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Combinatorial maps

I Discrete surfaces made of gluings of polygons

I Have vertices, edges and faces

I Topological classification

F (M)− E (M) + V (M) = 2− 2g(M)

Universality

I Families differing microscopically have same macroscopic behavior

I Triangulations, p-angulations, generic maps

I Asymptotically

# planar p-angulations with n faces ∼ Kpρ
−n
p n−5/2

Exponent −5/2 is universal: independent of p



What do we know?
Maps: from Tutte to today

Enumeration

I Count maps with possible decorations (Ising, Potts, loops)

I Exact generating functions or their properties

I Random matrix model techniques

I Bijections [Cori-Vauquelin-Schaeffer, Bouttier-Di Francesco-Guitter]

I Tutte’s equations and topological recursion [Borot, Eynard, Orantin]

Physics motivations and applications

I Two-dimensional quantum gravity coupled to matter

I Liouville theory coupled to conformal field theories

I Statistical mechanics

I Celebrated KPZ relations



What do we know? II

Geometric applications of bijections

I Two-point, three-point functions

I Local limit

I Continuum limit [Brownian sphere]

Enumerative geometry

I Intersection numbers [Kontsevich-Witten]

I Hurwitz numbers

I Integrable hierarchies, etc.



What we want

Incorporate combinatorial maps into theory of higher-dimensional spaces

Let’s be realistic... What we can do:

I Natural families generalizing p-angulations

I Polygons become building blocks known as bubbles

I Schwinger-Dyson eqs generalizing loop eqs on generating functions

I Combinatorial extensions of Euler’s formula

I For some choice of building blocks, find equivalent of planar maps

I Universality classes
I Trees for large class of building blocks in 3d
I Trees, planar maps and trees of maps in even d

I Explicit enumeration

I Topological recursion applies on some cases
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Challenges

Difficult interplay between topology and combinatorics

I Numerous families of cellular complexes in topology

I Not designed for enumeration (too wild or too restrictive)

I Attempts at fixed topology
I locally constructible
I numerical simulations

I Maps are built regardless of topology

Random tensors

I Generalize famous relation between maps and random matrices to
random tensors

I This is our inspiration, but no techniques specific to random tensors

Two key properties

I Natural families to generalize p-angulations and study universality

I Combinatorial extension of genus instead of topological



Colored triangulations

I Introduced in topology (crystallization, graph-encoded manifold) in
80s because provide graphical representation of PL-manifolds!

I Closely related to Stanley’s balanced complexes
Difference here: vertices do not define a unique simplex

I Never considered for enumeration purposes

Colored simplex

I Faces have a color from {0, 1, . . . , d}
I (d − 2)-simplices have pairs of colors,

and so on
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Attaching map

I Unique gluing which respects all subcolorings
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Attaching map

I Unique gluing which respects all subcolorings
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Colored graphs

I Gluing determined by color of face

I Graphical representation
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The 2D case
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2p–angle

I Gluing of 2p triangles with boundary of color 0

I Dually: Components with all colors but 0
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The 3D case
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The 3D case
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Bubbles as building blocks

I Triang. dim. d = colored graphs with colors 0, 1, . . . , d

I Bubble = building block with all colors except 0

I All graphs obtained by gluing bubbles along edges of color 0
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I Bubble is determined by boundary triangulation



Bubbles

2d: determined by length
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Gurau’s degree theorem

I Finite set of bubbles B1,B2, . . . , graph G

I 2d: genus classification

Bound on (d − 2)-simplices
There exists ω(G ) ≥ 0

∆d−2(G )− d(d − 1)

4
∆d(G ) = d − ω(G ) ≤ d

I d = 2 ⇒ ω(G ) = 2g(G )

I For d ≥ 3, bound can be saturated only for melonic bubbles

I Maximizing graphs (melonic) are series–parallel

I Gurau–Schaeffer classification according to the degree

I Genuine combinatorial extensions of genus exist!



Towards other behaviors

I Melonic insertion
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I Colored triangulations built from non-melonic bubbles grow fewer
(d − 2)-simplices

I Need a bubble-dependent degree

∆d−2(G )− α(B1,B2, . . . )∆d(G ) = d − ωB(G ) ≤ d

with
α(B1,B2, . . . ) > d(d − 1)/4

I Finding α is challenging!

I Provides notion of higher-dimensional “planar” maps

I Identify graphs which maximize the bound



3D: 3 colors + 0

Melonic bubbles

I 2 parallel edges:
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I Partition into 2-edge-cuts

B

I Tree structure



3D with spherical bubbles

Conjecture/Work in progress

I Bubbles homeomorphic to 3-balls

I Same combinatorial result

I Maximizing edges

B

I 3-spheres

I Already proved for octahedra/bipyramids



4-edge-cut

I Bicolored cycles with colors 01, 02, 03 along each edge of color
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4-edge-cut

I What path do they follow on the right?
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4-edge-cut
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4-edge-cut

I At least 1 pair connected by two paths

01

01
02 02



4-edge-cut

I Perform a flip, increase number of bicolored cycles

I 4-edge-cut cannot happen
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Spherical bubbles

I Spherical bubble have planar boundary

I Colored graph is 3-regular, planar, bipartite

I Has either face of degree 2, or (at least six) faces of degree 4

I Perform two flips

I Number of bicolored cycles does not decrease
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Quartic case, d = 4

Melonic bubbles

i

→ i

Quadrangular bubbles

i

1

→ 1i



Bijection

I Cycles of color 0 and pairs of vertices → counter–clockwise star–map
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I In 2D, bubbles are quadrangles → Tutte’s bijection



Quartic case, d = 4

I Maps of arbitrary degree

I Monocolored edges, colors 1, 2, 3, 4

I Bicolored edges, colors 12, 13, 14

I Bicolored cycles (0c) are faces of color c

Maximizing triangles = maximizing faces

I Monocolored edges are bridges
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I Bicolored form planar components

I Bicolored types 1c and 1c ′ touch on cut–vertices
(similar to O(n) model on planar maps)



The quartic case
I Generating function of (rooted) maps for k types of bicolored edges

fk(t, λ) =
∑
M

t#edges λ#monocol. edges

I P(t) the generating function of planar non-separable maps

fk(t, λ) = 1 +

i

tλfk(t, λ)2 +

1i

k
(
P
(
tfk(t, λ)2

)
− 1
)

implies algebraicity{
tf 2 = u(1− u)2

f = k(1− u)(1 + 3u)− k + 1 + λu(1− u)2

I Generic planar maps for λ = 0 and k = 1

27t2A(t)2 + (1− 18t)A(t) + 16t − 1 = 0



Explicit singularity analysis for k = 1

I Quartic eq on f (t, λ)

I For λ < 3, singularity at t1(λ) = 27
4(λ+9)2

f (t, λ) =
4

27
(λ+ 9) +

16(λ+ 3)(λ+ 9)3

729(λ− 3)
(t1(λ)− t)

+
64(λ+ 9)11/2

6561(3− λ)5/2
(t1(λ)− t)3/2 + o

(
(t1(λ)− t)3/2

)
I For λ > 3, singularity at t2(λ) = λ

4(1+λ)2

f (t, λ) = 2
λ2 − 1

λ2
−4(1 + λ)2

λ5/2

√
λ2 − 2λ− 3 (t2(λ)−t)1/2+o

(
(t2(λ)−t)1/2

)
I λ = 3, proliferation of baby universes

f (t, λ = 3) =
16

9
− 128

35/3

( 3

64
− t
)2/3

+ o
(( 3

64
− t
)2/3)



Same results with respect to k

I λ = 0, no monocolored edges

I k small enough: universality class of maps

I k large enough: branching process and square–root singularity

I k critical: singularity exponent 2/3
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Summary of maximizing number of (d − 2)-simplices

3D

I Universality class of trees

I Conjectured for all spherical bubbles

4D

I Universality class depends on bubbles!

I Transitions between planar maps and trees

I Proliferation of baby universes

Colored triangulations offer a frame for exact solutions to higher dim.
spaces



1-bubble triangulations

I 2D unicellular maps have a single polygon

〈2n-gon〉 =
∑

perfect matchings of edges

N# vertices

= Harer-Zagier polynomial(N) = Nn+1
(
Catalan(n) +O(1/N)

)
I Generic case using bubble B

〈B〉 =
∑

Add edges color 0

N# bicolored cycles

I Various behaviors at large N

〈melon〉 = 1

〈
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1-bubble triangulations

I 2D unicellular maps have a single polygon

〈2n-gon〉 =
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N# vertices

= Harer-Zagier polynomial(N) = Nn+1
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∑

Add edges color 0
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I Various behaviors at large N
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4D double-gon

I 1 cycle (12), 1 cycle (34)

I cycle (34) obtained by permuting black vertices with σ
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I Add color 0 and maximize number of bicolored cycles

〈Bσ〉 = |subset of meanders with |σ| roads|



4D double-gon and meanders

I Add color 0

I Straighten cycle (34) and deform color 0 accordingly

I Remove colors 3, 4
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4D double-gon and meanders

I Add color 0

I Straighten cycle (34) and deform color 0 accordingly

I Remove colors 3, 4
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4D double-gon and meanders

I Let Mσ• the set of meandric systems

1• 1◦ n• n◦π(i)• i◦

σ−1
• ◦ π(i)•

I Block decomposition σ has a block decomposition (σ1, · · · , σp)
such that σ1 stabilizes [1, i1 − 1], σ2 stabilizes [i1, i2 − 1] and so on

I σ is connected if it only stabilizes [1, n]

I Connected block decomposition σ has a unique maximal block
decomposition
σ = (σ1, . . . , σp) with all σj connected



Factorization

Mσ1 × · · · ×Mσp ⊂Mσ

1-reducible meandric system: 1 cut creates 2 disconnected pieces

I A Planar permutation π corresponds to a planar arch configuration
PlSn set of planar permutations
(Not a group for the composition, but for TL composition)

I There is a bijective map between

Mσ1 × · · · ×Mσp × PlSp → Mσ

which implies

Mσ = Catp

p∏
j=1

Mσj



Conclusion

I Colored triangulations are genuine generalization of maps

I Admit generalization of genus, but bubble-dependent

I Conjecture large class of tree-like behaviors in odd dim.

I Universality classes depend on bubbles in even dim., unlike 2D

I At least some enumeration is feasible in dim d > 2!

I Use of bijections with maps [generic case: VB & L. Lionni]

I Beyond maximizing number of (d − 2)-simplices in quartic case
→ Topological recursion! [VB & S. Dartois]

I More to be studied


