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Duality between 2d Ising and 3d Quantum Gravity
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Duality between 2d Ising and 3d Quantum Gravity

Result:
• Generating function for spin network evaluations as Gaussian 

integral 
• 2d Ising partition function as odd-Grassmann Gaussian integral 
• « Equality » between the two functions, realized through 

supersymmetry

On a planar 3-valent graph:

Applications:
• Import statistical physics tools to QG: criticality, phase 

diagrams, continuum limit 
• Geometrical interpretation of Ising critical couplings (Fisher 

zeroes) 
• 3d QG & Ising as toy models for 4d gravity and more
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Duality between 2d Ising and 3d Quantum Gravity

Outline:

5. Higher order supersymmetric theories 
6. Link between Ising criticality and spin network saddle points 
7. Application to tetrahedron graph, Fisher zeroes and 6j duality 
8. Coarse-graining Ising,  Pachner moves & Recursion relations 
9. About the continuum limit & boundary CFT for 3d QG

1. 3d QG Ponzano-Regge amplitudes as spin network evaluations 

2. Generating function for spin networks: integral and result 

3. Ising partition function: fermionic integral & loop expansion 

4. Westbury theorem & Supersymmetry
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:
• 3d bulk triangulations or dual 2-complex 
• Spins - Irreps of SU(2) - on edges 
• Spin give edge length in Planck units 
• Amplitude defined from SU(2) recoupling

je

A� =
X

{je}

Y

e

(2je + 1)
Y

T

{6j}Amplitude as product of 6j-symbols
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:
• 3d bulk triangulations or dual 2-complex 
• Spins on edges 
• Amplitude as product of 6j-symbols

• Boundary 2d triangulated 
surface or dual 3-valent graph 

• Spins on boundary edges or dual 
links: boundary spin network

je

A� =
X

{je}

Y

e

(2je + 1)
Y

T

{6j}
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:
• Assume trivial spherical topology 
• Use topological invariance to gauge fix bulk 
• PR amplitude becomes projector on flat 

connection

For a trivial topology, amplitude expressed 
explicitly in terms of boundary data:

A� = A@� = h1| i =  (1)

evaluation of boundary spin network
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Spin Networks Evaluations

Consider 3-valent planar connected oriented boundary graph

Spin network evaluation is 
a 3nj symbol, obtained by 
gluing Clebsh-Gordan coefficients:

je

s�({je}) =  �
{je}(1) =

X

{me}

Y

e

(�1)je�me
Y

v

✓
jev1 jev2 jev3

✏ve1mev1 ✏ve2mev2 ✏ve3mev3

◆

Beware of signs ! 
        choose Kasteleyn orientation on planar graph to fix signs, show evaluation 
is independent of choice of orientation & matches standard normalizations 
(chromatic evaluation, unitary evaluation, … )
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Generating Function for Spin Network Evaluations

Consider 3-valent planar connected oriented boundary graph
Define generating function for 3nj’s using specific 
combinatorial weights:

ZSpin
� ({Ye}) =

X

{je}

s Q
v(Jv + 1)!Q

ev(Jv � 2je)!
s�({je})

Y

e

Y 2je
e

That’s a specific choice of boundary state with superposition of spins

Semi-classical coherent states of geometry 
                                     with spins peaked around ….?

Usually, spins = length of edges of triangulation dual to graph … 
and parameters Ye determines semi-classical geometry
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Generating Function for Spin Network Evaluations

Consider 3-valent planar connected oriented boundary graph

Get it from gluing the 3j-symbol generating functions 
using Gaussian weights:

ZSpin
� ({Ye}) =

X

{je}

s Q
v(Jv + 1)!Q

ev(Jv � 2je)!
s�({je})

Y

e

Y 2je
e

Define generating function for 3nj’s using specific 
combinatorial weights:

= exp

X

↵

X↵(zs(↵)wt(↵) � ws(↵)zt(↵))
X↵ =

q
Ys(↵)Yt(↵)

X

je,me

✓
j1 j2 j3
m1 m2 m3

◆p
(J + 1)!

Y

e

Y je
e zje+me

e wje�me
ep

(J � 2je)!(je �me)!(je +me)!

t(↵)

s(↵)

↵

Choose cyclic 
orientation (anti-
clockwise) around 
each vertex
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Generating Function for Spin Network Evaluations

Consider 3-valent planar connected oriented boundary graph

ZSpin
� ({Ye}) =

X

{je}

s Q
v(Jv + 1)!Q

ev(Jv � 2je)!
s�({je})

Y

e

Y 2je
e

Define generating function for 3nj’s using specific 
combinatorial weights:

ZSpin
� ({Ye}) =

Z Y

ev

d2zevd2wev

⇡2
e�

P
ev(|zev|

2+|wev|2)

e�
P

e(z̄s(e)w̄t(e)�w̄s(e)z̄t(e))+
P

↵ X↵(zs(↵)wt(↵)�ws(↵)zt(↵))

Get it from gluing the 3j-symbol generating functions 
using Gaussian weights:

« Simply » have 
to compute the 
determinant …

It’s a Gaussian 
integral!!
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The Ising Model Partition Function

On same graph, put « spins » on vertices: 

Can define high temperature expansion…

… as sum over loops:

�v

�v = ±1 2 Z2

ZIsing
� ({ye}) =

X

�

exp

 
X

e

ye�s(e)�t(e)

!

ZIsing
� ({ye}) =

�Y

e

cosh(ye)
�X

�

Y

e

(1 + tanh(ye)�s(e)�t(e))

ZIsing
� ({ye}) = 2

V
�Y

e

cosh(ye)
�X

�2G

Y

e2�

Ye Ye = tanh yewith
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The Ising Model as a Fermion Path Integral

Two-level system naturally represented in terms of fermions. 
Here explicitly:

Zf ({X↵}) =
Z Y

ev

d ev exp

 
X

e

 s(e) t(e) +

X

↵

X↵  s(↵) t(↵)

!

ZIsing
� ({ye}) = 2

V
Y

e

cosh(ye)Zf ({X↵})

X↵1

X↵2

X↵3

Have to keep track 
of all the signs !

We glue angles together to form loops
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The Ising Model as a Fermion Path Integral

Two-level system naturally represented in terms of fermions. 
Here explicitly:

And for our purpose:

Zf ({X↵}) =
Z Y

ev

d ev exp

 
X

e

 s(e) t(e) +

X

↵

X↵  s(↵) t(↵)

!

ZIsing
� ({ye}) = 2

V
Y

e

cosh(ye)Zf ({X↵})

e�
P

e  ̄s(e) ̄t(e)+⌘̄s(e)⌘̄t(e)e
P

↵ X↵( s(↵) t(↵)+⌘s(↵)⌘t(↵))

(Zf )
2 =

Z Y

ev

[d d⌘d ̄d⌘̄]ve e
P

e,v  
v
e ⌘̄

v
e+ ̄

v
e⌘

v
e

We glue angles together to form loops

Duality between Ising & Spin Networks - Livine - Journée Cartes ‘15



Matching Loop Expansions

All these Gaussian integrals can be computed explicitly !

Duality between Ising model & Spin Evaluations

(Zf )
2 ZSpin

� = 1 Zf =
X

�2G

Y

↵2�

X↵ =
X

�2G

Y

e2�

Ye

(ZIsing
)

2 ZSpin
= 2

2V
Y

e

cosh(ye)
2

But we would like to show this without 
                           explicitly computing those integrals !

Duality between Ising & Spin Networks - Livine - Journée Cartes ‘15



Duality through Supersymmetry

We can introduce a meta-theory combining
• Ising model Fermions
• Spin networks Bosons

S =
X

e,v

�e,vKe,v +
X

e

µeSe �
X

↵

X↵S↵

Z� = (Zf )
2 ZSpin =

Z
dz dw d d⌘ eS[{z,w, ,⌘}ev ]

������

Ke,v = |zve |2 + |wv
e |2 �  v

e ⌘̄
v
e �  ̄v

e⌘
v
e

Se = z̄s(e)w̄t(e) � w̄s(e)z̄t(e) +  ̄s(e) ̄t(e) + ⌘̄s(e)⌘̄t(e)
S↵ = zs(↵)wt(↵) � ws(↵)zt(↵) +  s(↵) t(↵) + ⌘s(↵)⌘t(↵)
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Duality through Supersymmetry

We can introduce a meta-theory combining
• Ising model Fermions
• Spin networks Bosons

S =
X

e,v

�e,vKe,v +
X

e

µeSe �
X

↵

X↵S↵

Z� = (Zf )
2 ZSpin =

Z
dz dw d d⌘ eS[{z,w, ,⌘}ev ]

We define a supersymmetry generator, 
acting on each half-edge               :

��������

Qzi =  i

Qwi = ⌘i
Q i = wi

Q⌘i = �zi

i = (ev)
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Duality through Supersymmetry

We can introduce a meta-theory combining
• Ising model Fermions
• Spin networks Bosons

S =
X

e,v

�e,vKe,v +
X

e

µeSe �
X

↵

X↵S↵

Z� = (Zf )
2 ZSpin =

Z
dz dw d d⌘ eS[{z,w, ,⌘}ev ]

All terms are both Q-closed & Q-exact: QKe,v = QSe = QS↵ = 0
������

Ke,v = Q ( w̄ � ⌘z̄)
Se = Q

�
z + w⌘

�

S↵ = Q (z + w⌘)

@Z�

@�e,v
=

@Z�

@µe
=

@Z�

@X↵
= 0
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What to do with this Ising - Spin Network duality ?

Applications:
• Map spin averages to Ising correlations 
• Higher order supersymmetric actions 
• Phase diagram and critical Ising couplings 
• Continuum Limit of QG Amplitudes
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Mapping Spin Averages to Ising correlations

Compare spin insertions in both partition functions :
h�v1 �v2 · · ·�vni =

1

ZIsing

X

�

�v1 �v2 · · ·�vn e
P

e ye�s(e)�t(e)

hjn1
e1 j

n2
e2 · · · jnk

ek i =
1

ZSpin

X

{je}

jn1
e1 j

n2
e2 · · · jnk

ek s(�, {je})W({je})
Y

e

(tanh ye)
2je

Can get general relation :

hjei = sinh ye
�
sinh ye � cosh ye h�s(e)�t(e)i

�

h�v�wi(P)
c =

�2n�1

Q
e2P sinh(2je)

h
Y

e2P
(2je)i(P)

c

Duality between Ising & Spin Networks - Livine - Journée Cartes ‘15



Mapping Spin Averages to Ising correlations

Compare spin insertions in both partition functions :
h�v1 �v2 · · ·�vni =

1

ZIsing

X

�

�v1 �v2 · · ·�vn e
P

e ye�s(e)�t(e)

hjn1
e1 j

n2
e2 · · · jnk

ek i =
1

ZSpin

X

{je}

jn1
e1 j

n2
e2 · · · jnk

ek s(�, {je})W({je})
Y

e

(tanh ye)
2je

Get exact formula for spin average (Baxter):

0.5 1.0 1.5
y

0.1

0.2

0.3

0.4

0.5

0.6

[ j + 1
2
_

0.2 0.4 0.6 0.8 1.0 1.2 1.4
y

-2.0

-1.5

-1.0

-0.5

d X j\
dy

Phase Transition !!
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Higher order Supersymmetric Theories and Integrals

We can go beyond Gaussian integrals with a quadratic action !

Up to now, we have decoupled Ising & Spin networks….

So we introduce higher order susy interaction terms !

terms still supersymmetricKn
e,v, S

n
e , S

n
↵

Adding higher order 
angle terms

• affects the spin network distribution & 
modifies saddle point (geometry background) 

• geometric-dependent coupling for Ising 
• couples the two Ising models

What’s the physical meaning of those theories ?
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Critical Ising & Spin Network Saddle Points 

ZSpin
� ({Ye}) =

X

{je}

s Q
v(Jv + 1)!Q

ev(Jv � 2je)!
s�({je})

Y

e

Y 2je
e

Let’s come back to the combinatorial definition of 
the generating function of spin network evaluations:

Spin distribution defined by statistical weight ?

⇢({je}) =

s Q
v(Jv + 1)!Q

ev(Jv � 2je)!

Y

e

Y 2je
e

Saddle point? Geometrical Interpretation?
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Critical Ising & Spin Network Saddle Points 

We proceed « as usual » : • Large spin approx, Stirling formula 
• Look for stationary point(s) 
• Interpret spins as lengths

We get a stationary point when spins       are length of a 
triangulation if the edge couplings       are determined by the 
condition in terms of the triangulation angles:

je
Ye

Y 2
e = tan

�s(e)
e

2
tan

�t(e)
e

2
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Critical Ising & Spin Network Saddle Points 

We get a stationary point when spins       are length of a 
triangulation if the edge couplings       are determined by the 
condition in terms of the triangulation angles:

je
Ye

• Regular honeycomb network

Y =
1p
3
= Y critical

Y 2
e = tan

�s(e)
e

2
tan

�t(e)
e

2
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Critical Ising & Spin Network Saddle Points 

We get a stationary point when spins       are length of a 
triangulation if the edge couplings       are determined by the 
condition in terms of the triangulation angles:

je
Ye

• Regular honeycomb network

• Also isoradial graphs !

Y =
1p
3
= Y critical

Y c
e = tan

�e
2

= tan
✓e
2

�

2✓
2✓1

2✓2

�1
�2

Y 2
e = tan

�s(e)
e

2
tan

�t(e)
e

2
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Critical Ising & Spin Network Saddle Points 

We get a stationary point when spins       are length of a 
triangulation if the edge couplings       are determined by the 
condition in terms of the triangulation angles:

je
Ye

• Regular honeycomb network

• Also isoradial graphs !

Y =
1p
3
= Y critical

Y c
e = tan

�e
2

= tan
✓e
2

More general ?!?

Y 2
e = tan

�s(e)
e

2
tan

�t(e)
e

2
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Critical Ising & Spin Network Saddle Points 

We get a stationary point when spins       are length of a 
triangulation if the edge couplings       are determined by the 
condition in terms of the triangulation angles:

je
Ye

Y 2
e = tan

�s(e)
e

2
tan

�t(e)
e

2

Admissible geometric 
couplings Y geom

e
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Critical Ising & Spin Network Saddle Points 

We get a stationary point when spins       are length of a 
triangulation if the edge couplings       are determined by the 
condition in terms of the triangulation angles:

je
Ye

Y 2
e = tan

�s(e)
e

2
tan

�t(e)
e

2

Admissible geometric 
couplings Scale invariant 

saddle points 
in spins

Pole in the generating 
function

Zero of Ising partition 
function 
i.e. critical couplings

Y geom

e

Y c
e

je

ZSpin ! 1
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The Tetrahedron  & the 6j Symbol

Test all this on the Tetrahedron !
• Look at generating function for 6j symbols 
• Study saddle points of combining both weight & 6j symbol 

with Regge action at large spins 
• Provide geometrical interpretation for Fisher zeroes on 

tetrahedron graph 
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The Tetrahedron  & the 6j Symbol

Test all this on the Tetrahedron !
• Look at generating function for 6j symbols 
• Study saddle points of combining both weight & 6j symbol 

with Regge action at large spins 
• Provide geometrical interpretation for Fisher zeroes on 

tetrahedron graph 

Work with 
V. Bonzom & C. Charles 

to appear soon
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The Tetrahedron  & the 6j Symbol

Test all this on the Tetrahedron !
• Look at generating function for 6j symbols 
• Study saddle points of combining both weight & 6j symbol 

with Regge action at large spins 
• Provide geometrical interpretation for Fisher zeroes on 

tetrahedron graph 

Critical couplings for Ising are complex, 
with phase given by dihedral angles

Y c
e = e✏

i
2 ✓e

s

tan
�s(e)
e

2
tan

�t(e)
e

2

�s(e)
e

�t(e)
e

✓e

e

✏ = ± global sign

only depends on geometry 
up to global scale factor !
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The Tetrahedron  & the 6j Symbol

Test all this on the Tetrahedron !
• Look at generating function for 6j symbols 
• Study saddle points of combining both weight & 6j symbol 

with Regge action at large spins 
• Provide geometrical interpretation for Fisher zeroes on 

tetrahedron graph 

Critical couplings for Ising are complex, 
with phase given by dihedral angles

Phase represents extrinsic 
curvature of surface in 3d 

space

Y c
e = e✏

i
2 ✓e

s

tan
�s(e)
e

2
tan

�t(e)
e

2
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The Tetrahedron  & the 6j Symbol

Critical couplings for Ising are complex, with phase given by 3d 
dihedral angles and modulus given by 2d triangle angles

Y c
e = e✏

i
2 ✓e

s

tan
�s(e)
e

2
tan

�t(e)
e

2�s(e)
e

�t(e)
e

✓e

e

P [Ye] = 1 + Y1Y2Y6 + Y1Y3Y5 + Y2Y3Y4 + Y4Y5Y6 + Y1Y4Y2Y5 + Y2Y5Y3Y6 + Y1Y4Y3Y6

These are roots of the tetrahedron loop polynomial :

Direct proof from spherical trigonometry 
                                  but this only gives a 5d manifold 
                                                          within the 10d space of solutions
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The Tetrahedron  & the 6j Symbol

Critical couplings for Ising are complex, with phase given by 3d 
dihedral angles and modulus given by 2d triangle angles

Y c
e = e✏

i
2 ✓e

s

tan
�s(e)
e

2
tan

�t(e)
e

2�s(e)
e

�t(e)
e

✓e

e

P [Ye] = 1 + Y1Y2Y6 + Y1Y3Y5 + Y2Y3Y4 + Y4Y5Y6 + Y1Y4Y2Y5 + Y2Y5Y3Y6 + Y1Y4Y3Y6

These are roots of the tetrahedron loop polynomial :

Direct proof is painful… 
       and only gives a 5d manifold within the 10d space of solutions

Have to go to complex tetrahedra !     Work in progress
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The Tetrahedron  & the 6j Symbol

Can go deeper on tetrahedron with high T/low T duality

Use loop expansion of 2d Ising to show duality identity on the 
partition function :

Z�(ye) =

X

{�v=±1}

e
P

e ye�s(e)�t(e)
= 2

V
Y

e

cosh ye
X

C⇢�

Y

e2C

tanh ye

High T loop expansion:

Low T cluster expansion:

Z�(ye) = 2
Y

e

eye
X

C⇤⇢�⇤

Y

e2C⇤

e�2ye
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The Tetrahedron  & the 6j Symbol

Can have more fun on tetrahedron with high T/low T duality

Use loop expansion of 2d Ising to show duality identity on the 
partition function :

Z�(ye) =

2

Q
e e

ye

2

V ⇤ Q
e cosh ỹe

Z�⇤
(ỹe)

Ye = tanh ye = e�2ỹe , Ỹe = tanh ỹe = e�2yewith dual couplings

Y = D(Ỹ ) =
(1� Ỹ )

(1 + Ỹ )

Ỹ = D(Y ) =
(1� Y )

(1 + Y )

Duality transform is involution, 
relating the graph and its dual
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The Tetrahedron  & the 6j Symbol

Can have more fun on tetrahedron with high T/low T duality

Use loop expansion of 2d Ising to show duality identity on the 
partition function :

Z�(ye) =

2

Q
e e

ye

2

V ⇤ Q
e cosh ỹe

Z�⇤
(ỹe)

Ye = tanh ye = e�2ỹe , Ỹe = tanh ỹe = e�2yewith dual couplings

Y = D(Ỹ ) =
(1� Ỹ )

(1 + Ỹ )

Ỹ = D(Y ) =
(1� Y )

(1 + Y )

Duality transform is involution, 
relating the graph and its dual

Its fixed point is critical Ising 
coupling for square lattice : Yc = �(1±

p
2)
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The Tetrahedron  & the 6j Symbol

Can have more fun on tetrahedron with high T/low T duality

Apply to 6j generating function :

43
X

{je}

⇢
j1 j2 j3
j4 j5 j6

�Y

v

�v(je)
Y

e

(�1)2keT (2je + 1, 2ke + 1) =

⇢
k4 k5 k6
k1 k2 k3

�Y

v⇤

�v⇤(ke)

Y
(1� Y )2j

(1 + Y )2(j+1)
=

X

k2 /2

(�1)2kT (2j + 1, 2k + 1)Y 2k+1

with transform coefficients given by power series (figurate numbers) :

Could be related to self-duality of squared q-deformed 6j symbol …
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The Tetrahedron  & the 6j Symbol

Lessons from the tetrahedron :

• Geometric characterization of Fisher zeroes for the 
Ising model : graph is planar but not flat, critical 
couplings defined by 3d embedding (dihedral angles) 

• Low T / High T Ising duality gives relation between 
graph and dual graph for spin networks : non-
perturbative relations for spinfoams? another path 
towards criticality ?
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From Coarse-Graining Ising to boundary Pachner moves

Natural application of duality between Ising models & spin 
networks : COARSE-GRAINING

Star-Triangle relation

(multivariate) Tutte recursion relation

3-1 Pachner move

2-2 Pachner move

Related to 
Yang-Baxter 
equation

Work with 
J. Ben Geloun 

to appear soon
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Continuum limit and boundary CFT

Use known continuum limit of Ising models to derive boundary CFT 
description of Ponzano-Regge spinfoam models at critical point

Let’s try to close the loop :

3d Quantum Gravity
Chern-Simons bulk, 
WZW CFT on boundaryPonzano-Regge 

spinfoams

Spin Network 
evaluation Boundary 

Ising model

Continuum limit 
as coset WZW theory
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Continuum limit and boundary CFT

Use known continuum limit of Ising models to derive boundary CFT 
description of Ponzano-Regge spinfoam models at critical point

Let’s try to close the loop :

3d Quantum Gravity
Chern-Simons bulk, 
WZW CFT on boundaryPonzano-Regge 

spinfoams

Spin Network 
evaluation Boundary 

Ising model

Continuum limit 
as coset WZW theory

Tutte polynomial as 
Jones polynomial on 
alternating knot
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Ising-QG Duality: Extensions & Prospects

• Full saddle points for arbitrary graphs towards geometric 
characterization of Fisher zeroes

• Meaning of higher order susy models and localized integrals, 
Compare with supergravity (Casson invariant & osp(2|1) spinnets)

• Linked to the relation between squared critical Ising & dimers?
• Apply to Spin glasses ?

• Continuum limit of Ising model as WZW coset model, boundary CFT 
for spinfoams & models for conformal gravity

• Improvements: arbitrary valence, non-planar graphs, holonomy 
insertions, q-deformation, dual Potts model, mag field (L-Y theorem)?

• Ising duality for 3d gravity on AdS   (CFT and BMS symmetry)

• Sum over planar triangulations à la Kazakov (matrix models & GFT)
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Duality between 2d Ising and 3d Quantum Gravity

Thank you for your attention !!
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT:

• Triad     1-form with value in           Lie algebra 
•            Connection      with curvature    

S[A, e] =

Z

M
Tr e ^ F [A] =

Z

M
�ij✏

abc eia F
j
bc[A]

e su(2)

SU(2) A F [A] = dA+A ^A

• SU(2) Gauge invariant & Diffeomorphism invariant 
• Theory of a pure flat connection   F[A]=0 
• If add volume term, equivalent to Chern-Simons theory

Topological field theory with no local degrees of freedom
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

Topological field theory Can be discretized exactly

1. Choose a 3d triangulation (cellular decomposition works too) 
2. Define dual 2-complex, the spinfoam  
3. Discretize connection along dual edges 
4. Discretize triad along edges

ge⇤ 2 SU(2)

Xe 2 su(2)
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

Topological field theory Can be discretized exactly

• Connection along dual edges 
• Triad along edges

ge⇤ 2 SU(2)

Xe 2 su(2)

X’s are Lagrange multipliers 
imposing flatness of connection 
around dual faces (i.e around edges)

Z =

Z
dedAeiS[e,A] =

Z
dA �(F [A]) =

Z Y

e⇤

dge⇤
Y

e

�(Ge)

Ge = Gf⇤ =
����!Y

e⇤2@f⇤

ge⇤
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

Topological field theory Can be discretized exactly

Z =

Z
dedAeiS[e,A] =

Z
dA �(F [A]) =

Z Y

e⇤

dge⇤
Y

e

�(Ge)

Z =

Z Y

e⇤

dge⇤
X

{je2 N
2 }

Y

e

(2je + 1)�je(Ge)

We decompose onto irreps of SU(2) i.e spins :

and we integrate over all group elements, 
          leaving us with spin recoupling symbols
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