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Part 1: the objects



Minimal factorizations of a full cycle — Cayley’s formula

e In the symmetric group S,, we consider factorizations of the full cycle
(1,2,...,n) into a product of (n — 1) transpositions

e Theorem [Cayley's formula] The number of such factorizations is
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e In the symmetric group S,, we consider factorizations of the full cycle
(1,2,...,n) into a product of (n — 1) transpositions
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e From a topological viewpoint, we are considering two restrictions:

- planar (~ factorizations of minimal length)
- one-face (~ factorizations of a full cycle)

e Let us keep the one-face condition but consider an arbitrary genus g > 0

hp.g = #{7‘17'2 e Tn—1+429 = (1,2,... ,n)} = ?

e Theorem [Shapiro-Shapiro-Vainshtein 1997| The generating
function of one-face Hurwitz numbers is ~———» Jackson 88
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n—1
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— at order 1, this is Cayley's formula.



Reflection groups (1)

e Let V be a complex vector space, n = dim¢ V.

A reflection is an element 7 € GL(V') such that ker(id — 7) is a hyperplane
and 7 has finite order. In other words 7 ~ Diag(1,1,...,1,() for ¢ a root
of unity.

e A complex reflection group is a finite subgroup of GL(V') generated by
reflections. We can always assume W C U(V') for some inner product.
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e Let V be a complex vector space, n = dim¢ V.

A reflection is an element 7 € GL(V') such that ker(id — 7) is a hyperplane
and 7 has finite order. In other words 7 ~ Diag(1,1,...,1,() for ¢ a root
of unity.

e A complex reflection group is a finite subgroup of GL(V') generated by
reflections. We can always assume W C U(V') for some inner product.

Examples

- permutation matrices: S,, C GL(C"™) generated by transpositions.
- finite Coxeter groups (same definition, but over R)
- complex reflection group G(r,p,n) C GL(C™) with r,p,n > 1 and p|r

0 ¢ 0 take an n X n permutation matrix
(2 0 (0 [|=—replace entries by r-th roots of unity
0 0 ¢° product of all entries is an r/p-th root of unity.



Reflection groups (I1)

o If W C GL(V) is irreducible (=no stable subspace) then dim V' is called
its rank. If W is irreducible and is generated by dim V reflections then it is

well-generated.
- S,, € GL(C") is not irreducible since Vo = {) . x; = 0} is stable.

- S,, € GL(V}) is irreducible. It has rank (n — 1). It is well-generated, take
si=@1+1)forl <i<n.



Reflection groups (I1)
o If W C GL(V) is irreducible (=no stable subspace) then dim V' is called

its rank. If W is irreducible and is generated by dim V reflections then it is
well-generated.

- S,, € GL(C") is not irreducible since Vo = {) . x; = 0} is stable.

- S,, € GL(V}) is irreducible. It has rank (n — 1). It is well-generated, take
s;i=(i+1)forl <i<n.

o If W is irreducible and well-generated there is a notion of Coxeter

element that plays the same role as the full cycle for the symmetric group.

In general: it is an element having an eigenvalue ( a primitive d-th root of
unity with d as large as possible.

For real groups, it is the product (in any order) of the (n — 1) generators.

The Coxeter number, h, is the order of the Coxeter element.



Deligne’s formula

e Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible
well-generated complex reflection group of rank n. Then the number of
factorizations of a Coxeter element into a product of n reflections is
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Deligne’s formula

e Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible
well-generated complex reflection group of rank n. Then the number of
factorizations of a Coxeter element into a product of n reflections is

n!
——h".
W

#{7'17'2 ...T, = COX. element} =

e Translation for the symmetric group S,,.

- cox. element = full cycle; its order h = m
- reflection = transposition
-rankn=m—1

D e _ ,
> (mm, Lym=1 — m™=2 Cayley's formula!




Our result — “higher genus” factorizations in w.g.c.r.g.

e Theorem [C.-Stump] Let W be an irreducible well-generated complex
reflection group of rank n. Consider factorizations of a Coxeter element c
into reflections and let

hy = #{7172 ...Ty = ¢ Where 7; are reflections}

Then the generating function is nice:
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Our result — “higher genus” factorizations in w.g.c.r.g.

e Theorem [C.-Stump] Let W be an irreducible well-generated complex
reflection group of rank n. Consider factorizations of a Coxeter element c
into reflections and let

hy = #{7172 ...Ty = ¢ Where 7; are reflections}

Then the generating function is nice:

tﬁ 1 '/ B!’ n
Q 0t W
>0
e Parameters: %’ _ #reflenctlons and %” _ #reflection nhyperplanes
e Known that ’;’ s h; — h Coxeter number — Deligne’s formula at ¢ ~ 0

e For real groups h' = h" = h (e.g. Shapiro-Shapiro-Vainshtein for S,,,).



Part 2: group characters



Counting factorizations in groups (1)

e Let R = {reflections} and ¢ = Coxeter element.
Let hy = #{7‘17'2 ...Ty = c Where 71; € R}

e Lemma [the Frobenius formula] Let xx, A € A be the list of all
irreducible characters of W. Then one has:

1 : X (1) ‘ —1
he = —= (dim \) | = xalc 7). where
Wi ( ) XA(R) =2 e Xa(T).




Counting factorizations in groups (1)
o Let R = {reflections} and ¢ = Coxeter element.
Let hy = #{7‘17'2 ...Tp = c Where 7; € R}

e Lemma [the Frobenius formula] Let xx, A € A be the list of all
irreducible characters of W. Then one has:

1 : X (1) ‘ —1
he = —= (dim \) | = xalc 7). where
W] ( ) XA(R) == ) er XA(T).

e Sketch of a proof: Consider the group algebra C[WW].
Then hy = coeff. of 1 in (Rec_l) where R = Z T

{\W| ifo=1
g =

1 0 —1
Ty (R ¢ ) ince if o € W, then T
SINCE IT O €n LIciw] 0if o # 1

W

Now use: - the (classical) decomposition of C[W] as C[W| = @(dim VA)VA
AEA

- the fact that R is central and therefore acts as a scalar on each V.
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Counting factorizations in groups (11)

Immediate consequence of the Frobenius formula:

e Proposition For a given group W, our generating function is a finite sum:

_ X (&)
Fy (t) :== g' ]W\ Z (dim A)xa(c™t) exp (dim)\ t)
>0 AEA

e Now you can prove the main theorem for your favorite fixed group, e.g.
the group W = W (&).

- plug your computer in
- ask for the character table of Ejg
- compute the sum (many terms...)

Fry(t) = gy (e +28 71059 .. )

- ask your computer to factor it... it works!

_ 8
FEg(t) _ “58' (61575 —e 15t) .




Part 3: Classification
...and case-by-case proof



Classification and proof strategy

e Theorem|Sheppard, Todd, 54] Let W be an irreducible complex
reflection group. Then W is (isomorphic to) either:

- the symmetric group S,, C GL(V})
- G(r,p,n) for some integer r > 2, p,n > 1 with p|r.
- one of 34 exceptional groups

e Well-generated: S,,, G(r,1,n) and G(r,r,n) + 26 exceptional groups.
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Example of S,, (what is so special about the Coxeter element ?) — 2

1

e We have F(t) = W Z(dim Mxa(c™h) exp (ﬁi‘éﬁ\) -t)
AEA

1 n—1 | B k R
— W > (dimby)x, (¢71) exp (Efl)ﬂl(bk) .t>

. k=0

RA
HEEEE




Example of S,, (what is so special about the Coxeter element ?) — 2

e We have F(t) = % Z(dim Mxalc™ ) exp (XA(R) t)

W = dim A
f: 1
| | S —1 X, (1)
\ | k=0
< — >
f)k = hook
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Other infinite families — G(r,1,n) and G(r,r,n)

e \We need some combinatorial representation theory for these groups

e GG(r,1,n) — standard [MacDonald, Serre...]
r-tuples

e G(r,r,n) — algebraically: “easy” exercise in representation theory

combinatorially: a bit messy so not really done anywhere...

r-cycles

e In both cases: - there are only O(r?n) characters to consider
- we can (meticulously...) compute all the pieces

- at the end, Newton's formula collects the pieces!

e Conclusion: The formulas are nice but we don't UNDERSTAND them!
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These results deal with refinements of the planar case (=trees for S,,)
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e Hope: the rep-theoretic approach could lead to classification-free proofs
e Why? because | hope that the non-vanishing characters have a nice
geometric description... we just have to find it!
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- there exist many formulas in map enumeration, that correspond to

different factorization problems in S,,. Which ones can be generalized to
reflection groups 7

- Topological interpretation of factorizations in reflection groups?

eAlgebraic combinatorics viewpoint: We end up with a nice formula
but a classification dependent proof...
This is a general phenomenon in this context!

- Deligne’s formula still has no classification-free proof

- vast litterature in algebraic combinatorics on non-crossing partitions
|[Armstong, Bessis-Reiner, Krattenthaler-Muller...]

These results deal with refinements of the planar case (=trees for S,,)
None of them has a classification-free proof

e Hone: the ren-theoretic annroach could lead to classification-free proofs

e Why? because | hope that the non-vanishing characters have a nice
geometric description... we just have to find it!
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