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Part 1: the objects



Minimal factorizations of a full cycle – Cayley’s formula

• In the symmetric group Sn we consider factorizations of the full cycle
(1, 2, . . . , n) into a product of (n− 1) transpositions

• Theorem [Cayley’s formula] The number of such factorizations is

#
{
τ1τ2 . . . τn−1 = (1, 2, . . . , n)

}
= nn−2
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• From a topological viewpoint, we are considering two restrictions:
- planar (∼ factorizations of minimal length)
- one-face (∼ factorizations of a full cycle)

• Let us keep the one-face condition but consider an arbitrary genus g ≥ 0

hn,g = #
{
τ1τ2 . . . τn−1+2g = (1, 2, . . . , n)

}
= ?

• Theorem [Shapiro-Shapiro-Vainshtein 1997] The generating
function of one-face Hurwitz numbers is

F (t) =
∑
g≥0

tn−1+2g

(n− 1 + 2g)!
hn,g =

1

n!
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2

)n−1

.
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}
= ?

• Theorem [Shapiro-Shapiro-Vainshtein 1997] The generating
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F (t) =
∑
g≥0

tn−1+2g

(n− 1 + 2g)!
hn,g =

1

n!

(
e

nt
2 − e−nt

2

)n−1

.

∼ 1
n! (tn)n−1 = tn−1

(n−1)!n
n−2

→ at order 1, this is Cayley’s formula.

︸ ︷︷ ︸
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Reflection groups (I)

• Let V be a complex vector space, n = dimC V .

A reflection is an element τ ∈ GL(V ) such that ker(id− τ) is a hyperplane
and τ has finite order. In other words τ ≈ Diag(1, 1, . . . , 1, ζ) for ζ a root
of unity.

• A complex reflection group is a finite subgroup of GL(V ) generated by
reflections. We can always assume W ⊂ U(V ) for some inner product.
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and τ has finite order. In other words τ ≈ Diag(1, 1, . . . , 1, ζ) for ζ a root
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Examples

- permutation matrices: Sn ⊂ GL(Cn) generated by transpositions.

- finite Coxeter groups (same definition, but over R)

- complex reflection group G(r, 1, n) ⊂ GL(Cn) with r, n ≥ 1

take an n× n permutation matrix
replace entries by r-th roots of unity

 0 ζ 0
ζ2 0 0
0 0 ζ5


- complex reflection group G(r, p, n) ⊂ GL(Cn) with r, p, n ≥ 1 and p|r

take an n× n permutation matrix
replace entries by r-th roots of unity
product of all entries is an r/p-th root of unity.

 0 ζ 0
ζ2 0 0
0 0 ζ5





Reflection groups (II)

- Sn ⊂ GL(Cn) is not irreducible since V0 = {
∑
i xi = 0} is stable.

- Sn ⊂ GL(V0) is irreducible. It has rank (n− 1). It is well-generated, take
si = (i i+ 1) for 1 ≤ i < n.

• If W ⊂ GL(V ) is irreducible (=no stable subspace) then dimV is called
its rank. If W is irreducible and is generated by dimV reflections then it is
well-generated.
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∑
i xi = 0} is stable.

- Sn ⊂ GL(V0) is irreducible. It has rank (n− 1). It is well-generated, take
si = (i i+ 1) for 1 ≤ i < n.

• If W ⊂ GL(V ) is irreducible (=no stable subspace) then dimV is called
its rank. If W is irreducible and is generated by dimV reflections then it is
well-generated.

• If W is irreducible and well-generated there is a notion of Coxeter
element that plays the same role as the full cycle for the symmetric group.

The Coxeter number, h, is the order of the Coxeter element.

For real groups, it is the product (in any order) of the (n− 1) generators.

In general: it is an element having an eigenvalue ζ a primitive d-th root of
unity with d as large as possible.



Deligne’s formula

• Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible
well-generated complex reflection group of rank n. Then the number of
factorizations of a Coxeter element into a product of n reflections is

#
{
τ1τ2 . . . τn = cox. element

}
=

n!

|W |
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Deligne’s formula

• Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible
well-generated complex reflection group of rank n. Then the number of
factorizations of a Coxeter element into a product of n reflections is

#
{
τ1τ2 . . . τn = cox. element

}
=

n!

|W |
hn.

• Translation for the symmetric group Sm.

- cox. element = full cycle; its order h = m
- reflection = transposition
- rank n = m− 1

→ (m−1)!
m! mm−1 = mm−2 Cayley’s formula!



Our result – “higher genus” factorizations in w.g.c.r.g.

• Theorem [C.-Stump] Let W be an irreducible well-generated complex
reflection group of rank n. Consider factorizations of a Coxeter element c
into reflections and let

F (t) =
∑
`≥0

t`

`!
h` =

1

|W |

(
e

h′
2 t − e−h′′

2 t
)n

.

h` = #
{
τ1τ2 . . . τ` = c where τi are reflections

}
Then the generating function is nice:

• Parameters: h′

2 = #reflections
n and h′′

2 =
#reflection hyperplanes

n
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• For real groups h′ = h′′ = h (e.g. Shapiro-Shapiro-Vainshtein for Sm).



Part 2: group characters



Counting factorizations in groups (I)

Let h` = #
{
τ1τ2 . . . τ` = c where τi ∈ R

}• Let R = {reflections} and c = Coxeter element.

• Lemma [the Frobenius formula] Let χλ, λ ∈ Λ be the list of all
irreducible characters of W . Then one has:

h` =
1

|W |
∑
λ∈Λ

(dimλ)

(
χλ(R)

dimλ

)`
χλ(c−1). where

χλ(R) :=
∑
τ∈R χλ(τ).



Counting factorizations in groups (I)

Let h` = #
{
τ1τ2 . . . τ` = c where τi ∈ R

}• Let R = {reflections} and c = Coxeter element.

• Lemma [the Frobenius formula] Let χλ, λ ∈ Λ be the list of all
irreducible characters of W . Then one has:

h` =
1

|W |
∑
λ∈Λ

(dimλ)

(
χλ(R)

dimλ

)`
χλ(c−1).

• Sketch of a proof: Consider the group algebra C[W ].

since if σ ∈W , then TrC[W ]σ =
|W | if σ = 1

0 if σ 6= 1

Then h` = coeff. of 1 in
(
R`c−1

)
=

1

|W |Tr
(
R`c−1

) {
where R =

∑
τ∈R

τ

Now use: - the (classical) decomposition of C[W ] as C[W ] =
⊕
λ∈Λ

(dimV λ)V λ

- the fact that R is central and therefore acts as a scalar on each V λ.

where
χλ(R) :=

∑
τ∈R χλ(τ).



Counting factorizations in groups (II)

• Proposition For a given group W , our generating function is a finite sum:

FW (t) :=
∑
`≥0

h`
`!

=
1

|W |
∑
λ∈Λ

(dimλ)χλ(c−1) exp

(
χλ(R)

dimλ
· t
)

Immediate consequence of the Frobenius formula:
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Counting factorizations in groups (II)

• Now you can prove the main theorem for your favorite fixed group, e.g.
the group W = W (E8).

• Proposition For a given group W , our generating function is a finite sum:

FW (t) :=
∑
`≥0

h`
`!

=
1

|W |
∑
λ∈Λ

(dimλ)χλ(c−1) exp

(
χλ(R)

dimλ
· t
)

- plug your computer in
- ask for the character table of E8

- compute the sum (many terms...)

- ask your computer to factor it... it works!

Immediate consequence of the Frobenius formula:

FE8
(t) = 1

|E8|
(
e15t − e−15t

)8
.

FE8
(t) = 1

|E8|
(
e102t + 28 e−1680t + . . . . . .

)



Part 3: Classification
...and case-by-case proof



Classification and proof strategy

• Theorem[Sheppard, Todd, 54] Let W be an irreducible complex
reflection group. Then W is (isomorphic to) either:

- G(r, p, n) for some integer r ≥ 2, p, n ≥ 1 with p|r.

- one of 34 exceptional groups

- the symmetric group Sn ⊂ GL(V0)

• Well-generated: Sn, G(r, 1, n) and G(r, r, n) + 26 exceptional groups.
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- G(r, p, n) for some integer r ≥ 2, p, n ≥ 1 with p|r.

- one of 34 exceptional groups

- the symmetric group Sn ⊂ GL(V0)
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Example of Sn (what is so special about the Coxeter element ?)

• We start from F (t) =
1

|W |
∑
λ∈Λ

(dimλ)χλ(c−1) exp

(
χλ(R)

dimλ
· t
)

Here Λ = {partitions of n} and c−1 = full cycle.
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1
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χλ(R)

dimλ
· t
)

Here Λ = {partitions of n} and c−1 = full cycle.

• Crucial fact: There are very few partitions λ such that χλ(c−1) 6= 0

Murnaghan-Nakayama rule

λ = [3, 3, 2, 1] and σ = (1, 3, 4)(2, 8, 9)(5, 7)(6)

χλ(σ) = (−1) + (−1) = (−2)

ribbon

strip
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Other infinite families – G(r, 1, n) and G(r, r, n)

• We need some combinatorial representation theory for these groups

• G(r, 1, n) → standard [MacDonald, Serre...]

• G(r, r, n) → algebraically: “easy” exercise in representation theory

combinatorially: a bit messy so not really done anywhere...

• In both cases: - there are only O(r2n) characters to consider

- we can (meticulously...) compute all the pieces

- at the end, Newton’s formula collects the pieces!

• Conclusion: The formulas are nice but we don’t UNDERSTAND them!

r-tuples of partitions of total size n

r-cycles of partitions of total size n∅

∅
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Thank you !


