
Jucys-Murphy elements and
Monotone Hurwitz Numbers

Mathieu Guay-Paquet

based on joint work with

Ian Goulden and Jonathan Novak

LaCIM, Université du Québec à Montréal

Journées Cartes
June 20, 2013



Application: unitary matrix integrals



Expectations of polynomials

Question
Given a uniformly random d × d unitary matrix and a fixed
polynomial in its d2 entries (and complex conjugates), what is
the expected value?

U =

u11 u12 u13
u21 u22 u23
u31 u32 u33


∫

U(3)
u2

11u23u11(u21 − u13)2 dU = (?)



Reductions

The problem can be reduced to:
I monomials ui1j1 · · · uin jnuk1`1 · · · ukm`m , by linearity;
I balanced (with m = n), by translation invariance.

U =

u11 u12 u13
u21 u22 u23
u31 u32 u33





A Wick’s formula

(Collins 2003) and (Collins-Śniady 2006) showed that

Theorem
There is a function Wgd : Sn → C such that∫

U(d)
ui1j1 · · · uin jnuk1`1 · · · ukm`m dU

=
∑

π,σ∈Sn

δ[i=π(k)]δ[j=σ(`)] Wgd (πσ−1)

Also,
I only permutation correlators are needed;
I for fixed d , Wgd (π) only depends on the cycle type of π;
I for fixed π, Wgd (π) is a rational function of d .



Weingarten in the group algebra

(Collins 2003) and (Collins-Śniady 2006) showed that

Theorem
In the group algebra of Sn over C(d),∑

π∈Sn

Wgd (π) · π

−1

=

∑
π∈Sn

d# cycles(π) · π

 ∈ C(d)[Sn].

In particular, Wgd (π) can be obtained by a computation in the
center of the symmetric group algebra.



Tool: Jucys-Murphy elements



Jucys-Murphy elements

Introduced by (Jucys 1974) and (Murphy 1981) independently.

J1 = 0
J2 = (1 2)

J3 = (1 3) + (2 3)

J4 = (1 4) + (2 4) + (3 4)

...

Jn =
n−1∑
k=1

(k n) ∈ C[Sn]

They commute, but are not in the center.



Action on a Gelfand model

If Vλ, λ ` n are irreducibles, then C[Sn] ∼=
⊕
λ`n

EndC(Vλ).

Z4 GZ4 = C[J1, . . . , J4] C[S4]
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∗


dimZ4 =

∑
λ`4

1 dim GZ4 =
∑
λ`4

f λ dimC[S4] =
∑
λ`4

(
f λ
)2



Signature of a factorization

Monomials in J1, . . . , Jn count products of transpositions:

J2J5J4J5 =
∑

a<2, b<5
c<4, d<5

(a 2)(b 5)(c 4)(d 5)

The coefficient of π in J2J5J4J5 is the number of factorizations
of π with signature (2,5,4,5). If the signature is weakly
increasing, the factorization is called monotone.



Symmetric functions in Jucys-Murphy elements

Lemma
The elementary symmetric polynomials in J1, . . . , Jn are

(1 + J1t)(1 + J2t) · · · (1 + Jnt)

= 1 + e1(J)t + e2(J)t2 + · · ·+ en(J)tn

=
∑
π∈Sn

tn−# cycles(π) · π

Proof
Every permutation π ∈ Sn has a unique strictly monotone
factorization.

Corollary
All symmetric polynomials in J1, . . . , Jn are in the center of the
symmetric group algebra.



Application to Weingarten function
(Matsumoto-Novak 2009) used Jucys-Murphy elements to get
asymptotics for the Weingarten function:

∑
π∈Sn

Wgd (π) · π

 =

∑
π∈Sn

d# cycles(π) · π

−1

=
(
(d + J1)(d + J2) · · · (d + Jn)

)−1

= d−n
(

1− h1(J)

d
+

h2(J)

d2 − · · ·
)

Complete symmetric polynomials:

hk (J) =
∑

b1≤b2≤···≤bk

Jb1Jb2 · · · Jbk .



Direction one: (monotone) Hurwitz theory



Goal

We can compute the complete symmetric polynomials hk (J)
(so, the unitary matrix integrals) if we can count monotone
factorizations.



Evolution of a factorization

Components Permutation Factor Type of factor
{1}, {2}, {3} (1)(2)(3)

·(1 2) Essential join
{1,2}, {3} (1 2)(3)

·(1 3) Essential join
{1,2,3} (1 3 2)

·(2 3) Cut
{1,2,3} (1 3)(2)

·(2 3) Redundant join
{1,2,3} (1 3 2)



Hurwitz numbers

Hurwitz numbers
The Hurwitz number H r (λ) counts the number of connected
factorizations of length r of a fixed permutation of cycle type
α ` n.

Hurwitz generating function

H =
∑
r≥0

∑
n≥1

∑
α`n

H r (α)
t r

r !

pα
n!

where t ,p1,p2, . . . are indeterminates, r is the length, n is the
ground set size, α is the cycle type.



Monotone Hurwitz numbers

Monotone Hurwitz numbers
The monotone Hurwitz number ~H r (λ) counts the number of
connected monotone factorizations of length r of a fixed
permutation of cycle type α ` n.

Monotone Hurwitz generating function

~H =
∑
r≥0

∑
n≥1

∑
α`n

~H r (α)t r pα
n!

where t ,p1,p2, . . . are indeterminates, r is the length, n is the
ground set size, α is the cycle type.



Join-cut equations

Classical Hurwitz (Goulden-Jackson 1999)

∂H
∂t

=
1
2

∑
i,j≥1

(
(i + j)pipj

∂H
∂pi+j

+ ijpi+j
∂2H
∂pi∂pj

+ ijpi+j
∂H
∂pi

∂H
∂pj

)

Monotone Hurwitz (Goulden-GP-Novak 2011)

(∑
k

kpk∂
~H

∂pk

)
−p1

t
=
∑
i,j≥1

(
(i + j)pipj

∂~H
∂pi+j

+ ijpi+j
∂2~H
∂pi∂pj

+ ijpi+j
∂~H
∂pi

∂~H
∂pj

)



Hurwitz polynomiality

Theorem (Goulden-Jackson-Vakil 2001)
For each (g, `) /∈ {(0,1), (0,2)}, there is a polynomial Pg,` such
that, for all partitions α ` n with ` parts,

Hg(α) =
n!

|aut(α)|
(n + `+ 2g − 2)!Pg,`(α1, . . . , α`)

∏̀
i=1

ααi
i
αi !

Theorem (Ekedahl-Lando-Shapiro-Vainshtein 2001)
The polynomials Pg,` are given by

Pg,`(α1, . . . , α`) =

∫
Mg,`

1− λ1 + · · ·+ (−1)gλg

(1− α1ψ1) · · · (1− α`ψ`)



Monotone Hurwitz polynomiality

Theorem (Goulden-GP-Novak 2011)
For each (g, `) /∈ {(0,1), (0,2)}, there is a polynomial ~Pg,` such
that, for all partitions α ` n with ` parts,

~Hg(α) =
n!

|aut(α)|
~Pg,`(α1, . . . , α`)

∏̀
i=1

(
2αi

αi

)

Key steps

1. Guess and check the genus zero solution ~H0.
2. Recursively solve the higher genus equation for ~Hg .

3. Check that the form of ~Hg is preserved when solving.



Open questions

I Is there an ELSV-type geometric formula for monotone
Hurwitz numbers?

I Is there a purely algebraic proof for classical Hurwitz
polynomiality?

I Is there a general transfer theorem to explain the parallels
between classical and monotone Hurwitz theory?



Direction two: symmetric functions



Surjectivity and injectivity

Jucys and Murphy each showed that the map

evn : Λn → Zn

f (x1, . . . , xn) 7→ f (J1, . . . , Jn)

is surjective.

(Diaconis-Greene 1989) and (Corteel-Goupil-Schaeffer 2004)
each showed that taken together, the maps are injective.

ev : Λ→
∏

n

Zn

f (x1, x2, . . .) 7→ f (J1, J2, . . .)



Uniform formulas

In Z6, we have:

C3111 · C51 = 16C2211 + 18C3111

+ 18C33 + 16C42 + 15C51

In
∏

n Zn, we have:

K2 · K4 = (8n − 32)K11 + (3n2 − 21n + 36)K2

+ 18K22 + 16K31 + (5n − 15)K4

+ K42 + 7K6

where, e.g., K31 = C42 + C421 + C4211 + · · · is a reduced
conjugacy class.



A bijection
Top terms of mλ(J) in terms of reduced classes Kµ computed
by (Matsumoto-Novak 2009) using a bijection with parking
functions.

Another bijection is with trees instead of parking functions:

Given an ordered forest, repeatedly give the rightmost root the
biggest remaining label left from {1,2, . . . ,n}. Then the edges
give a minimal factorization into transpositions.

(68)(78)︸ ︷︷ ︸
J2

8

(46)(56)︸ ︷︷ ︸
J2

6

(23)︸︷︷︸
J3

(12)︸︷︷︸
J2

= (123)(45678)

4

6

5

8

7

1

2

3
4

6

5

8
7 1

2

3



The reduced class basis

Corollary
A new proof that the reduced conjugacy classes give a basis of
the symmetric functions Λ(J) ⊂

∏
n Zn:

mλ(J) = Kλ +
∑
µ�λ

cλ, µ · Kµ

Kλ = mλ(J) +
∑
µ≺λ

c∗λ, µ ·mµ(J)



Other bases

[Kλ]eµ(J)

[Kλ]fµ(J)

[Kλ]hµ(J)

[Kλ]mµ(J)

[Kλ]sµ(J)

[Kλ]pµ(J)



Open questions

I Are there nice bijections with trees for factorizations of all
permutations, not just those with “non-crossing” cycles?

I Symmetric functions are graded. What are the
homogeneous pieces of Kλ?

I Anything else about Kλ with respect to the other bases of
Λ.



Direction three: sorting factorizations



Braid group action on factors

Braid group

Bk =

〈
b1, b2, . . . , bk−1

∣∣∣∣bibi+1bi = bi+1bibi+1
bibj = bjbi , j 6= i ± 1

〉

Action on factors
Bk acts on products of k transpositions, e.g.

(1 3)(2 4)(1 2)(3 7)(4 7) = (1 4)(2 3 7)

b2 : (1 3)(1 2)(1 4)(3 7)(4 7) = (1 4)(2 3 7)

b−1
2 : (1 3)(1 4)(2 4)(3 7)(4 7) = (1 4)(2 3 7)



Commutation of Jucys-Murphy elements
The idea of moving transpositions past other transpositions can
be used to show the commutation of Jucys-Murphy elements,
e.g, J3J4J2J7J7 = J3J2J4J7J7, if we are careful about the effect
on the signature of a factorization:

(1 3)(2 4)(1 2)(3 7)(4 7) −→ (3,4,2,7,7)

b2 : (1 3)(1 2)(1 4)(3 7)(4 7) −→ (3,2,4,7,7)

b−1
2 : (1 3)(1 4)(2 4)(3 7)(4 7) −→ (3,4,4,7,7)

Proposition (Biane 2002?)
If we let si act by applying either bi , b−1

i or id (according to the
signature), we get an action of the symmetric group:

Sk =

〈
s1, s2, . . . , sk−1

∣∣∣∣∣∣
sisi+1si = si+1sisi+1
sisj = sjsi , j 6= i ± 1
s2

i = id

〉



Orbits under the symmetric action

Proposition (Biane 2002?)
If we let si act by applying either bi , b−1

i or id (according to the
signature), we get an action of the symmetric group:

Sk =

〈
s1, s2, . . . , sk−1

∣∣∣∣∣∣
sisi+1si = si+1sisi+1
sisj = sjsi , j 6= i ± 1
s2

i = id

〉

Fact
Each orbit of this action contains exactly one monotone
factorization.



Open question

Can this be used to give nicer proofs?



Thank you


