Jucys-Murphy elements and Monotone Hurwitz Numbers

Mathieu Guay-Paquet
based on joint work with

Ian Goulden and Jonathan Novak

LaCIM, Université du Québec à Montréal

Journées Cartes
June 20, 2013

Application: unitary matrix integrals

Expectations of polynomials

Question

Given a uniformly random $d \times d$ unitary matrix and a fixed polynomial in its d^{2} entries (and complex conjugates), what is the expected value?

$$
\begin{gathered}
U=\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right) \\
\int_{\mathbf{U}(3)} u_{11}^{2} u_{23} \overline{u_{11}}\left(\overline{u_{21}}-\overline{u_{13}}\right)^{2} \mathrm{~d} U=(?)
\end{gathered}
$$

Reductions

The problem can be reduced to:

- monomials $u_{i_{1} j_{1}} \cdots u_{i_{n} j_{n}} \overline{u_{k_{1} \ell_{1}}} \cdots \overline{u_{k_{m} \ell_{m}}}$, by linearity;
- balanced (with $m=n$), by translation invariance.

$$
U=\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right)
$$

A Wick's formula

(Collins 2003) and (Collins-Śniady 2006) showed that
Theorem
There is a function $\mathrm{Wg}_{d}: S_{n} \rightarrow \mathbb{C}$ such that

$$
\begin{aligned}
\int_{\mathbf{U}(d)} u_{i_{1} j_{1}} \cdots u_{i_{n} j_{n}} \overline{u_{k_{1} \ell_{1}}} \cdots & \overline{u_{k_{m} \ell_{m}}} \mathrm{~d} U \\
& =\sum_{\pi, \sigma \in S_{n}} \delta_{[\mathbf{i}=\pi(\mathbf{k})]} \delta_{[\mathrm{j}=\sigma(\ell)]} \mathrm{Wg}_{d}\left(\pi \sigma^{-1}\right)
\end{aligned}
$$

Also,

- only permutation correlators are needed;
- for fixed $d, \mathrm{Wg}_{d}(\pi)$ only depends on the cycle type of π;
- for fixed $\pi, \mathrm{Wg}_{d}(\pi)$ is a rational function of d.

Weingarten in the group algebra

(Collins 2003) and (Collins-Śniady 2006) showed that
Theorem
In the group algebra of S_{n} over $\mathbb{C}(d)$,

$$
\left(\sum_{\pi \in S_{n}} \mathrm{Wg}_{d}(\pi) \cdot \pi\right)^{-1}=\left(\sum_{\pi \in S_{n}} d^{\# \operatorname{cycles}(\pi)} \cdot \pi\right) \in \mathbb{C}(d)\left[S_{n}\right]
$$

In particular, $\mathrm{Wg}_{d}(\pi)$ can be obtained by a computation in the center of the symmetric group algebra.

Tool: Jucys-Murphy elements

Jucys-Murphy elements

Introduced by (Jucys 1974) and (Murphy 1981) independently.

$$
\begin{aligned}
J_{1} & =0 \\
J_{2} & =(12) \\
J_{3} & =(13)+(23) \\
J_{4} & =(14)+(24)+(34) \\
& \vdots \\
J_{n} & =\sum_{k=1}^{n-1}(k n) \in \mathbb{C}\left[S_{n}\right]
\end{aligned}
$$

They commute, but are not in the center.

Action on a Gelfand model

If $V^{\lambda}, \lambda \vdash n$ are irreducibles, then $\mathbb{C}\left[S_{n}\right] \cong \bigoplus_{\lambda \vdash n} \operatorname{End}_{\mathbb{C}}\left(V^{\lambda}\right)$.

Signature of a factorization

Monomials in J_{1}, \ldots, J_{n} count products of transpositions:

$$
J_{2} J_{5} J_{4} J_{5}=\sum_{\substack{a<2, b<5 \\ c<4, d<5}}(a 2)(b 5)(c 4)(d 5)
$$

The coefficient of π in $J_{2} J_{5} J_{4} J_{5}$ is the number of factorizations of π with signature ($2,5,4,5$). If the signature is weakly increasing, the factorization is called monotone.

Symmetric functions in Jucys-Murphy elements

Lemma
The elementary symmetric polynomials in J_{1}, \ldots, J_{n} are

$$
\begin{aligned}
\left(1+J_{1} t\right) & \left(1+J_{2} t\right) \cdots\left(1+J_{n} t\right) \\
& =1+e_{1}(J) t+e_{2}(J) t^{2}+\cdots+e_{n}(J) t^{n} \\
& =\sum_{\pi \in S_{n}} t^{n-\# \operatorname{cycles}(\pi)} \cdot \pi
\end{aligned}
$$

Proof
Every permutation $\pi \in S_{n}$ has a unique strictly monotone factorization.

Corollary
All symmetric polynomials in J_{1}, \ldots, J_{n} are in the center of the symmetric group algebra.

Application to Weingarten function

(Matsumoto-Novak 2009) used Jucys-Murphy elements to get asymptotics for the Weingarten function:

$$
\begin{aligned}
\left(\sum_{\pi \in S_{n}} \mathrm{Wg}_{d}(\pi) \cdot \pi\right) & =\left(\sum_{\pi \in S_{n}} d^{\# \operatorname{cycles}(\pi)} \cdot \pi\right)^{-1} \\
& =\left(\left(d+J_{1}\right)\left(d+J_{2}\right) \cdots\left(d+J_{n}\right)\right)^{-1} \\
& =d^{-n}\left(1-\frac{h_{1}(J)}{d}+\frac{h_{2}(J)}{d^{2}}-\cdots\right)
\end{aligned}
$$

Complete symmetric polynomials:

$$
h_{k}(J)=\sum_{b_{1} \leq b_{2} \leq \cdots \leq b_{k}} J_{b_{1}} J_{b_{2}} \cdots J_{b_{k}} .
$$

Direction one: (monotone) Hurwitz theory

Goal

We can compute the complete symmetric polynomials $h_{k}(J)$ (so, the unitary matrix integrals) if we can count monotone factorizations.

Evolution of a factorization

Components	Permutation	Factor	Type of factor
$\{1\},\{2\},\{3\}$	$(1)(2)(3)$.(12)	Essential join
$\{1,2\},\{3\}$	$(12)(3)$		
$\{1,2,3\}$	(132)	(23)	Essential join
$\{1,2,3\}$	$(13)(2)$	Cut	
$\{1,2,3\}$	(132)		Redundant join

Hurwitz numbers

Hurwitz numbers
The Hurwitz number $H^{r}(\lambda)$ counts the number of connected factorizations of length r of a fixed permutation of cycle type $\alpha \vdash n$.

Hurwitz generating function

$$
\mathbf{H}=\sum_{r \geq 0} \sum_{n \geq 1} \sum_{\alpha \vdash n} H^{r}(\alpha) \frac{t^{r}}{r!} \frac{p_{\alpha}}{n!}
$$

where t, p_{1}, p_{2}, \ldots are indeterminates, r is the length, n is the ground set size, α is the cycle type.

Monotone Hurwitz numbers

Monotone Hurwitz numbers
The monotone Hurwitz number $\vec{H}^{r}(\lambda)$ counts the number of connected monotone factorizations of length r of a fixed permutation of cycle type $\alpha \vdash n$.

Monotone Hurwitz generating function

$$
\overrightarrow{\mathbf{H}}=\sum_{r \geq 0} \sum_{n \geq 1} \sum_{\alpha \vdash n} \vec{H}^{r}(\alpha) t^{r} \frac{p_{\alpha}}{n!}
$$

where t, p_{1}, p_{2}, \ldots are indeterminates, r is the length, n is the ground set size, α is the cycle type.

Join-cut equations

Classical Hurwitz (Goulden-Jackson 1999)

$$
\frac{\partial \mathbf{H}}{\partial t}=\frac{1}{2} \sum_{i, j \geq 1}\left((i+j) p_{i} p_{j} \frac{\partial \mathbf{H}}{\partial p_{i+j}}+i j p_{i+j} \frac{\partial^{2} \mathbf{H}}{\partial p_{i} \partial p_{j}}+i j p_{i+j} \frac{\partial \mathbf{H}}{\partial p_{i}} \frac{\partial \mathbf{H}}{\partial p_{j}}\right)
$$

Monotone Hurwitz (Goulden-GP-Novak 2011)

$$
\frac{\left(\sum_{k} \frac{k p_{\gamma}{ }^{2} \overrightarrow{\boldsymbol{H}}}{\partial_{k}}\right)-p_{1}}{t}=\sum_{i, j \geq 1}\left((i+j) p_{i} p_{j} \frac{\partial \overrightarrow{\mathbf{H}}}{\partial p_{i+j}}+i j p_{i+j} \frac{\partial^{2} \overrightarrow{\mathbf{H}}}{\partial p_{i} \partial p_{j}}+i j p_{i+j} \frac{\partial \overrightarrow{\mathbf{H}}}{\partial p_{i}} \frac{\partial \overrightarrow{\mathbf{H}}}{\partial p_{j}}\right)
$$

Hurwitz polynomiality

Theorem (Goulden-Jackson-Vakil 2001)
For each $(g, \ell) \notin\{(0,1),(0,2)\}$, there is a polynomial $P_{g, \ell}$ such that, for all partitions $\alpha \vdash n$ with ℓ parts,

$$
H_{g}(\alpha)=\frac{n!}{|\operatorname{aut}(\alpha)|}(n+\ell+2 g-2)!P_{g, \ell}\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \prod_{i=1}^{\ell} \frac{\alpha_{i}^{\alpha_{i}}}{\alpha_{i}!}
$$

Theorem (Ekedahl-Lando-Shapiro-Vainshtein 2001)
The polynomials $P_{g, \ell}$ are given by

$$
P_{g, \ell}\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)=\int_{\mathcal{M}_{g, \ell}} \frac{1-\lambda_{1}+\cdots+(-1)^{g} \lambda_{g}}{\left(1-\alpha_{1} \psi_{1}\right) \cdots\left(1-\alpha_{\ell} \psi_{\ell}\right)}
$$

Monotone Hurwitz polynomiality

Theorem (Goulden-GP-Novak 2011)

For each $(g, \ell) \notin\{(0,1),(0,2)\}$, there is a polynomial $\vec{P}_{g, \ell}$ such that, for all partitions $\alpha \vdash n$ with ℓ parts,

$$
\vec{H}_{g}(\alpha)=\frac{n!}{|\operatorname{aut}(\alpha)|} \vec{P}_{g, \ell}\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \prod_{i=1}^{\ell}\binom{2 \alpha_{i}}{\alpha_{i}}
$$

Key steps

1. Guess and check the genus zero solution $\overrightarrow{\mathbf{H}}_{0}$.
2. Recursively solve the higher genus equation for $\overrightarrow{\mathbf{H}}_{g}$.
3. Check that the form of $\overrightarrow{\mathbf{H}}_{g}$ is preserved when solving.

Open questions

- Is there an ELSV-type geometric formula for monotone Hurwitz numbers?
- Is there a purely algebraic proof for classical Hurwitz polynomiality?
- Is there a general transfer theorem to explain the parallels between classical and monotone Hurwitz theory?

Direction two: symmetric functions

Surjectivity and injectivity

Jucys and Murphy each showed that the map

$$
\begin{aligned}
\mathrm{ev}_{n}: \Lambda_{n} & \rightarrow \mathcal{Z}_{n} \\
f\left(x_{1}, \ldots, x_{n}\right) & \mapsto f\left(J_{1}, \ldots, J_{n}\right)
\end{aligned}
$$

is surjective.
(Diaconis-Greene 1989) and (Corteel-Goupil-Schaeffer 2004) each showed that taken together, the maps are injective.

$$
\begin{aligned}
\mathrm{ev}: \Lambda & \rightarrow \prod_{n} \mathcal{Z}_{n} \\
f\left(x_{1}, x_{2}, \ldots\right) & \mapsto f\left(J_{1}, J_{2}, \ldots\right)
\end{aligned}
$$

Uniform formulas

In \mathcal{Z}_{6}, we have:

$$
\begin{aligned}
\mathrm{C}_{3111} \cdot \mathrm{C}_{51}= & 16 \mathrm{C}_{2211}+18 \mathrm{C}_{3111} \\
& +18 \mathrm{C}_{33}+16 \mathrm{C}_{42}+15 \mathrm{C}_{51}
\end{aligned}
$$

In $\prod_{n} \mathcal{Z}_{n}$, we have:

$$
\begin{aligned}
K_{2} \cdot K_{4}= & (8 n-32) K_{11}+\left(3 n^{2}-21 n+36\right) K_{2} \\
& +18 K_{22}+16 K_{31}+(5 n-15) K_{4} \\
& +K_{42}+7 K_{6}
\end{aligned}
$$

where, e.g., $K_{31}=\mathrm{C}_{42}+\mathrm{C}_{421}+\mathrm{C}_{4211}+\cdots$ is a reduced conjugacy class.

A bijection

Top terms of $m_{\lambda}(J)$ in terms of reduced classes K_{μ} computed by (Matsumoto-Novak 2009) using a bijection with parking functions.

Another bijection is with trees instead of parking functions:
Given an ordered forest, repeatedly give the rightmost root the biggest remaining label left from $\{1,2, \ldots, n\}$. Then the edges give a minimal factorization into transpositions.

$$
\underbrace{(68)(78)}_{J_{8}^{2}}(\underbrace{(46)}_{J_{6}^{2}}(56)(\underbrace{(23)}_{J_{3}} \underbrace{12}_{J_{2}})=(123)(45678)
$$

The reduced class basis

Corollary

A new proof that the reduced conjugacy classes give a basis of the symmetric functions $\Lambda(J) \subset \prod_{n} \mathcal{Z}_{n}$:

$$
\begin{gathered}
m_{\lambda}(J)=K_{\lambda}+\sum_{\mu \succ \lambda} c_{\lambda, \mu} \cdot K_{\mu} \\
K_{\lambda}=m_{\lambda}(J)+\sum_{\mu \prec \lambda} c_{\lambda, \mu}^{*} \cdot m_{\mu}(J)
\end{gathered}
$$

Other bases

Open questions

- Are there nice bijections with trees for factorizations of all permutations, not just those with "non-crossing" cycles?
- Symmetric functions are graded. What are the homogeneous pieces of K_{λ} ?
- Anything else about K_{λ} with respect to the other bases of Λ.

Direction three: sorting factorizations

Braid group action on factors

Braid group

$$
B_{k}=\left\langle b_{1}, b_{2}, \ldots, b_{k-1} \left\lvert\, \begin{array}{l}
b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1} \\
b_{i} b_{j}=b_{j} b_{i}, j \neq i \pm 1
\end{array}\right.\right\rangle
$$

Action on factors
B_{k} acts on products of k transpositions, e.g.

$$
\begin{aligned}
& (13)(24)(12)(37)(47)=(14)(237) \\
b_{2}: & (13)(12)(14)(37)(47)=(14)(237) \\
b_{2}^{-1}: & (13)(14)(24)(37)(47)=(14)(237)
\end{aligned}
$$

Commutation of Jucys-Murphy elements

The idea of moving transpositions past other transpositions can be used to show the commutation of Jucys-Murphy elements, e.g, $J_{3} J_{4} J_{2} J_{7} J_{7}=J_{3} J_{2} J_{4} J_{7} J_{7}$, if we are careful about the effect on the signature of a factorization:

$$
\begin{array}{rlll}
& (13)(24)(12)(37)(47) & \longrightarrow & (3,4,2,7,7) \\
b_{2}: & (13)(12)(14)(37)(47) & \longrightarrow & (3,2,4,7,7) \\
b_{2}^{-1}: & (13)(14)(24)(37)(47) & \longrightarrow & (3,4,4,7,7)
\end{array}
$$

Proposition (Biane 2002?)

If we let s_{i} act by applying either b_{i}, b_{i}^{-1} or id (according to the signature), we get an action of the symmetric group:

$$
s_{k}=\left\langle s_{1}, s_{2}, \ldots, s_{k-1} \left\lvert\, \begin{array}{l}
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
s_{i} s_{j}=s_{j} s_{i}, j \neq i \pm 1 \\
s_{i}^{2}=\mathrm{id}
\end{array}\right.\right\rangle
$$

Orbits under the symmetric action

Proposition (Biane 2002?)
If we let s_{i} act by applying either b_{i}, b_{i}^{-1} or id (according to the signature), we get an action of the symmetric group:

$$
s_{k}=\left\langle s_{1}, s_{2}, \ldots, s_{k-1} \left\lvert\, \begin{array}{l}
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
s_{i} s_{j}=s_{j} s_{i}, j \neq i \pm 1 \\
s_{i}^{2}=\mathrm{id}
\end{array}\right.\right\rangle
$$

Fact
Each orbit of this action contains exactly one monotone factorization.

Open question

Can this be used to give nicer proofs?

Thank you

