topological recursion

z1

z2

zn
ωg
n(z1, . . . , zn) =

the	 involution	 

z ∈ U

ι
ι

ι
ιι ι

ι

It	 can	 be	 computed	 by	 a	 recursion	 of	 topological	 nature.

z1

z2

zn

Res
z→α,β

− 1
2

� z
ι(z) ω

0
2(·, z2)

ω0
1(z)− ω0

1(ι(z))
· · ·

z

ι(z)

z1 · · ·

g

g

z2

zn
z

ι(z)

z1 g − 1= +
z

ι(z)

z1

zj , j ∈ J

zj , j /∈ J

h

g − h

�

J,h
disks	 excluded



1. Maps with(out) tubes Topological recursion

	 	 	 	 	 	 can	 be	 computed	 by	 a	 universal	 recursion	 of	 topological	 nature

but	 the	 combinatorial	 interpretation	 of	 the	 recursion	 is	 not	 known	 ...

ωg
n(ι(z), z2, . . . , zn) ??

ωg
n

	 	 	 	 	 if	 one	 knows	 	 	 	 	 	 =	 	 	 	 	 	 	 	 	 	 	 	 	 and	 	 	 	 	 	 	 =	 ω0
1 ω0

2

Definition

−→ g

The	 topological	 recursion	 is	 the	 algorithm

initial	 data output

n, g ≥ 0

Eynard,	 Orantin	 (07)

( (ωg
n =

ω0
1 =

ω0
2 =



2  ... and formal matrix
      models

Relation to maps
Multidimensional integrals ...

... and their asymptotics



2. Formal matrix models

Generating	 series	 of	 maps	 can	 be	 represented	 by	 formal	 matrix	 integrals

the	 generating	 series	 of	 faces

Brézin,	 Itzykson,	 Parisi,	 Zuber	 (78)

the	 gaussian	 measure	 on
	 	 	 	 	 	 	 	 	 	 hermitian	 matrices dµ(M) = dM e−NTrM2/2t
N ×N

D(x) =
N

t

�

k

tk
k
xk

if	 we	 introduce

t, tkthen,	 the	 formal	 series	 in	 	 	 	 	 	 	 has	 a	 well-defined	 decomposition

µ
�
eTrD(M)

�n
i=1 Tr

dxi
xi−M

�

c

µ
�
eTrD(M)

� =
�

g≥0

N2−2g−n W g
n(x1, . . . , xn)

generating	 series	 of	 maps
of	 genus	 g	 with	 n	 rooted	 marked	 faces

... and maps



2. Formal matrix models

Generating	 series	 of	 maps	 with	 tubes	 have	 a	 similar	 representation

with	 topology	 of	 a	 disk

reformulation	 of	 Gaudin,	 Mehta,	 Kostov	 (90s)

D(x) =
N

t

�

k

tk
k
xk

t, tkthen,	 the	 formal	 series	 in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 has	 a	 well-defined	 decomposition

generating	 series	 of	 maps	 with	 tubes
of	 genus	 g	 with	 n	 rooted	 marked	 faces

if	 we	 introduce	 the	 generating	 series	 of	 faces

with	 topology	 of	 a	 cylinder C(x, y) =
γ

t

�

k1,k2

tk1,k2

2k1k2
xk1yk2

, γ, tk1,k2

µ
�
eTrD(M)+TrC(M⊗1N ,1N⊗M)

�n
i=1 Tr

dxi
xi−M

�

c

µ
�
eTrD(M)+TrC(M⊗1N ,1N⊗M)

� =
�

g≥0

N2−2g−n W g
n(x1, . . . , xn)

... and maps with tubes



2. Formal matrix models

the	 integrals	 over	 M	 reduces	 to	 an	 integral	 over	 its	 eigenvalues

µ
�
eTrD(M)+TrC(M⊗1N ,1N⊗M)

�

U(N)	 invariant	 measures	 :

e.g.	 the	 partition	 function

=
Vol(U(N))

N !(2π)N

�

RN

N�

i=1

dλie
−Nλ2

i
2t +D(λi)+C(λi,λi)

�

1≤i<j≤N

(λi − λj)
2 e2C(λi,λj)

arbitrary	 two-point	 interaction
vanishing	 like	 a	 square
at	 short	 distance

as	 presented	 for	 formal	 integrals

Multidimensional integrals



2. Formal matrix models

K	 non-vanishing

Multidimensional integrals

� N�

i=1

dλie
−NV (λi)

�

1≤i<j≤N

(λi − λj)
2 R(λi,λj)A	 summary	 on	 the	 large	 N	 expansion	 of

formal	 integral	 (	 	 	 	 	 	 	 combinatorics,	 1/N	 expansion,	 1-cut	 lemma)−→

cv	 integral	 +	 1-cut	 +	 assumptions

K	 =	 1	 	 	 	 Ambjørn,	 Makeenko,	 Chekhov,	 Kristjansen	 (90s),	 Eynard	 (04)

K	 ≠	 1	 	 	 	 GB,	 Eynard,	 Orantin	 (13)

K	 =	 1	 	 	 	 Albeverio,	 Pastur,	 Shcherbina	 (00),	 Ercolani,	 McLaughlin	 (04)
	 	 	 	 	 	 	 	 	 	 	 GB,	 Guionnet	 (11)

K	 ≠	 1	 	 	 GB,	 Guionnet,	 Kozlowski	 (in	 progress)

−→ 1/N	 expansion

Topological
recursion

cv	 integral	 +	 several	 cuts	 +	 assumptions

K	 =	 1	 	 	 	 heuristics	 :	 Bonnet,	 David,	 Eynard	 (00),	 Eynard	 (07)
	 	 	 	 	 	 	 	 	 	 	 proof	 :	 GB,	 Guionnet	 (13)

−→ 1/N	 expansion

K	 ≠	 1	 	 	 GB,	 Guionnet,	 Kozlowski	 (in	 progress)

Topological
recursion
with nodes
(see	 later	 ...)

K(λi,λj)



3  Introduction to knots

Definition, classification

Knot invariants
Asymptotics and why should we care ?

Imite	 le	 moins	 possible	 les	 hommes	 dans	 leur	 
énigmatique	 maladie	 de	 faire	 des	 nœuds.

René	 Char,	 Rougeurs	 des	 matinaux



3. Introduction to knots

A	 knot	 is	 an	 isotopy	 class	 of	 proper	 embedding	 of	 a	 circle	 in	 S3

Word	 in	 the	 braid	 group Tubular	 neighborhood
of	 a	 knot	 	 	 	 2d	 projection	 of	 a	 knot	 ↔

1

2

3

1

2

3

Example

figure-eight
knot

unknot

Definition



3. Introduction to knots

Knots	 are	 complicated	 (as	 much	 as	 arithmetic	 in	 	 	 	 is	 ...)Z

There	 exist	 infinitely	 many	 prime	 knots,	 which	 fall	 in	 3	 families

✹	 (P,Q)	 torus	 knots

✹	 hyperbolic	 knots

✹	 satellite	 knots
(uncharted	 territory)

admits	 a	 complete	 hyperbolic	 metricS3 \K

Classification of knots

K



3. Introduction to knots

Knots	 are	 complicated	 (as	 much	 as	 arithmetic	 in	 	 	 	 is	 ...)Z

colored	 HOMFLY	 polynomial

✹	 distinguishing	 two	 knots

Hard	 algorithmic	 problems	 :

✹	 unknotting	 number

For	 any	 compact	 Lie	 group	 	 	 	 	 ,	 irreducible	 representation	 	 	 	 ,G R

construction	 of	 (computable)	 knot	 invariants	 to	 give	 partial	 answers−→

one	 can	 construct	 an	 invariant	 using	 representations	 of	 quantum	 groups

WK(G,R;q)
knot

K �−→ ∈ Z[q, q−1]

behaving	 nicely	 under	 geometric	 operations	 (gluings,	 cabling,	 ...)

Knot invariants



3. Introduction to knots

colored	 HOMFLY	 polynomial

For	 any	 compact	 Lie	 group	 	 	 	 	 ,	 irreducible	 representation	 	 	 	 ,G R

WK(G,R;q)
knot

K �−→ ∈ Z[q, q−1]

behaving	 nicely	 under	 geometric	 operations	 (gluings,	 cabling,	 ...)

G = SU(2) Jones	 polynomialR  =

R  = · · ·
(m	 -	 1)	 boxes

m-th	 colored	 Jones	 polynomial	 =JK,m(q)

but	 in	 general	 no	 closed	 formulas	 ...

one	 can	 construct	 an	 invariant	 using	 representations	 of	 quantum	 groups

Knot invariants

Junknot
m (q) =

qm − q−m

q − q−1

J8−knot
m (q) =

qm − q−m

q − q−1

�m−1�

k=0

(q2)k(1/q
2)k

�



3. Introduction to knots

t = N ln(q)

has	 nothing	 to	 do	 with	 the	 topic	 of	 this	 talk

Asymptotics of knot invariants

Enumeration	 of	 knots	 by	 matrix	 model	 techniques	 

For	 a	 given	 knot

Zinn-Justin,	 Zuber

K
WK(G,R;q) when

✹	 G = SU(N) N 

R = fixed	 Young	 tableau

→ ∞

fixed

(theory	 of	 LMO	 invariants)

we	 would	 like	 to	 compute	 the	 asymptotic	 expansion	 of	 

✹	 G = SU(2) m → ∞
fixedR  = · · ·

(m	 -	 1)	 boxes

q → 1q 

q → 1q 

u = m ln(q)



3. Introduction to knots

t = N ln(q)

Asymptotics of knot invariants

For	 a	 given	 knot K
WK(G,R;q) when

✹	 G = SU(N) N 

R = fixed	 Young	 tableau

→ ∞

fixed

(theory	 of	 LMO	 invariants)

we	 would	 like	 to	 compute	 the	 asymptotic	 expansion	 of	 

✹	 G = SU(2) m → ∞
fixedR  = · · ·

(m	 -	 1)	 boxes

q → 1q 

q → 1q 

u = m ln(q)

Theorem	 :	 for	 torus	 knots,	 by	 the4.

Conjecture	 :	 for	 hyperbolic	 knots,	 by	 the5.

topological recursion

topological recursion
with nodes



3. Introduction to knots Why should we care ?

✹	 G = SU(2) m → ∞

fixedR  = · · ·
(m	 -	 1)	 boxes

q → 1q 

u = m ln(q)

The	 interest	 about	 asymptotics	 of	 knot	 invariants	 started	 from

Volume	 conjecture Kashaev	 (98),	 H.	 Murakami	 (00)

If	 K	 is	 a	 hyperbolic	 knot,	 

Algebraic
construction

Geometric
information

−→

Klim
m→∞

2π

m
ln
��J ,m(q = e2iπ/m)

�� = Volume(S3 \K)K



3. Introduction to knots Why should we care ?

✹	 G = SU(2) m → ∞

fixedR  = · · ·
(m	 -	 1)	 boxes

q → 1q 

u = m ln(q)

The	 interest	 about	 asymptotics	 of	 knot	 invariants	 started	 from

Volume	 conjecture Kashaev	 (98),	 H.	 Murakami	 (00)

If	 K	 is	 a	 hyperbolic	 knot,	 

Other	 conjectures other	 values	 of	 	 	 	 	 and	 asymptotic	 expansion Gukov	 (04)

Zagier	 et	 al.	 (09)

Computation	 and	 unified	 understanding	 of	 those	 properties	 ?
Relation	 to	 other	 fields	 (counting	 surfaces	 ...)	 ?

u
arithmeticity,	 modularity,	 ...

Klim
m→∞

2π

m
ln
��J ,m(q = e2iπ/m)

�� = Volume(S3 \K)K



4  Torus knots and 

Definition, classification

Knot invariants
Asymptotics and why should we care ?

W(G,R)

(There	 is	 a	 pun	 hidden	 in	 this	 slide)



principal	 bundle	 overG

4. Torus knots and Chern-Simons theoryW(G,R)

WK(G,R;q)
can	 be	 computed	 as	 an	 observable	 in	 Chern-Simons	 theory	 in Witten	 (89)

=	 section	 of	 a	 

S3

A S3

CS	 theory	 =	 quantum	 field	 theory	 with	 measure

If	 	 	 	 	 is	 a	 loop	 in	 	 C

µ
�

dµCS[A] = DA exp
�
− 1

ln q

�
A ∧ dA+

2

3
A ∧A ∧A

��

Fact S3

holonomy	 of	 	 	 	 	 along	 	 	 	 	 	 ARTr
�

C
��

is	 a	 topological	 invariant

and	 coincides	 with	 WK(G,R;q)



G = SU(N)

4. Torus knots and The case of torus knotsW(G,R)

For	 torus	 knots,	 the	 path	 integral	 reduces	 to	 a	 finite	 dimensional	 integral	 !

(exact	 saddle	 point) Rozansky	 (98),	 Mariño	 (02),	 Beasley,	 Witten	 (07),	 Kállen	 (09)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	 

t = N ln(q)

W(SU(N),R;q)and	 the	 knot	 invariants	 are	 R

K = 

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi,λj)

=
µP,Q
N

�
Schur (eλ1 , . . . , eλN )

�

µP,Q
N [1]



4. Torus knots and The case of torus knotsW(G,R)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	 

W(SU(N),R;q)and	 the	 knot	 invariants	 are	 R

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi,λj)

=
µP,Q
N

�
Schur (eλ1 , . . . , eλN )

�

µP,Q
N [1]

SchurR

It	 is	 convenient	 to	 use	 another	 basis	 of	 symmetric	 functions

Wn(x1, . . . , xn) =
µP,Q
N

��n
i=1 Tr

dxi

xi−eM/PQ

�
c

µP,Q
N [1]

←→ power	 sums

and	 form	 a	 generating	 series	 of	 expectation	 values	 of	 power	 sums

M = diag(eλ1 , . . . , eλN )



There	 is	 an	 explicit	 formula	 for	 	 	 	 	 	 	 and	 

4. Torus knots and SU(N) at large NW(G,R)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	 

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi,λj)

Wn(x1, . . . , xn) =
µP,Q
N

��n
i=1 Tr

dxi

xi−eM/PQ

�
c

µP,Q
N [1]

We	 would	 like	 to	 compute

Theorem
prediction,	 check	 :	 Brini,	 Eynard,	 Mariño	 (11)
proof	 :	 GB,	 Eynard,	 Orantin	 (13)

There	 is	 a	 large	 N	 expansion✹	 Wn =
�

g≥0 N
2−2g−n W g

n

Assume	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 fixed	 t = N ln q > 0

✹	 

W g
n have	 1-cut	 	 	 	 	 	 	 ,	 and	 are	 computed	 by	 the	 topological	 recursion	 [a, b]✹	 

W 0
1 W 0

2



=

Reminder: topological recursion 

z1

z2

zn
ωg
n(z1, . . . , zn) =

the	 involution	 

z ∈ U

ι
ι

ι
ιι ι

ι

It	 can	 be	 computed	 by	 a	 recursion	 of	 topological	 nature.

z1

z2

zn

Res
z→α,β

− 1
2

� z
ι(z) ω

0
2(·, z2)

ω0
1(z)− ω0

1(ι(z))
· · ·

z

ι(z)

z1 · · ·

g

g

z2

zn
z

ι(z)

z1 g − 1= +
z

ι(z)

z1

zj , j ∈ J

zj , j /∈ J

h

g − h

�

J,h
disks	 excluded



4. Torus knots and Torus knots: conclusionW(G,R)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	 

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi,λj)

Wn(x1, . . . , xn) =
µP,Q
N

��n
i=1 Tr

dxi

xi−eM/PQ

�
c

µP,Q
N [1]

We	 would	 like	 to	 compute

This	 model	 is	 a	 special	 case	 of
the	 matrix	 model	 enumerating	 maps	 with	 tubes

??any	 explanation

Cannot	 be	 generalized	 yet	 to	 hyperbolic	 knots	 ...

✹	 

✹	 

(no	 finite-dimensional	 reduction	 of	 CS	 theory)



5  Hyperbolic knots and

Definition, classification

Knot invariants
Asymptotics and why should we care ?

W(G,R)



5. Hyperbolic knots and Generalized vol. conjectureW(G,R)

✹	 G = SU(2) m 
R  = · · ·

(m	 -	 1)	 boxes

q → 1q 

u = m ln(q)

The	 interest	 about	 asymptotics	 of	 knot	 invariants	 started	 from

Volume	 conjecture Kashaev	 (98),	 H.	 Murakami	 (00)

If	 K	 is	 a	 hyperbolic	 knot,	 Klim
m→∞

2π

m
ln
��J ,m(q = e2iπ/m)

�� = Volume(S3 \K)K

→ ∞
	 	 fixed



✹	 G = SU(2) m → ∞
	 	 fixedR  = · · ·

(m	 -	 1)	 boxes

q → 1q 

u = m ln(q)

The	 interest	 about	 asymptotics	 of	 knot	 invariants	 started	 from

Generalized	 ... Gukov	 (04)

If	 K	 is	 a	 hyperbolic	 knot,	 

K

with	 
1

2π
Re[uS−1(u)] = Volumeu(S3 \K)K

There	 are	 several	 methods	 to	 compute Sk(u)

5. Hyperbolic knots and Generalized vol. conjectureW(G,R)

I	 will	 present	 a	 conjectural	 one	 involving	 topological	 recursion

J ,m(q) = (ln q)∆/2 exp
� �

k≥−1

(ln q)k Sk(u) + o(ln q)∞
�



5. Hyperbolic knots and Graph with nodesW(G,R)

−→ g

initial	 data output

n, g ≥ 0
( (ωg

n =

ω0
1 =

ω0
2 =

Topological	 recursion	 :



vertices	 of	 type	 1	 	 are	 n-valent

5. Hyperbolic knots and Graphs with nodesW(G,R)

Definition

A	 graph	 with	 nodes is	 a	 abstract	 graph	 with	 external	 legs

g

vertices	 of	 type	 2	 (nodes)

with	 

carry	 an	 integer	 label	 g	 	 	 

(n ≥ 1)

χ = 2g − 2 + n > 0

edges	 :	 type	 1	 	 	 	 	 	 	 	 type	 2	 

external	 legs	 :	 	 type	 1	 

✹	 

✹	 
Example



g

5. Hyperbolic knots and Graphs with nodesW(G,R)

We	 assign	 the	 following	 weight	 to	 a	 graph	 with	 nodes	 	 

Choose	 a	 spectral	 curve	 and	 an	 initial	 data

topological	 recursion

on	 the	 spectral	 curve

z ω0
2(z1, z2) =

z1
z2

ω0
1(z) =

−→ ωg
n(z1, . . . , zn) =

zn

z1

Choose	 a	 path	 	 	 	 Γ
Choose	 a	 cycle	 	 	 	 	 B

assing	 a	 variable	 	 	 	 to	 each	 edge	 z

local	 weight	 for	 a	 n-valent	 vertex	 of	 type	 1	 
g

zn

z1

local	 weight	 for	 a	 n-valent	 vertex	 of	 type	 2

(ln q)2g−2+n

ρn

for	 external	 legs,	 integrate	 z ∈ Γ

for	 edges,	 integrate	 z ∈ B

include	 the	 symmetry	 factor

Choose	 numbers (ρn)n

✹	 

✹	 

✹	 

✹	 

✹	 

✹	 



5. Hyperbolic knots and Graphs with nodesW(G,R)

Example

z1 ∈ Γ

z2 ∈ Γ

z3 ∈ Γ

z4 ∈ B

z5 ∈ B

z6
∈ B

z7 ∈ Bz 8
∈ B

ln q

(ln q)2

(ln q)8

ω1
1

ω0
4ρ3

ρ2

ρ1

weight	 = (ln q)11ρ1ρ2ρ3
��

B
ω1
1

��1
4

�

B

�

B

�

Γ

�

Γ
ω0
4

��1
6

�

B

�

B

�

B

�

Γ
ω3
4

�

z9 ∈ B
ω3
4



We	 define	 the	 wave	 function	 as	 a	 generating	 series	 in	 

ψ(ln q ; ω0
1 ,ω

0
2 ,Γ,B, (ρn)n)

= exp
� 1

ln q

�

Γ
ω0
1 +

1

2

�

Γ

�

Γ
ω0
2 +

�
weight

�
connected graphs

with nodes

��

5. Hyperbolic knots and Graphs with nodesW(G,R)

1

2
1

ln q +

1

6
(ln q)( 1

2
+

1

2
+ ({= exp

1

6
+ + {

+O(ln q)2

ln q

Topological	 recursion	 with	 nodes



K

K

K

To	 any	 knot	 	 	 	 ,	 one	 can	 associate	 a	 spectral	 curve	 

5. Hyperbolic knots and A-polynomial curveW(G,R)

K

C =
�
SL2(C) representations of π1(S3\ )

�

=
�
(x, y) ∈ C2, A (ex, ey) = 0

�
K

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 is	 the	 A-polynomial	 of	 A ∈ Z[X,Y ] K Cooper,	 Culler,	 Gillet,	 Long,	 Shalen	 (94)

meridian e±x

e±y
longitude

We	 choose	 the	 initial	 data

z

ω0
2(z1, z2) =

z1
z2

ω0
1(z) = = y(z)dx(z)

= dz1dz2(Green function(z1, z2) on C)

�



	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 is	 the	 A-polynomial	 of	 K

5. Hyperbolic knots and Asymptotics of colored JonesW(G,R)

K

C =
�
SL2(C) representations of π1(S3\ )

�
K

A ∈ Z[X,Y ] K

meridian e±x

e±y
longitude

z

ω0
2(z1, z2) =

z1
z2

ω0
1(z) = = y(z)dx(z)

= dz1dz2(Green function(z1, z2) on C)

K=
�
(x, y) ∈ C2, A (ex, ey) = 0

�

To	 any	 knot	 	 	 	 ,	 one	 can	 associate	 a	 spectral	 curve	 

We	 choose	 a	 path	 so	 that	 

Conjecture Dijkgraaf,	 Fuji,	 Manabe	 (09),	 corrected	 by	 GB,	 Eynard	 (12)

For	 suitable	 	 	 	 and	 node	 weights	 m → ∞
fixed

q → 1q 

u = m ln(q)

�
Γ(u) =

� x=u
+
� x=−u

ψ(ln q ; ω0
1 ,ω

0
2 ,Γ(u),B, (ρn)n)

B (ρn)n

K
�
Jm, (q)

�2 ∼

K

K)



K

K

5. Hyperbolic knots and RemarksW(G,R)

Conjecture Dijkgraaf,	 Fuji,	 Manabe	 (09),	 corrected	 by	 B.,	 Eynard	 (12)

For	 suitable	 	 	 	 and	 node	 weights	 m → ∞
fixed

q → 1q 

u = m ln(q)ψ(ln q ; ω0
1 ,ω

0
2 ,Γ(u),B, (ρn)n)

B (ρn)n

1

2

1

ln q

+

1

6
(ln q)( 1

2
+

1

2
+ ({= exp

1

6
+ + {

+O(ln q)2

=
1

ln q

�� x=u

+

� x=−u

ydx
�
=

m

2π
Volumeu(S3\ ) Neumann,	 Zagier	 (85)

Yoshida	 (85)

1

ln q

In	 agreement	 with	 the	 volume	 conjecture	 since	 it	 is	 known	 that

�
Jm, (q)

�2 ∼

for	 hyperbolic	 knotsgenus(C) > 0 −→

✹	 

✹	 nodes	 are	 necessary



Consider	 the	 3	 Jacobi	 theta	 series	 in	 

5. Hyperbolic knots and Example : 8-knotW(G,R)

A (X,Y ) = Y 2X4 + Y (−X8 +X6 + 2X4 +X2 − 1)Y +X4

X = ex, Y = ey

is	 	 	 	 to	 an	 elliptic	 curve� 1

τ
C

C/(Z+ τZ)
The	 curve	 A(ex, ey) = 0

Here	 is	 the	 recipe	 for	 the	 node	 weights	 ...

ϑ2(Q) =
�

k∈Z(−1)kQk2/2

ϑ3(Q) =
�

k∈Z Q
k2/2

ϑ4(Q) =
�

k∈Z Q
(k+1/2)2/2

Q = e2iπτ

B
0

(−8π2Q∂Q)�ϑ•
ϑ•

= P�(ϑ
4
2(Q),ϑ4

3(Q), E2(Q))It	 is	 known	 that	 where	 	 	 	 	 is	 a	 polynomialP�

{
P�(ϑ

4
2(Q),ϑ4

3(Q), 0)Let	 us	 compute	 for	 

(=	 algebraic	 numbers	 because	 A	 has	 	 	 	 -coefficients)Z



5. Hyperbolic knots and Example : 8-knotW(G,R)

A (X,Y ) = Y 2X4 + Y (−X8 +X6 + 2X4 +X2 − 1)Y +X4

X = ex, Y = ey

is	 	 	 	 to	 an	 elliptic	 curve� 1

τ
C

C/(Z+ τZ)
The	 curve	 A(ex, ey) = 0

Here	 is	 the	 recipe	 for	 the	 node	 weights	 ...

B
0

−7+3i
√
15

24
−7−3i

√
15

24
7
12

47+21i
√
15

96
47−21i

√
15

96 − 47
48

−665+9i
√
15

1152
−665−9i

√
15

1152 − 301
576

Dϑj/ϑj

��
E2≡0

D2ϑj/ϑj

��
E2≡0

D3ϑj/ϑj

��
E2≡0

j = 2, 3, 4 up	 to	 permutationD = −8π2 Q∂Q

=�ρn
�

(Ji)i partition of n

�

i

ρ|Ji| and

�ρ2n+1 = 0

�ρ2n =
(−8π2Q∂Q)nϑ•

ϑ•
(Q = e2iπτ )

���
E2≡0

ρ4 = −2

�ρ2n

ρ6 = − 511
576

ρ2 = 7
12

ρ2n+1 = 0

· · ·



5. Hyperbolic knots and Example : 8-knotW(G,R)

For	 the	 8-knot,	 we	 predict	 from	 topological	 recursion	 with	 nodes

Asymptotics	 of	 the	 colored	 Jones	 polynomial

e32u − 4e30u − 128e28u + 36e26u + 1074e24u − 5630e22u

+5782e20u + 7484e18u − 18311e16u + 7484e14u + 5782e12u

+1074e8u + 36e6u − 128e4u − 4e2u + 1

S1(u) = − 1

24σ3/2(eu)
(e12u − e10u − 2e8u + 15e6u − 2e4u − e2u + 1)

S2(u) =
1

σ3(eu)
(e12u − e10u − 2e8u + 5e6u − 2e4u − e2u + 1)

S3(u) =
e4u

180σ9/2(eu) ( (
σ(X) = X8 − 2X6 −X4 − 2X2 + 1where

in	 agreement	 with	 earlier	 predictions	 of	 Dimofte,	 Gukov,	 Lenells,	 Zagier	 (09)

KJ ,m(q) = (ln q)∆/2 exp
� �

k≥−1

(ln q)k Sk(u) + o(ln q)∞
�



Conclusion

The	 same	 topological	 recursion	 allows	 to	 compute

generating	 series	 of	 maps	 with	 tubes	 of	 any	 topology

asymptotic	 expansion	 in	 matrix	 models

asymptotic	 expansion	 of	 knot	 invariants	 

t = N ln(q)
✹	 G = SU(N) N 

R = fixed	 Young	 tableau

→ ∞

fixed

✹	 G = SU(2) m → ∞

fixedR  =
(m	 -	 1)	 boxes

q → 1q

q → 1q
u = m ln(q)

There	 should	 be	 a	 unifying	 picture	 ...

Tutte	 eqns.

Schwinger-Dyson	 eqns.

???

torus	 knots

hyperbolic	 knots



2 questions for combinatorists

✹	 Bijection	 between	 maps	 behind	 the	 topological	 recursion	 ?

?

z1

z2

zn

g

z2

zn
z

ι(z)

z1 g − 1= +
z

ι(z)

z1

zj , j ∈ J

zj , j /∈ J

h

g − h

�

J,h

disks	 excluded

✹	 For	 maps,	 what	 would	 a	 topological	 recursion	 with	 nodes	 count	 

�


