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Application: unitary matrix integrals



Expectations of polynomials

Question

Given a uniformly random d x d unitary matrix and a fixed
polynomial in its d? entries (and complex conjugates), what is
the expected value?
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Reductions

The problem can be reduced to:
» monomials j,j, - - - Ujyj, Uk, ¢, - - Ukpep» DY linearity;
» balanced (with m = n), by translation invariance.
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A Wick’s formula

(Collins 2003) and (CoIIins—Sniady 2006) showed that

Theorem
There is a function Wg,: S, — C such that
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Also,
» only permutation correlators are needed;
» for fixed d, Wg,(7) only depends on the cycle type of 7;
» for fixed m, Wg,4() is a rational function of d.



Weingarten in the group algebra

(Collins 2003) and (Collins-Sniady 2006) showed that

Theorem
In the group algebra of S, over C(d),
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In particular, Wg4(7) can be obtained by a computation in the
center of the symmetric group algebra.



Tool: Jucys-Murphy elements



Jucys-Murphy elements

Introduced by (Jucys 1974) and (Murphy 1981) independently.

They commute, but are not in the center.



Action on a Gelfand model

If VX, X+ n are irreducibles, then C[S,] =2 @5 Ende(V?).
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Signature of a factorization

Monomials in Ji, . .., Js count products of transpositions:

Jodsdpds = Y (a2)(b5)(c4)(d5)

a<2,b<5
c<4,d<5

The coefficient of 7 in JoJsJsJs5 is the number of factorizations
of = with signature (2,5, 4,5). If the signature is weakly
increasing, the factorization is called monotone.



Symmetric functions in Jucys-Murphy elements

Lemma
The elementary symmetric polynomials in Jy, ..., J, are
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Proof
Every permutation = € S, has a unique strictly monotone
factorization.

Corollary
All symmetric polynomials in Jy, ..., J, are in the center of the
symmetric group algebra.



Application to Weingarten function

(Matsumoto-Novak 2009) used Jucys-Murphy elements to get
asymptotics for the Weingarten function:
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Direction one: (monotone) Hurwitz theory



Goal

We can compute the complete symmetric polynomials hy(J)
(so, the unitary matrix integrals) if we can count monotone
factorizations.



Evolution of a factorization

Components Permutation Factor Type of factor

{1421 {3t MEE)
{1.2}, {3} (12)(3)

{1,2,3} (132)

(12)  Essential join
«(13)  Essential join

(23) Cut
{1,2,3} (13)(2)

{1,2,3} (132)

(23) Redundant join




Hurwitz numbers

Hurwitz numbers

The Hurwitz number H"(\) counts the number of connected
factorizations of length r of a fixed permutation of cycle type
atn.

Hurwitz generating function
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where t, py, po, ... are indeterminates, r is the length, nis the
ground set size, « is the cycle type.



Monotone Hurwitz numbers

Monotone Hurwitz numbers

The monotone Hurwitz number H"()) counts the number of
connected monotone factorizations of length r of a fixed
permutation of cycle type o - n.

Monotone Hurwitz generating function

A= Y S A
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where t, p1, po, ... are indeterminates, r is the length, nis the
ground set size, « is the cycle type.



Join-cut equations
Classical Hurwitz (Goulden-Jackson 1999)
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Monotone Hurwitz (Goulden-GP-Novak 2011)
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Hurwitz polynomiality

Theorem (Goulden-Jackson-Vakil 2001)
For each (g,¢) ¢ {(0,1),(0,2)}, there is a polynomial Py, such
that, for all partitions « = n with ¢ parts,
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Theorem (Ekedahl-Lando-Shapiro-Vainshtein 2001)
The polynomials Py, are given by
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Monotone Hurwitz polynomiality

Theorem (Goulden-GP-Novak 2011)

For each (g,¢) ¢ {(0,1),(0,2)}, there is a polynomial /59,4 such
that, for all partitions « = n with ¢ parts,
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Key steps

1. Guess and check the genus zero solution ﬁo.
2. Recursively solve the higher genus equation for I:Ig.
3. Check that the form of ﬁg is preserved when solving.



Open questions

» Is there an ELSV-type geometric formula for monotone
Hurwitz numbers?

» |s there a purely algebraic proof for classical Hurwitz
polynomiality?

» |s there a general transfer theorem to explain the parallels
between classical and monotone Hurwitz theory?



Direction two: symmetric functions



Surjectivity and injectivity

Jucys and Murphy each showed that the map

f(X1,...,Xn) = f(J1,...,Jdn)

is surjective.

(Diaconis-Greene 1989) and (Corteel-Goupil-Schaeffer 2004)
each showed that taken together, the maps are injective.
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Uniform formulas

In Zg, we have:

C3111 - Cs51 = 16C2211 + 18C3111
+ 18C33 + 16C45 + 15C54

InT], Zn, we have:

Kz - Ky = (80— 32)Ky1 + (3n® — 21n + 36)K;
+ 18K + 16K31 + (5n — 15)Ky
+ Ko+ 7Kg

where, e.g., K31 = C42 + Cyo1 + C4211 + - - - is a reduced
conjugacy class.



A bijection

Top terms of m,(J) in terms of reduced classes K,, computed
by (Matsumoto-Novak 2009) using a bijection with parking
functions.

Another bijection is with trees instead of parking functions:

Given an ordered forest, repeatedly give the rightmost root the
biggest remaining label left from {1,2,..., n}. Then the edges
give a minimal factorization into transpositions.

—~

68)(78) (46)(56) (23) (12) = (123)(45678)
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The reduced class basis

Corollary

A new proof that the reduced conjugacy classes give a basis of
the symmetric functions A(J) C [, Zn:

my(J) = Ky + > onu- Ky

=X



Other bases




Open questions

» Are there nice bijections with trees for factorizations of all
permutations, not just those with “non-crossing” cycles?

» Symmetric functions are graded. What are the
homogeneous pieces of K)?

» Anything else about K), with respect to the other bases of
A.



Direction three: sorting factorizations



Braid group action on factors

Braid group

_ bibi1b; = bjy1bibj 1
Bo= (b1 ba ooy bt - O

Action on factors
By acts on products of k transpositions, e.g.

(13)(24)(12)(37)(47) = (14)(237)
b : (13)(12)(14)(37)(47) =(14)(237)
b2_1 : (13)(14)(24)(37)(47)=(14)(237)



Commutation of Jucys-Murphy elements
The idea of moving transpositions past other transpositions can
be used to show the commutation of Jucys-Murphy elements,
e.g, J3dsdodrd7 = J3dodsd7d7, if we are careful about the effect
on the signature of a factorization:

(13)(24)(12)(87)(47) — (3,4,2,7,7)
by:  (13)(12)(14)(37)(47) — (3,2,4,7,7)
by (13)(14)(24)(37)(47) — (3,4,4,7,7)

Proposition (Biane 20027)
If we let s; act by applying either b;, bf1 or id (according to the
signature), we get an action of the symmetric group:

SiSj = Sjsj, j # I £ 1

SiSi+1Sj = Sit+15iSi+1
Sk=1( 51,82, ..., Sk_1 _
s? =id




Orbits under the symmetric action

Proposition (Biane 20027)
If we let s; act by applying either b;, b,-‘1 or id (according to the
signature), we get an action of the symmetric group:

SiSj = S;Sj, j # 1+ 1

SiSi+1S; = Si+15iSi+1 >
s?2 =id

Sk = <S1, S2, -+, Sk—1

Fact
Each orbit of this action contains exactly one monotone

factorization.



Open question

Can this be used to give nicer proofs?



Thank you



