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Duality between 2d Ising and 3d Quantum Gravity
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Duality between 2d Ising and 3d Quantum Gravity

Result: On a planar 3-valent graph:

e (Generating function for spin network evalvations as Gaussian
integral

o 2d Ising partition function as odd-Grassmann Gaussian integral

e «Equality » between the two functions, realized through
supersymmetry

Applications:

o lmport statistical physics tools to QG: eriticality, phase
diagrawms, continvum limit

e Geometrical interpretation of Ising critical couplings (Fisher
zeroes)

e 3d QG & Ising as toy models for 4d gravity and more
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Duality between 2d Ising and 3d Quantum Gravity

Outline: 1. 3d Q6 Ponzano-Regge amplitudes as spin network evalvations
2. Generating function for spin networks: integral and result
3. lsing partition function: fermionic integral & loop expansion

4. Westbury theorewm & Supersymwetry

Higher order supersymwmetric theories

Link between Ising criticality and spin network saddle points
Application to tetrahedron graph, Fisher zeroes and 6j duality
Coarse-graining Ising, Pachner moves & Recursion relations
About the continuuw limit & boundary CFT for 3d Q6

© ™ N & W«
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3d Quantuwm Gravity: Spinfoawms & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

e 3d bulk triangulations or dval Z-complex
o Spins - Irreps of SU(2) - on edges 7
 Spin give edge length in Planck units

o Awplitude defined from SU(2) recoupling

Awplitude as product of 6j-symbols Aa = [[(25. + 1) [[{64}

Tettre T
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

e 3d bulk triangulations or dval Z-complex
o Spins on edges Jje
o Awplitude as product of 6j-symbols

An = 2: 1[(2je i H{Gj}

ek he T

e Boundary 2d triangulated
surface or dual 3-valent graph

 Spins on boundary edges or dual
links: boundary spin network
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

e Assuwe trivial spherical topology

o Use fopological invariance o gauge fix bulk

e PR awmplitude becomes projector on flat
connection

Aa = Aoa = (1Y) = (1)

For a trivial topology, amplitude expressed
explicitly in terms of boundary data:

( evaluation of boundary spin network J |
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Spin Networks Evaluations

Consider 3-valent planar connected oriented boundary graph

Spin network evaluation is
a nj symbol, obtained by e
gluing Clebsh-Gordan coefficients: |

r - g icE e —MMe je’f je"z’ je"g
TN =¥ = 3 T ] (W am
Beware of signs !

—» choose Kasteleyn orientation on planar graph to fix signs, show evaluation
is independent of choice of orientation & matches standard normalizations
(chromatic evaluation, unitary evalvation, ...)
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Generating Function for Spin Network Evaluations

Consider 3-valent planar connected oriented boundary graph

Define generating function for 3nj’s using specific
combinatorial weights:

ZE (V) = 3y s (G D [T ¥
{Je eo e

That’s a specific choice of boundary state with superposition of spins

—> Sewti-classical coherent states of geometry
with spins peaked around ...?

Usually, spins = length of edges of triangulation dual to graph ...
and parameters Ye determines sewmi-classical geometry
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Generating Function for Spin Network Evaluations

Consider 3-valent planar connected oriented boundary graph

Define generating function for 3nj’s using specific
combinatorial weights:

ZE (V) = 3y s (G D [T ¥
{Je e e

Get it from gluing the 3j-symbol generating functions ~ .~ (@)
using Gaussian weights: M

Z(jl J2 jS)\/ 'H Y e zletMeqple e (@)
JeyMe pb e \/ J 236) (Je me) (Je ‘|‘me)
’ Choose cyelic
= exp Y XalZo(a)Wi(a) — Ws(a)Ze(a)) orlen’ra.’non (anti-
2! \/Ys(a)Yt(a) clockwise) around
each vertex
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Generating Function for Spin Network Evaluations

Consider 3-valent planar connected oriented boundary graph

Define generating function for 3nj’s using specific
combinatorial weights:

ZE (V) = 3y s (G D [T ¥
{Je e e

Get it from gluing the 3j-symbol generating functions
using Gaussian weights:

I1t’s a Gavssian

i [
in Pl . ey ) integralt
Z3P ({Ye}):/” L Wev = B lzen P wes )

T

« Simply » have

e T e (Bs(e)Be(e) =Ws(e) o)+ Lo Xa(Zs(a) Witar ~ws(a 22) | 10 cOMpPUTeE The

- < determinant ...
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The Ising Model Partition Function

On same graph, put « spins » on vertices: o, = %1 € Z,

Iszng { } Zexp (Z yeUs(e)Ut(e))

Can define high temperature expansion...
Ismg {ye}) = Hcosh Ye ) Z H (14 tanh(ye)os(e)Tt(e))

.. a8 Sum over loops:
Zlismg({ye}) = ZV(H Cosh(ye)) Z H Y. with Y. = tanhy,
€ YEG ecy
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The Ising Model as a Ferwmion Path Integral

Two-level system naturally represented in terms of fermions.

Here explicitly:  Z:°™({ge}) = 2" [ ] cosh(ye) Zs ({Xa})

Zi({Xa}) = /Hdwev exp (Z Wsle)Waley T Zon ws(a)wt(a))

—» We glue angles together to form loops

X %
i ‘ Have fo keep track
g qX‘”’ of all the signs !
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The Ising Model as a Ferwmion Path Integral

Two-level system naturally represented in terms of fermions.

Here explicitly:  Z:°™({ge}) = 2" [ ] cosh(ye) Zs ({Xa})

Zi({Xa}) = /Hdwev exp (Z Wsle)Waley T Zon ws(a)wt(a))

—» We glue angles together to form loops
And for our purpose:

() / H[dwdndz;dﬁ]g D inr

Saudniiy Vs(e) Wi (e) s (e) Tt (e) e2a Xo(Ps(a)Pt(a) TNs(a)Mt(a))
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Matching Loop Expansions

All these Gaussian integrals can be computed explicitly !

(Z;)2 227" =1 Zr=SEE A - N S
YEG ey ~YEG e€y
a N

(leing)Z Zsz'n _ 22V HCOSh(ye)2

v,

— Duality between Ising model & Spin Evaluations

But we would like to show this without
explicitly computing those integrals !
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Puality through Supersymmetry

We can introduce a meta-theory combining

e |sing model <«——>  Ferwmions
e Spinnetworks «—»  PBosons

e e / dz dw dyp dn 115V ie]

o= Z )\e,er,v e Z,uese e ZXaSa

Keav iEE ‘_25‘2__|_ |wg‘2 wene wene 4 5 i
S = E Wy — Wy R b e b s Ty
S W ) e )
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Puality through Supersymmetry

We can introduce a meta-theory combining

e |sing model <«——>  Ferwmions
e Spin networks «—»  Bosons

e e / dz dw dyp dn 115V ie]

o= Z )\e,er,v e Z,uese e ZXaSa
e,v e « sz

We define a supersymmetry generator, O
acting on each half-edge i = (ev): wa“

QN
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Puality through Supersymmetry

We can introduce a meta-theory combining

e |sing model <«——>  Ferwmions
e Spin networks «—»  Bosons

e e / dz dw dyp dn 115V ie]

o= Z )\e,er,v e Z,uese e ZXaSa

All terms are both Q-closed & Q-exact: QK.,=QS.=QS, =0

Keo = Q (Yw—n2)

’ a5 02 0Z 0Z
e R e g e s
Sa e Q (Zw T U”?) ,
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What to do with this Ising - Spin Network duality ?

Applications:

e Map spin averages to Ising correlations

o Higher order supersymwetric actions

e Phase diagram and critical Ising couplings
e Continvuwm Limit of QG Amplitudes
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Mapping Spin Averages to Ising correlations

Compare spin insertions in both partition functions :

L >
QEOE O b el o o y O- (e)o-t(e)
O T O — AT E O ion et e 2e Ve
(o)

<'7611]@2 ] OJG:> o 7 Spin Z 36113622 ) °Jekk S(Fa {]6})W({Je}) H(tanh ye)zje
{je} (&

Can get general relation :

{je) =|sinh yd (Sinh Yo — cosh y, <03(e)at(e)>)

_2n—1

)y (P)
[Teep sinh(2je) (L] 250))e

ec’P

<(7’v(7'w>gp) =
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Mapping Spin Averages to Ising correlations

Compare spin insertions in both partition functions :

L >
QEOE O b el o o y O- (e)o-t(e)
O T O — AT E O ion et e 2e Ve
(o)

1 5
<‘7.‘7:11].:‘}22 18 ]?kk> o 7 Spin ;j?1lj?22 o Jgkk S(Fa {]e})W({]e}) H(tanh ye)2je
Je e
Get exact formula for spin average (Baxter):

Y Phase Transition !
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Higher order Supersymmetric Theories and Integrals

We can go beyond Gaussian integrals with a quadratic action !
Up to now, we have decoupled Ising & Spin networks....

So we infroduce higher order susy interaction terms !

—p K?,, S¢, S, terws still supersymwmetric

- : : ~ o affects the spin network distribution &
Adding higher order | ~ wodifies saddle point (geometry background)

angle terms geometric-dependent coupling for Ising
e couples the two Ising models

Y,

What’s the physical meaning of those theories ?
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Critical Ising & Spin Network Saddle Points

Let’s come back to the combinatorial definition of
the generating function of spin network evaluations:

A \/ L Lo () [T v
{J I e

€

Spin distribution defined by statistical weight ?

- Pt 1) o
P({]e}) o= Hev(']v IT 2je)! HYe

Saddle point? Geometrical Interpretation?
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Critical Ising & Spin Network Saddle Points

We proceed « as usual »: « Large spin approx, Stirling formula
e Look for stationary point(s)
o [nterpret spins as lengths

We get a stationary point when spins j. arelength of a
triangulation if the edge couplings Y. are determined by the
condition in terms of the triangulation anagles:
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Critical Ising & Spin Network Saddle Points

We get a stationary point when spins j. arelength of a
triangulation if the edge couplings Y. are deterwmined by the
condition in terms of the triangulation angles:

2(6) t(e)

SE Ycritical

==

ol =
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Critical Ising & Spin Network Saddle Points

We get a stationary point when spins j. arelength of a
triangulation if the edge couplings Y. are deterwmined by the
condition in terms of the triangulation angles:

2(6) t(e)

H Ye
Yo— it t
4 aitEE

—— -

e Regular honeycomb network

1 8! |
)Y aEsE RN angaee chtzcal TFT
o Alsoisoradial graphs !

Ve ‘96 Biiaee "/
el tan— ‘\
2 2

S et et
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Critical Ising & Spin Network Saddle Points

We get a stationary point when spins j. arelength of a
triangulation if the edge couplings Y. are deterwmined by the
condition in terms of the triangulation angles:

2(6) t(e)

e Regular honeycomb network

) Janan L EE ch'tical

V3
 Also isoradial graphs !
O

Yo —tan LR R
2 2

More general 717
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Critical Ising & Spin Network Saddle Points

We get a stationary point when spins j. arelength of a
triangulation if the edge couplings Y. are deterwmined by the
condition in terms of the triangulation angles:

2(6) t(e)

Adwissible geometric
couplings ygeom
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Critical Ising & Spin Network Saddle Points

We get a stationary point when spins j. arelength of a
triangulation if the edge couplings Y- are determined by the
condition in terms of the triangulation angles:

s(e) t(e)
Ve
Vet
= all 9 9

\

Adwissible geometric
couplings ygeom s

—_—

Scale invariant
saddle points
in spins Jje

Zero of Ising partition
function
i.e. critical couplings Y

— = S

Pole in the generating \ __,
funetion z57~ 5
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The Tetrahedron & the 6j Symbol

Test all this on the Tetrahedron!

e Look at generating function for 6j symbols
o Study saddle points of combining both weight & 6j symbol

with Regge action at large spins
e Provide geometrical interpretation for Fisher zeroes on

tetrahedron graph
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The Tetrahedron & the 6j Symbol

Test all this on the Tetrahedron!

e Look at generating function for 6j symbols

o Study saddle points of combining both weight & 6j symbol
with Regge action at large spins

e Provide geometrical interpretation for Fisher zeroes on

tetrahedron graph

Work with
V. Bonzowm & C. Charles
10 appear soon
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The Tetrahedron & the 6j Symbol

Test all this on the Tetrahedron!

e Look at generating function for 6j symbols
o Study saddle points of combining both weight & 6j symbol

with Regge action at large spins
e Provide geometrical interpretation for Fisher zeroes on

tetrahedron graph

Critical couplings for Ising are complex, e = = global sign
with phase given by dihedral angles s ve:
Y, = ez \/tan e
2
s(e)
)% only depends on geometry
up to global scale factor !
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The Tetrahedron & the 6j Symbol

Test all this on the Tetrahedron!

e Look at generating function for 6j symbols

o Study saddle points of combining both weight & 6j symbol
with Regge action at large spins

e Provide geometrical interpretation for Fisher zeroes on

tetrahedron graph

Critical couplings for Ising are complex,
with phase given by dihedral angles \/
O A [tan

r [ ] [ ]
( Phase represents extrinsic
curvature of surface in 3d

space

s(e) t(e)
Pl

Ny s

e

Y
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The Tetrahedron & the 6j Symbol

Critical couplings for Ising are complex, with phase given by 3d
dihedral angles and modulus given by 2d triangle angles

Seitr)

These are roots of the tetrahedron loop polynowial :
PV 2 1+ VY Y + ViYaYe + YalVaYy H YA YeYe + Vi Ya Vo Vi VoY Ya Ve L Vi¥a¥a Yo

Direct proof from spherical trigonometry
but this only gives a 9d manifold
within the 10d space of solutions
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The Tetrahedron & the 6j Symbol

Critical couplings for Ising are complex, with phase given by 3d
dihedral angles and modulus given by 2d triangle angles

Seitr)

These are roots of the tetrahedron loop polynowial :
PV 2 1+ VY Y + ViYaYe + YalVaYy H YA YeYe + Vi Ya Vo Vi VoY Ya Ve L Vi¥a¥a Yo

Direct proof is painful...
and only gives a 5d manifold within the 10d space of solutions

Have to go to complex tetrahedra! Work in progress
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The Tetrahedron & the 6j Sywmbol

Can go deeper on tetrahedron with high 7/low T duality

Use loop expansion of 2d Ising to show duality identity on the

partition function :
High T loop expansion:
Z e YeTs(e)T4(e) — 2‘/1_[(3oshy6 Z l_Ita,nhye
o=t i) CcTec
Low T cluster expansion:
Zrlye) = 2H€y Z H aEal:
e CrcrecC™
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The Tetrahedron & the 6j Symbol

Can have more fun on tetrahedron with high T/low T dvality

Use loop expansion of 2d Ising to show duality identity on the
partition function :

2 ede
ZI‘ (ye) = He

2V" 1], cosh g,

2 (?je)

~

with dual couplings Y, = tanhy. = e %Y, Y, =tanhq, = e 2¥°

e g (oY) Puality transform is involution,
(1+Y) relating the graph and its dval
: _Y
Y =D) = E " Y;
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The Tetrahedron & the 6j Symbol

Can have more fun on tetrahedron with high T/low T duvality

Use loop expansion of 2d Ising to show duality identity on the
partition function :

2 eYe
A (ye) o He

2V" 1], cosh g

A (?je)

~

with dual couplings Y, = tanhy. = e %Y, Y, =tanhq, = e 2¥°

) Duality transform is involution,
) relating the graph and its dval

(1-Y)  lts fixed point is eritical Ising
Y =D(Y) = . 3 r==rteiires
) QlEs i coupling for square lattice : (1£v2)
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The Tetrahedron & the 6j Symbol

Can have more fun on tetrahedron with high T/low T duvality

Apply to 6j generating function :

g2 I3 : T - R4 - Rs e
43 {;} {j4 4 ja} IZIAU(]G) 1;[(—1) TA2g. 1 Pk )= {kl o kg} I;IA,U*(ke)
with transform coefficients given by power series (figurate numbers) :

Y
(1+7)2G+D) —

> (=1)**T(2j + 1,2k + 1) Y*H!
kEN /2

Could be related to self-duality of squared q-deformed 6j symbol ...
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The Tetrahedron & the 6j Symbol

Lessons from the tetrahedron :

e Geowmetric characterization of Fisher zeroes for the
Ising model : graph is planar but not flat, critical
couplings defined by 3d embedding (dihedral angles)

o Low T / High T Ising dvality gives relation between
graph and dual graph for spin networks : non-
perturbative relations for spinfoams? another path
towards criticality 7

' Duality between Ising & Spin Networks - Livine - Journée Cartes ‘19



From Coarse-Graining Ising to houndary Pachner moves

Natural application of duality between Ising models & spin
networks:  pOARGE-GRAINING 1'Bon beloun

to appear soon

Star-Triangle relation = —>»  3-1 Pachner move
Related to
equation

(multivariate) Tutte recursion relation ————»  2-2 Pachner move

EIEERRE
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Continvum limit and boundary CGFT

Use known continvum limit of Ising models to derive boundary CFT
description of Ponzano-Regge spinfoam models at critical point

Let’s try fo close the loop :

/ 3d Quantum Gravity HE

Chern-Simons bulk,

Po.nzano—llegge / WZW CFT on boundary
spinfoams

\ Continvum limit
/ as coset WZW theory

Spin Network

evaluation \_’ Boundary
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Continuum limit and boundary CFT

Use known continvum limit of Ising models to derive boundary CFT
description of Ponzano-Regge spinfoam wmodels at critical point

Let’s try fo close the loop :

/ 3d Quantum Gravity HEE

Chern-Simons bulk,

Fonzano-Regae / WZW CFT on houndary
spinfoams
\ Continvum limit
/ as coset WZW theory
Spin Network : | |
evaluation utte polynowmial as
\P E(;:’,;(::;Zel SRR ¥ Jones polynowmial on

alternating knot
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Ising-QG Duality: Extensions & Prospects

 |mprovewments: arbitrary valence, non-planar graphs, holonomy
insertions, q-deformation, dval Potts wmodel, mag field (1-Y theorem)?

o Full saddle points for arbitrary graphs towards geometric
characterization of Fisher zeroes

e Meaning of higher order susy models and localized infegrals,
Compare with supergravity (Casson invariant & osp(211) spinnets)

o Linked to the relation between squared critical Ising & dimers?
e Suw over planar triangulations a la Kazakov (matrix models & GFT)

e (Continvum limit of Ising model as WZW coset model, boundary CFT
for spinfoams & wmodels for conformal gravity

e lsing dvality for 3d gravity on AdS (CFT and BMS symmetry)
Puality between Ising & Spin Networks - Livine - Journée Cartes ‘15 oL = '




Duality between 2d Ising and 3d Quantum Gravity

Thank you for your attention !
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT:

S[A,e]:/ Tre/\F[A]=/ 5ijeabcengc[A]
M M

e Triad e 1-form with value in su(2) Lie algebra
e SU(2) Connection A with curvature F{A]=dA+ANA

Topological field theory with no local degrees of freedom

o SU(2) Gauge invariant & Diffeomorphiswm invariant
o Theory of a pure flat connection FLAI=0
e |f add volume term, equivalent to Chern-Simons theory
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3d Quantuwm Gravity: Spinfoawms & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

' Topological field theory ==p Can be discretized exactly

1. Choose a 3d trianqulation (cellular decomposition works too)
2. Define duval 2-complex, the spinfoam

3. Discretize connection along dval edges ge- € SU(2)

4. Discretize triad along edges X. € su(2)
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:
Topological field theory == Can be discretized exactly

o Connection along dual edges g.- € SU(2)
e Triad along edges X. € su(2)

X's are Lagrange multipliers >
imposing flatness of connection Ge =Grrm H e
around dual faces (i.e around edges) e

7 = / ded A e?®leAl = / dA§(F[A]) = / I [dge- [[0(Ge)
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3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

Topological field theory ==p Can be discretized exactly

7 = /dedAe@S[eA] /dAcS /Hdge H(S

We decompose onto irreps of SU(2) i.e spins :

— [Tge 3 T + Dx(Go)

{jecs} €
and we integrate over all group elements,
leaving us with spin recoupling symbols
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