Jucys-Murphy elements and Monotone Hurwitz Numbers

Mathieu Guay-Paquet

based on joint work with

Ian Goulden and Jonathan Novak

LaCIM, Université du Québec à Montréal

Journées Cartes June 20, 2013

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Application: unitary matrix integrals

Expectations of polynomials

Question

Given a uniformly random $d \times d$ unitary matrix and a fixed polynomial in its d^2 entries (and complex conjugates), what is the expected value?

$$U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix}$$

$$\int_{\mathbf{U}(3)} u_{11}^2 u_{23} \overline{u_{11}} (\overline{u_{21}} - \overline{u_{13}})^2 \, \mathrm{d}U = (?)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Reductions

The problem can be reduced to:

- monomials $u_{i_1j_1} \cdots u_{i_nj_n} \overline{u_{k_1\ell_1}} \cdots \overline{u_{k_m\ell_m}}$, by linearity;
- balanced (with m = n), by translation invariance.

$$U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A Wick's formula

(Collins 2003) and (Collins-Śniady 2006) showed that

Theorem

There is a function Wg_d : $S_n \to \mathbb{C}$ such that

$$\int_{\mathbf{U}(d)} u_{i_1 j_1} \cdots u_{i_n j_n} \overline{u_{\mathbf{k}_1 \ell_1}} \cdots \overline{u_{\mathbf{k}_m \ell_m}} \, \mathrm{d} U$$
$$= \sum_{\pi, \sigma \in S_n} \delta_{[\mathbf{i}=\pi(\mathbf{k})]} \delta_{[\mathbf{j}=\sigma(\ell)]} \, \mathrm{Wg}_d(\pi \sigma^{-1})$$

Also,

- only permutation correlators are needed;
- ► for fixed *d*, $Wg_d(\pi)$ only depends on the cycle type of π ;
- for fixed π , $Wg_d(\pi)$ is a rational function of *d*.

Weingarten in the group algebra

(Collins 2003) and (Collins-Śniady 2006) showed that

Theorem

In the group algebra of S_n over $\mathbb{C}(d)$,

$$\left(\sum_{\pi\in \mathcal{S}_n}\mathsf{Wg}_d(\pi)\cdot\pi\right)^{-1}=\left(\sum_{\pi\in \mathcal{S}_n}d^{\#\operatorname{cycles}(\pi)}\cdot\pi\right)\in\mathbb{C}(d)[\mathcal{S}_n].$$

In particular, $Wg_d(\pi)$ can be obtained by a computation in the center of the symmetric group algebra.

(日) (日) (日) (日) (日) (日) (日)

Tool: Jucys-Murphy elements

Jucys-Murphy elements

Introduced by (Jucys 1974) and (Murphy 1981) independently.

$$J_{1} = 0$$

$$J_{2} = (1 2)$$

$$J_{3} = (1 3) + (2 3)$$

$$J_{4} = (1 4) + (2 4) + (3 4)$$

$$\vdots$$

$$J_{n} = \sum_{k=1}^{n-1} (k n) \in \mathbb{C}[S_{n}]$$

They commute, but are not in the center.

Action on a Gelfand model

If
$$V^{\lambda}, \lambda \vdash n$$
 are irreducibles, then $\mathbb{C}[S_n] \cong \bigoplus_{\lambda \vdash n} \operatorname{End}_{\mathbb{C}}(V^{\lambda})$.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Signature of a factorization

Monomials in J_1, \ldots, J_n count products of transpositions:

$$J_2 J_5 J_4 J_5 = \sum_{\substack{a < 2, b < 5 \\ c < 4, d < 5}} (a2)(b5)(c4)(d5)$$

The coefficient of π in $J_2J_5J_4J_5$ is the number of factorizations of π with *signature* (2, 5, 4, 5). If the signature is weakly increasing, the factorization is called *monotone*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetric functions in Jucys-Murphy elements

Lemma

The elementary symmetric polynomials in J_1, \ldots, J_n are

$$egin{aligned} (1+J_1t)(1+J_2t)\cdots(1+J_nt)\ &=1+e_1(J)t+e_2(J)t^2+\cdots+e_n(J)t^n\ &=\sum_{\pi\in\mathcal{S}_n}t^{n-\#\operatorname{cycles}(\pi)}\cdot\pi \end{aligned}$$

Proof

Every permutation $\pi \in S_n$ has a unique strictly monotone factorization.

Corollary

All symmetric polynomials in J_1, \ldots, J_n are in the center of the symmetric group algebra.

Application to Weingarten function

(Matsumoto-Novak 2009) used Jucys-Murphy elements to get asymptotics for the Weingarten function:

$$\begin{split} \left(\sum_{\pi \in \mathcal{S}_n} \mathsf{Wg}_d(\pi) \cdot \pi\right) &= \left(\sum_{\pi \in \mathcal{S}_n} d^{\#\operatorname{cycles}(\pi)} \cdot \pi\right)^{-1} \\ &= \left((d+J_1)(d+J_2) \cdots (d+J_n)\right)^{-1} \\ &= d^{-n} \left(1 - \frac{h_1(J)}{d} + \frac{h_2(J)}{d^2} - \cdots\right) \end{split}$$

Complete symmetric polynomials:

$$h_k(J) = \sum_{b_1 \leq b_2 \leq \cdots \leq b_k} J_{b_1} J_{b_2} \cdots J_{b_k}.$$

・ロト・日本・日本・日本・日本・日本

Direction one: (monotone) Hurwitz theory

We can compute the complete symmetric polynomials $h_k(J)$ (so, the unitary matrix integrals) if we can count monotone factorizations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Evolution of a factorization

Components	Permutation	Factor	Type of factor
$\{1\}, \{2\}, \{3\}$	(1)(2)(3)		
		·(12)	Essential join
$\{1,2\},\{3\}$	(12)(3)		
		·(13)	Essential join
$\{1, 2, 3\}$	(132)	(0 , 0)	0.1
	(1,0)(0)	.(23)	Gut
{1,2,3}	(13)(2)	(0 , 0)	Podundant ioin
(1, 0, 0)	(120)	•(23)	Redundant join
{1,2,3}	(132)		

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Hurwitz numbers

Hurwitz numbers

The Hurwitz number $H^r(\lambda)$ counts the number of connected factorizations of length *r* of a fixed permutation of cycle type $\alpha \vdash n$.

Hurwitz generating function

$$\mathbf{H} = \sum_{r \ge 0} \sum_{n \ge 1} \sum_{\alpha \vdash n} H^r(\alpha) \frac{t^r}{r!} \frac{p_\alpha}{n!}$$

where $t, p_1, p_2, ...$ are indeterminates, r is the length, n is the ground set size, α is the cycle type.

Monotone Hurwitz numbers

Monotone Hurwitz numbers

The monotone Hurwitz number $\vec{H}^r(\lambda)$ counts the number of connected monotone factorizations of length *r* of a fixed permutation of cycle type $\alpha \vdash n$.

Monotone Hurwitz generating function

$$\vec{\mathbf{H}} = \sum_{r \ge 0} \sum_{n \ge 1} \sum_{\alpha \vdash n} \vec{H}^r(\alpha) t^r \frac{p_\alpha}{n!}$$

where $t, p_1, p_2, ...$ are indeterminates, r is the length, n is the ground set size, α is the cycle type.

(日) (日) (日) (日) (日) (日) (日)

Join-cut equations

Classical Hurwitz (Goulden-Jackson 1999)

$$\frac{\partial \mathbf{H}}{\partial t} = \frac{1}{2} \sum_{i,j \ge 1} \left((i+j) \mathbf{p}_i \mathbf{p}_j \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i+j}} + ij \mathbf{p}_{i+j} \frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_i \partial \mathbf{p}_j} + ij \mathbf{p}_{i+j} \frac{\partial \mathbf{H}}{\partial \mathbf{p}_i} \frac{\partial \mathbf{H}}{\partial \mathbf{p}_j} \right)$$

Monotone Hurwitz (Goulden-GP-Novak 2011)

$$\frac{\left(\sum_{k} \frac{k\rho_{k}\partial\vec{\mathbf{H}}}{\partial\rho_{k}}\right) - \rho_{1}}{t} = \sum_{i,j\geq 1} \left((i+j)\rho_{i}\rho_{j}\frac{\partial\vec{\mathbf{H}}}{\partial\rho_{i+j}} + ij\rho_{i+j}\frac{\partial^{2}\vec{\mathbf{H}}}{\partial\rho_{i}\partial\rho_{j}} + ij\rho_{i+j}\frac{\partial\vec{\mathbf{H}}}{\partial\rho_{i}}\frac{\partial\vec{\mathbf{H}}}{\partial\rho_{j}} \right)$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Hurwitz polynomiality

Theorem (Goulden-Jackson-Vakil 2001)

For each $(g, \ell) \notin \{(0, 1), (0, 2)\}$, there is a polynomial $P_{g,\ell}$ such that, for all partitions $\alpha \vdash n$ with ℓ parts,

$$H_{g}(\alpha) = \frac{n!}{|\operatorname{aut}(\alpha)|} (n + \ell + 2g - 2)! P_{g,\ell}(\alpha_1, \dots, \alpha_\ell) \prod_{i=1}^{\ell} \frac{\alpha_i^{\alpha_i}}{\alpha_i!}$$

Theorem (Ekedahl-Lando-Shapiro-Vainshtein 2001) The polynomials $P_{g,\ell}$ are given by

$$P_{g,\ell}(\alpha_1,\ldots,\alpha_\ell) = \int_{\overline{\mathcal{M}}_{g,\ell}} \frac{1-\lambda_1+\cdots+(-1)^g\lambda_g}{(1-\alpha_1\psi_1)\cdots(1-\alpha_\ell\psi_\ell)}$$

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

Monotone Hurwitz polynomiality

Theorem (Goulden-GP-Novak 2011)

For each $(g, \ell) \notin \{(0, 1), (0, 2)\}$, there is a polynomial $\vec{P}_{g,\ell}$ such that, for all partitions $\alpha \vdash n$ with ℓ parts,

$$\vec{H}_{g}(\alpha) = \frac{n!}{|\mathsf{aut}(\alpha)|} \vec{P}_{g,\ell}(\alpha_1, \dots, \alpha_\ell) \prod_{i=1}^{\ell} \binom{2\alpha_i}{\alpha_i}$$

Key steps

- 1. Guess and check the genus zero solution \vec{H}_0 .
- 2. Recursively solve the higher genus equation for \vec{H}_{g} .
- 3. Check that the form of \vec{H}_g is preserved when solving.

Open questions

- Is there an ELSV-type geometric formula for monotone Hurwitz numbers?
- Is there a purely algebraic proof for classical Hurwitz polynomiality?
- Is there a general transfer theorem to explain the parallels between classical and monotone Hurwitz theory?

(ロ) (同) (三) (三) (三) (三) (○) (○)

Direction two: symmetric functions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Surjectivity and injectivity

Jucys and Murphy each showed that the map

$$\mathrm{ev}_n \colon \Lambda_n \to \mathcal{Z}_n$$

 $f(x_1, \ldots, x_n) \mapsto f(J_1, \ldots, J_n)$

is surjective.

(Diaconis-Greene 1989) and (Corteel-Goupil-Schaeffer 2004) each showed that taken together, the maps are injective.

$$\mathsf{ev} \colon \Lambda o \prod_n \mathcal{Z}_n$$

 $f(x_1, x_2, \ldots) \mapsto f(J_1, J_2, \ldots)$

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

Uniform formulas

In \mathcal{Z}_6 , we have:

$$\begin{array}{l} C_{3111} \cdot C_{51} = 16 C_{2211} + 18 C_{3111} \\ \\ + 18 C_{33} + 16 C_{42} + 15 C_{51} \end{array}$$

In $\prod_n \mathcal{Z}_n$, we have:

$$\begin{split} \mathcal{K}_2 \cdot \mathcal{K}_4 &= (8n-32)\mathcal{K}_{11} + (3n^2 - 21n + 36)\mathcal{K}_2 \\ &+ 18\mathcal{K}_{22} + 16\mathcal{K}_{31} + (5n-15)\mathcal{K}_4 \\ &+ \mathcal{K}_{42} + 7\mathcal{K}_6 \end{split}$$

where, e.g., $K_{31} = C_{42} + C_{421} + C_{4211} + \cdots$ is a reduced conjugacy class.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

A bijection

Top terms of $m_{\lambda}(J)$ in terms of reduced classes K_{μ} computed by (Matsumoto-Novak 2009) using a bijection with parking functions.

Another bijection is with trees instead of parking functions:

Given an ordered forest, repeatedly give the rightmost root the biggest remaining label left from $\{1, 2, ..., n\}$. Then the edges give a minimal factorization into transpositions.

(日) (日) (日) (日) (日) (日) (日)

The reduced class basis

Corollary

A new proof that the reduced conjugacy classes give a basis of the symmetric functions $\Lambda(J) \subset \prod_n \mathbb{Z}_n$:

$$m_\lambda(J) = \mathcal{K}_\lambda + \sum_{\mu \succ \lambda} oldsymbol{c}_{\lambda,\,\mu} \cdot \mathcal{K}_\mu$$

$$\mathcal{K}_{\lambda} = \mathcal{m}_{\lambda}(J) + \sum_{\mu \prec \lambda} oldsymbol{c}^*_{\lambda,\,\mu} \cdot \mathcal{m}_{\mu}(J)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Other bases

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Open questions

- Are there nice bijections with trees for factorizations of all permutations, not just those with "non-crossing" cycles?
- Symmetric functions are graded. What are the homogeneous pieces of *K*_λ?
- Anything else about K_λ with respect to the other bases of Λ.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Direction three: sorting factorizations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Braid group action on factors

Braid group

$$B_{k} = \left\langle b_{1}, b_{2}, \dots, b_{k-1} \middle| \begin{array}{l} b_{i}b_{i+1}b_{i} = b_{i+1}b_{i}b_{i+1} \\ b_{i}b_{j} = b_{j}b_{i}, j \neq i \pm 1 \end{array} \right\rangle$$

Action on factors

 B_k acts on products of k transpositions, e.g.

$$(13)(24)(12)(37)(47) = (14)(237)$$

$$b_2: \qquad (13)(12)(14)(37)(47) = (14)(237)$$

$$b_2^{-1}: \qquad (13)(14)(24)(37)(47) = (14)(237)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Commutation of Jucys-Murphy elements

The idea of moving transpositions past other transpositions can be used to show the commutation of Jucys-Murphy elements, *e.g*, $J_3J_4J_2J_7J_7 = J_3J_2J_4J_7J_7$, if we are careful about the effect on the signature of a factorization:

Proposition (Biane 2002?)

If we let s_i act by applying either b_i , b_i^{-1} or id (according to the signature), we get an action of the symmetric group:

$$S_k = \left\langle s_1, s_2, \dots, s_{k-1} \left| egin{smallmatrix} s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \ s_i s_j = s_j s_i, \, j
eq i \pm 1 \ s_i^2 = \mathrm{id} \ \end{matrix}
ight
angle$$

Orbits under the symmetric action

Proposition (Biane 2002?)

If we let s_i act by applying either b_i , b_i^{-1} or id (according to the signature), we get an action of the symmetric group:

$$S_k = \left\langle s_1, s_2, \dots, s_{k-1} \left| egin{smallmatrix} s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \ s_i s_j = s_j s_i, \ j
eq i \pm 1 \ s_i^2 = \mathrm{id} \end{matrix}
ight
angle$$

(日) (日) (日) (日) (日) (日) (日)

Fact

Each orbit of this action contains exactly one monotone factorization.

Open question

Can this be used to give nicer proofs?

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●