Edge-colored graphs as higher-dimensional maps

Valentin Bonzom

LIPN, Paris University 13

October 6, 2017
Journées Cartes, ENS Lyon

Combinatorial maps

- Discrete surfaces made of gluings of polygons
- Have vertices, edges and faces
- Topological classification

$$
F(M)-E(M)+V(M)=2-2 g(M)
$$

Universality

- Families differing microscopically have same macroscopic behavior
- Triangulations, p-angulations, generic maps
- Asymptotically
\# planar p-angulations with n faces $\sim K_{p} \rho_{\rho}^{-n} n^{-5 / 2}$
Exponent $-5 / 2$ is universal: independent of p

What do we know?
 Maps: from Tutte to today

Enumeration

- Count maps with possible decorations (Ising, Potts, loops)
- Exact generating functions or their properties
- Random matrix model techniques
- Bijections [Cori-Vauquelin-Schaeffer, Bouttier-Di Francesco-Guitter]
- Tutte's equations and topological recursion [Borot, Eynard, Orantin]

Physics motivations and applications

- Two-dimensional quantum gravity coupled to matter
- Liouville theory coupled to conformal field theories
- Statistical mechanics
- Celebrated KPZ relations

What do we know? II

Geometric applications of bijections

- Two-point, three-point functions
- Local limit
- Continuum limit [Brownian sphere]

Enumerative geometry

- Intersection numbers [Kontsevich-Witten]
- Hurwitz numbers
- Integrable hierarchies, etc.

What we want

Incorporate combinatorial maps into theory of higher-dimensional spaces

What we want

Incorporate combinatorial maps into theory of higher-dimensional spaces
Let's be realistic... What we can do:

- Natural families generalizing p-angulations
- Polygons become building blocks known as bubbles
- Schwinger-Dyson eqs generalizing loop eqs on generating functions
- Combinatorial extensions of Euler's formula
- For some choice of building blocks, find equivalent of planar maps
- Universality classes
- Trees for large class of building blocks in 3d
- Trees, planar maps and trees of maps in even d
- Explicit enumeration
- Topological recursion applies on some cases

Challenges

Difficult interplay between topology and combinatorics

- Numerous families of cellular complexes in topology
- Not designed for enumeration (too wild or too restrictive)
- Attempts at fixed topology
- locally constructible
- numerical simulations
- Maps are built regardless of topology

Random tensors

- Generalize famous relation between maps and random matrices to random tensors
- This is our inspiration, but no techniques specific to random tensors

Two key properties

- Natural families to generalize p-angulations and study universality
- Combinatorial extension of genus instead of topological

Colored triangulations

- Introduced in topology (crystallization, graph-encoded manifold) in 80s because provide graphical representation of PL-manifolds!
- Closely related to Stanley's balanced complexes Difference here: vertices do not define a unique simplex
- Never considered for enumeration purposes

Colored simplex

- Faces have a color from $\{0,1, \ldots, d\}$
- (d-2)-simplices have pairs of colors, and so on

Attaching map

- Unique gluing which respects all subcolorings

Attaching map

- Unique gluing which respects all subcolorings

Colored graphs

- Gluing determined by color of face
- Graphical representation

d-simplex	vertex
$(d-1)$-simplex of color c	
$(d-2)$-simplex with two colors	conn. comp. with two colors

The 2D case

The 2D case

The 2D case

The 2D case

$2 p$-angle

- Gluing of $2 p$ triangles with boundary of color 0
- Dually: Components with all colors but 0

The 3D case

Bubbles as building blocks

- Triang. dim. $d=$ colored graphs with colors $0,1, \ldots, d$
- Bubble $=$ building block with all colors except 0
- All graphs obtained by gluing bubbles along edges of color 0

- Bubble is determined by boundary triangulation

Bubbles

2d: determined by length

4d: new one with 4 vertices

Gurau's degree theorem

- Finite set of bubbles B_{1}, B_{2}, \ldots, graph G
- 2d: genus classification

Bound on $(d-2)$-simplices
There exists $\omega(G) \geq 0$

$$
\Delta_{d-2}(G)-\frac{d(d-1)}{4} \Delta_{d}(G)=d-\omega(G) \leq d
$$

- $d=2 \Rightarrow \omega(G)=2 g(G)$
- For $d \geq 3$, bound can be saturated only for melonic bubbles
- Maximizing graphs (melonic) are series-parallel
- Gurau-Schaeffer classification according to the degree
- Genuine combinatorial extensions of genus exist!

Towards other behaviors

- Melonic insertion

- Colored triangulations built from non-melonic bubbles grow fewer ($d-2$)-simplices
- Need a bubble-dependent degree

$$
\Delta_{d-2}(G)-\alpha\left(B_{1}, B_{2}, \ldots\right) \Delta_{d}(G)=d-\omega_{B}(G) \leq d
$$

with

$$
\alpha\left(B_{1}, B_{2}, \ldots\right)>d(d-1) / 4
$$

- Finding α is challenging!
- Provides notion of higher-dimensional "planar" maps
- Identify graphs which maximize the bound

3D: 3 colors +0

Melonic bubbles

- 2 parallel edges:

- Partition into 2-edge-cuts

- Tree structure

3D with spherical bubbles

Conjecture/Work in progress

- Bubbles homeomorphic to 3-balls
- Same combinatorial result
- Maximizing edges

- 3-spheres
- Already proved for octahedra/bipyramids

4-edge-cut

- Bicolored cycles with colors 01, 02, 03 along each edge of color 0

4-edge-cut

- What path do they follow on the right?

4-edge-cut

4-edge-cut

- At least 1 pair connected by two paths

4-edge-cut

- Perform a flip, increase number of bicolored cycles
- 4-edge-cut cannot happen

Spherical bubbles

- Spherical bubble have planar boundary
- Colored graph is 3 -regular, planar, bipartite
- Has either face of degree 2, or (at least six) faces of degree 4
- Perform two flips
- Number of bicolored cycles does not decrease

Spherical bubbles

- Spherical bubble have planar boundary
- Colored graph is 3 -regular, planar, bipartite
- Has either face of degree 2, or (at least six) faces of degree 4
- Perform two flips
- Number of bicolored cycles does not decrease

Spherical bubbles

- Spherical bubble have planar boundary
- Colored graph is 3 -regular, planar, bipartite
- Has either face of degree 2, or (at least six) faces of degree 4
- Perform two flips
- Number of bicolored cycles does not decrease

Spherical bubbles

- Spherical bubble have planar boundary
- Colored graph is 3 -regular, planar, bipartite
- Has either face of degree 2, or (at least six) faces of degree 4
- Perform two flips
- Number of bicolored cycles does not decrease

Quartic case, $d=4$

Bijection

- Cycles of color 0 and pairs of vertices \rightarrow counter-clockwise star-map

- In 2D, bubbles are quadrangles \rightarrow Tutte's bijection

Quartic case, $d=4$

- Maps of arbitrary degree
- Monocolored edges, colors 1, 2, 3, 4
- Bicolored edges, colors 12, 13, 14
- Bicolored cycles (0c) are faces of color c

Maximizing triangles $=$ maximizing faces

- Monocolored edges are bridges

- Bicolored form planar components
- Bicolored types $1 c$ and $1 c^{\prime}$ touch on cut-vertices (similar to $O(n)$ model on planar maps)

The quartic case

- Generating function of (rooted) maps for k types of bicolored edges

$$
f_{k}(t, \lambda)=\sum_{M} t^{\# \text { edges }} \lambda^{\# \text { monocol. edges }}
$$

- $P(t)$ the generating function of planar non-separable maps

$$
f_{k}(t, \lambda)=1+\quad t \lambda f_{k}(t, \lambda)^{2} \quad+k\left(P\left(t f_{k}(t, \lambda)^{2}\right)-1\right)
$$

implies algebraicity

$$
\left\{\begin{array}{l}
t f^{2}=u(1-u)^{2} \\
f=k(1-u)(1+3 u)-k+1+\lambda u(1-u)^{2}
\end{array}\right.
$$

- Generic planar maps for $\lambda=0$ and $k=1$

$$
27 t^{2} A(t)^{2}+(1-18 t) A(t)+16 t-1=0
$$

Explicit singularity analysis for $k=1$

- Quartic eq on $f(t, \lambda)$
- For $\lambda<3$, singularity at $t_{1}(\lambda)=\frac{27}{4(\lambda+9)^{2}}$

$$
\begin{aligned}
f(t, \lambda)= & \frac{4}{27}(\lambda+9)+\frac{16(\lambda+3)(\lambda+9)^{3}}{729(\lambda-3)}\left(t_{1}(\lambda)-t\right) \\
& +\frac{64(\lambda+9)^{11 / 2}}{6561(3-\lambda)^{5 / 2}}\left(t_{1}(\lambda)-t\right)^{3 / 2}+o\left(\left(t_{1}(\lambda)-t\right)^{3 / 2}\right)
\end{aligned}
$$

- For $\lambda>3$, singularity at $t_{2}(\lambda)=\frac{\lambda}{4(1+\lambda)^{2}}$

$$
f(t, \lambda)=2 \frac{\lambda^{2}-1}{\lambda^{2}}-\frac{4(1+\lambda)^{2}}{\lambda^{5 / 2}} \sqrt{\lambda^{2}-2 \lambda-3}\left(t_{2}(\lambda)-t\right)^{1 / 2}+o\left(\left(t_{2}(\lambda)-t\right)^{1 / 2}\right)
$$

- $\lambda=3$, proliferation of baby universes

$$
f(t, \lambda=3)=\frac{16}{9}-\frac{128}{3^{5 / 3}}\left(\frac{3}{64}-t\right)^{2 / 3}+o\left(\left(\frac{3}{64}-t\right)^{2 / 3}\right)
$$

Same results with respect to k

- $\lambda=0$, no monocolored edges
- k small enough: universality class of maps
- k large enough: branching process and square-root singularity
- k critical: singularity exponent $2 / 3$

$=\left(\mathrm{t}_{\mathrm{k}}{ }^{(2)}, \mathrm{f}_{\mathrm{k}}{ }^{(2)}\right)$

Summary of maximizing number of $(d-2)$-simplices

3D

- Universality class of trees
- Conjectured for all spherical bubbles

4D

- Universality class depends on bubbles!
- Transitions between planar maps and trees
- Proliferation of baby universes

Colored triangulations offer a frame for exact solutions to higher dim. spaces

1-bubble triangulations

- 2D unicellular maps have a single polygon

$$
\begin{aligned}
\langle 2 n \text {-gon }\rangle & =\sum_{\text {perfect matchings of edges }} N^{\# \text { vertices }} \\
& =\text { Harer-Zagier polynomial }(N)=N^{n+1}(\text { Catalan }(n)+\mathcal{O}(1 / N))
\end{aligned}
$$

- Generic case using bubble B

$$
\langle B\rangle=\sum_{\text {Add edges color } 0} N^{\# \text { bicolored cycles }}
$$

- Various behaviors at large N

$$
\langle\text { melon }\rangle=1 \quad\langle 2 \underbrace{2}_{1}
$$

1-bubble triangulations

- 2D unicellular maps have a single polygon

$$
\begin{aligned}
\langle 2 n \text {-gon }\rangle & =\sum_{\text {perfect matchings of edges }} N^{\# \text { vertices }} \\
& =\text { Harer-Zagier polynomial }(N)=N^{n+1}(\text { Catalan }(n)+\mathcal{O}(1 / N))
\end{aligned}
$$

- Generic case using bubble B

$$
\langle B\rangle=\sum_{\text {Add edges color } 0} N^{\# \text { bicolored cycles }}
$$

- Various behaviors at large N

$$
\langle\text { melon }\rangle=1
$$

4D double-gon

- 1 cycle (12), 1 cycle (34)
- cycle (34) obtained by permuting black vertices with σ

- Add color 0 and maximize number of bicolored cycles

$$
\left\langle B_{\sigma}\right\rangle=\mid \text { subset of meanders with }|\sigma| \text { roads } \mid
$$

4D double-gon and meanders

- Add color 0
- Straighten cycle (34) and deform color 0 accordingly
- Remove colors 3, 4

4D double-gon and meanders

- Add color 0
- Straighten cycle (34) and deform color 0 accordingly
- Remove colors 3, 4

4D double-gon and meanders

- Let $\mathcal{M}_{\sigma_{\bullet}}$ the set of meandric systems

- Block decomposition σ has a block decomposition ($\sigma_{1}, \cdots, \sigma_{p}$) such that σ_{1} stabilizes $\left[1, i_{1}-1\right], \sigma_{2}$ stabilizes $\left[i_{1}, i_{2}-1\right]$ and so on
- σ is connected if it only stabilizes $[1, n]$
- Connected block decomposition σ has a unique maximal block decomposition
$\sigma=\left(\sigma_{1}, \ldots, \sigma_{p}\right)$ with all σ_{j} connected

Factorization

$$
\mathcal{M}_{\sigma_{1}} \times \cdots \times \mathcal{M}_{\sigma_{p}} \subset \mathcal{M}_{\sigma}
$$

1-reducible meandric system: 1 cut creates 2 disconnected pieces

- A Planar permutation π corresponds to a planar arch configuration $\mathrm{PI} \mathfrak{S}_{n}$ set of planar permutations
(Not a group for the composition, but for TL composition)
- There is a bijective map between

$$
\mathcal{M}_{\sigma_{1}} \times \cdots \times \mathcal{M}_{\sigma_{p}} \times \mathrm{PI} \mathfrak{S}_{p} \rightarrow \mathcal{M}_{\sigma}
$$

which implies

$$
\mathcal{M}_{\sigma}=\operatorname{Cat}_{p} \prod_{j=1}^{p} \mathcal{M}_{\sigma_{j}}
$$

Conclusion

- Colored triangulations are genuine generalization of maps
- Admit generalization of genus, but bubble-dependent
- Conjecture large class of tree-like behaviors in odd dim.
- Universality classes depend on bubbles in even dim., unlike 2D
- At least some enumeration is feasible in $\operatorname{dim} d>2$!
- Use of bijections with maps [generic case: VB \& L. Lionni]
- Beyond maximizing number of $(d-2)$-simplices in quartic case \rightarrow Topological recursion! [VB \& S. Dartois]
- More to be studied

