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RSK-algorithm ( Robinson, Schensted, Knuth, Fomin, Fulton,
Viennot).
Stanley, “Enumerative combinatorics”, Chapter 7; Fomin
growth diagrams.
Exposition for Schur processes with alpha- and
beta-specializations:
Betea-Boutillier-Bouttier-Chapuy-Corteel-Vuletic’14,
Matveev-Petrov’15.
INPUT: three Young diagrams µ ≺ λ, µ ≺ ν, r ∈ Z≥0.
OUTPUT: Young diagram ρ such that λ ≺ ρ, ν ≺ ρ, also
∣ρ∣ − ∣λ∣ = ∣ν∣ − ∣µ∣ + r .
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MICROUPDATE; INPUT: µ̃, λ̃, j such that µ̃ ≺ λ̃, µ̃ has length
N , λ̃ has length N + 1; 1 ≤ j ≤ N .
OUTPUT: updated µ̃ ≺ λ̃.

IF λ̃j > µ̃j THEN λ̃j+1 ↦ λ̃j+1 + 1.
ELSE λ̃j ↦ λ̃j + 1. (we have λ̃j = µ̃j in this case)
DO: µ̃j ↦ µ̃j + 1
Examples: MU [(2,5) ≺ (1,3,6),2] = (3,5) ≺ (2,3,6),
MU [(2,5) ≺ (1,2,6),2] = (3,5) ≺ (1,3,6)
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RSK algorithm

INPUT: µ ≺ λ, µ ≺ ν, r ∈ Z≥0. OUTPUT: ρ such that λ ≺ ρ,
ν ≺ ρ, also ∣ρ∣ − ∣λ∣ = ∣ν∣ − ∣µ∣ + r .

We think about µ and ν as about signatures of length N , and
about λ and ρ as signatures of length N + 1.

ALGORITHM:

ASSIGN: µ̃ ∶= µ, λ̃ ∶= λ.
DO MU(µ̃, λ̃,N) exactly νN − µN times.
DO MU(µ̃, λ̃,N − 1) exactly νN−1 − µN−1 times.
. . .
DO MU(µ̃, λ̃,1) exactly ν1 − µ1 times.
DO λ̃1 ↦ λ̃1 + r .
OUTPUT: ρ ∶= λ̃.



Example

µ = (2,5), λ = (1,3,6), ν = (4,7), r = 3.
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OUTPUT: ρ = (2,5,10).
Notation: RSK(µ,λ, ν, r) = ρ.



Inversion

Proposition 1: Given ρ, ν, λ such that ν ≺ ρ, λ ≺ ρ there exists
a unique Young diagram µ and a unique r ∈ Z≥0 such that
RSK(µ,λ, ν, r) = ρ.
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PROOF: The move λ1 → ρ1 is affected only by the move
µ1 → ν1, so rules of the jumps imply r = ρ1 −max(λ1, ν1)
Each micro update can be inverted.
Basically, we just need to rotate a picture by 180 degrees and
use the same rules.



λ = (1,3,6), ν = (4,7), ρ = (2,5,10).
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COROLLARY: For any λ, ν we construct a bijection between
pairs (µ, r) which satisfy µ ≺ λ, µ ≺ ν, r ∈ Z≥0 and ρ such that
λ ≺ ρ, ν ≺ ρ.
This bijection has a property ∣ρ∣ − ∣λ∣ = ∣ν∣ − ∣µ∣ + r .
Our next goal is to construct the RSK field λ(k , l), k , l ∈ Z≥0
given the a field of inputs rkl , k , l ∈ Z≥0.
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Set λ(k ,0) = ∅, λ(0, k) = ∅, for any k ∈ Z≥0. Then, define
inductively

λ(k + 1, l + 1) = RSK(λ(k , l), λ(k , l + 1), λ(k + 1, l), rkl).

That is, we add boxes one by one using elementary steps
described before.
Note that by construction for any (k , l) we have
λ(k , l) ≺ λ(k + 1, l), λ(k , l) ≺ λ(k , l + 1).

∅

∅

(0,0)

r11 r21 r31 r41

r12 r22 r32 r42

r13 r23

λ(1,1) λ(2,1) λ(3,1) λ(4,1)

λ(1,2) λ(2,2) λ(3,2) λ(4,2)

λ(1,3) λ(2,3)



∅

∅

(0,0)

r11 r21 r31 r41

r12 r22 r32 r42

r13 r23

λ(1,1) λ(2,1) λ(3,1) λ(4,1)

λ(1,2) λ(2,2) λ(3,2) λ(4,2)

λ(1,3) λ(2,3)

For this example we have

∅ ≺ λ(1,3) ≺ λ(2,3) ≻ λ(2,2) ≺ λ(3,2) ≺ λ(4,2) ≻ λ(4,1) ≻ ∅

We have already seen such interlacing arrays...



Let us fix a down-right path C on the grid.
PROPOSITION 2: We have a bijection between
{rij ∶ (i , j) below C , rij ∈ Z≥0} and
{λ(k , l) ∶ (k , l) ∈ C , interlacing constraints} such that for any
k ∈ Z≥1 we have

∑
j ∶(kj) below C

rkj = ∣λ(k ,L)∣ − ∣λ(k ,L − 1)∣,

for a unique L such that both (k − 1,L) ∈ C , (k ,L) ∈ C , and
for any l ∈ Z≥1 we have:

∑
i ∶(il) below C

ril = ∣λ(K , l)∣ − ∣λ(K − 1, l)∣,

for a unique K such that both (K , l) ∈ C , (K − 1, l) ∈ C .



Proof of Proposition 2: Sequential use of Proposition 1 and
the property ∣ρ∣ − ∣λ∣ = ∣ν∣ − ∣µ∣ + r for each box (ij) below C .

Corollary: The same statement for C which first makes all
steps to the right, and then makes all steps down (this is a
typical form of RSK).

Applications to Schur measures and Schur processes.

Recall that sλ/µ(a) = a∣λ∣−∣µ∣.



Schur measure with alpha-parameters a1, . . . , aM > 0 and
b1, . . . ,bN > 0:

Prob(λ) ∼ sλ(a1, . . . , aM)sλ(b1, . . . ,bN)
= ∑
λ(1,N),...,λ(M−1,N),λ(M,N−1),...

a
∣λ(1,N)∣−∣λ(0,N)∣
1 a

∣λ(2,N)∣−∣λ(1,N)∣
2

× . . . a∣λ(M,N)∣−∣λ(M−1,N)∣
M b

∣λ(M,N)∣−∣λ(M,N−1)∣
N . . .b

∣λ(M,1)∣−∣λ(M,0)∣
1 .

such that λ = λ(M ,N) and

∅ = λ(0,N) ≺ λ(1,N) ≺ ⋅ ⋅ ⋅ ≺ λ(M ,N)
≻ λ(M ,N − 1) ≻ ⋅ ⋅ ⋅ ≻ λ(M ,0) = ∅



Note that expressions like ∣λ(k + 1,N)∣ − ∣λ(k ,N)∣ are exactly
the sums of rij .

Consider a down-right path C consisting of M steps to the
right, then N steps down. If each integer rij has weight
(aibj)rij , then the product of these weights over (i , j) equals
one term in the sum for the product of Schur functions (by
Proposition 2) !

Also, by Proposition 2 we have bijections with integer arrays.

Proposition 3 a: Let rij be independent random variables with
geometric distribution Prob(rij = x) = (1 − aibj)(aibj)x ,
x = 0,1,2, . . . . Then λ(M ,N) is distributed according to the
Schur measure with parameters a1, . . . , aM ,b1, . . . ,bN .



Proposition 3 b: Let rij be independent random variables with
geometric distribution Prob(rij = x) = (1 − aibj)(aibj)x . For
any M1 ≥M2 ≥Mk and N1 ≤ N2 ≤ ⋅ ⋅ ⋅ ≤ Nk the random Young
diagrams are distributed according to the Schur process with
specializations ρ+0 = {a1, . . . , aMk

}, ρ−1 = {bNk
, . . . ,bNk−1+1}, . . . ,

ρ+k−1 = {aM2+1, . . . , aM1}, ρ−k = {bN1 , . . . ,b1}.

Idea of proof: First, we check the statements for {(Mi ,Ni)}
such that (Mi+1,Ni+1) − (Mi ,Ni) = (1,0) or (0,−1). For such
collections this is a corollary of Proposition 2 (also note that
many specializations are “empty” for such paths).
For arbitrary {(Mi ,Ni)} we first consider them as a subset of
a larger collection with property
(Mi+1,Ni+1) − (Mi ,Ni) = (1,0) or (0,−1), and then use
(combinatorial) definition of skew Schur functions.



Corrolary: The partition function for Schur measure with
parameters a1, . . . , aM , b1, . . . ,bN is ∏i≤M,j≤N(1 − aibj)−1.
Thus, we proved Cauchy identity.

Corrolary: The partition function for Schur process
“associated” with down-right path C is

∏
(i , j) below C

(1 − aibj)−1

This gives a method how to generate Schur process with
alpha-specialisations. The same scheme can be applied to
arbitrary specializations (one needs an another basic step to
add β-parameter; and one needs a degeneration to obtain
γ-parameter).



Consider a matrix {rij}1≤i≤M,1≤j≤N and define the quantity

G(M ,N) = max
P: up-right path (1,1) → (M ,N)

∑
(i ,j)∈P

rij .

Example: G(2,2) = 4, G(3,2) = 8, G(2,3) = 6, G(3,3) = 9.

2 1 0

0 1 4

3 1 1

Last Passage Percolation.



Proposition 4: For a matrix {rij}1≤i≤M,1≤j≤N let λ(M ,N) be a
Young diagram constructed by RSK algorithm. Then

G(M ,N) = λ1(M ,N)

Proof: We have

G(k + 1, l + 1) = max(G(k + 1, l),G(k , l + 1)) + rkl

λ1(k + 1, l + 1) = max(λ1(k + 1, l), λ1(k , l + 1)) + rkl .

Thus, the statement follows by induction.

If rij are geometrically distributed, then the first row of a
random Young diagram distributed according to the Schur
measure describes the last passage percolation.



All previous discussion was based on a specific choice of RSK
operation
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We discussed row insertion RSK. There are also several other
versions.

Properties of column insertion RSK

1) it is described by the same picture (all interlacing conditions
are the same).

2) Propositions 1,2,3 are the same (inversion, bijection,
sampling of Schur processes with alpha-specializations).

3) Proposition 4 takes a different form.



As before, let {rij}1≤i≤M,1≤j≤N be a matrix with non-negative
values, and define

r̂ij =
⎧⎪⎪⎨⎪⎪⎩

1, if rij ≥ 1

0, if rij = 0

Let us consider the following picture:

Dots represent the places of 4 × 4 matrix where r̂ij = 1.



Rules:
— up-right paths coming from the left; no more that one line
on each level;
— all horizontal levels are occupied on the left;
— if a horizontal line meets a dot and there is no vertical line
coming from below, then this horizontal line goes up to the
first not occupied level, where it turns right.



Let H(M ,N) be the number of vertical lines coming from the
segment [(0,N); (M ,N)].

In this example H(1,1) = 0, H(2,1) = 1, H(3,2) = 2,
H(4,2) = 2, H(4,4) = 3.



Proposition 4b: For a matrix {rij}1≤i≤M,1≤j≤N let λ(M ,N) be a
Young diagram constructed by (column insertion) RSK
algorithm, and let H(M ,N) be defined through {r̂ij} as
discussed. Then

H(M ,N) = λ′1(M ,N)

Once the (column) RSK is defined, the proof goes by exactly
the same scheme...
Let us interpret this result probabilistically. Again, let rij be
sampled by independent geometric distributions. We know
that we have no dot at some point with probability
Prob(rij = 0) = (1 − aibj) and we have a dot with probability
(aibj). Therefore, this model can be interpreted as a result
about stochastic five-vertex model...



1 1 1 − aibj aibj 0 1



Corollary of Proposition 4b: A height function of a stochastic
five-vertex model H(M ,N) with weights has the same
distribution as λ′1(M ,N), where λ is distributed according to
the Schur measure with parameters a1, . . . , aM , b1, . . . ,bN .
One of weights of vertices was zero. What if all weights are
non-zero ?
Six vertex models are of interest as models of statistical
mechanics (“square ice”).
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We will consider one particular model: for 0 < t < 1 let the
weights have the form

1 1
1−aibj
1−taibj

(1−t)aibj
1−taibj

t(1−aibj)
1−taibj

1−t
1−taibj

This is a stochastic six-vertex model introduced by
Gwa-Spohn’92, and recently studied in
Borodin-Corwin-Gorin’14.
This is not a Schur process (we do not have determinants...).
However, it can be analyzed via quite similar tools coming
from the algebra of symmetric functions.
We need to use not Schur, but Hall-Littlewood functions.



Hall-Littlewood functions have a form

Pλ(x1, . . . , xN) ∶= c(λ) ∑
σ∈Sn

σ (∏
i<j

xi − txj
xi − xj

xλ11 . . . xλNN ) ,

where σ permutes indices.

For t = 0 we have Pλ = sλ, for t = 1 we have Pλ = mλ.

{Pλ}λ∈Y form a basis in symmetric functions.

One has formulas for linear expansions of PµP(r) and
PµP(1,...,1) in linear combinations of Pλ’s.

Combinatorial formula for Pλ — the sum is over interlacing
arrays, but each interlacing array has a weight which depends
on t.



Qλ ∶= c2(λ)Pλ — another version of Hall-Littlewood functions.

Pλ/µ, Qλ/µ — skew Hall-Littlewood functions.

Cauchy identity:

∑
λ

Pλ(x1, . . . , xN)Qλ(y1, . . . , yN) =∏
i ,j

1 − txiyj
1 − xiyj

Identities for skew Hall-Littlewood functions.



Specializations

Hall-Littlewood positive specializations — classification is not
known. Only conjecture:
For α1 ≥ α2 ≥ ⋅ ⋅ ⋅ ≥ 0, β1 ≥ β2 ≥ ⋅ ⋅ ⋅ ≥ 0, γ > 0 the specializations

p1 ↦∑
i

αi +
1

1 − t
∑
i

βi + γ

pk ↦∑
i

αk
i +

(−1)k−1
1 − tk

∑
i

βk
i .

are HL-positive. Kerov’s conjecture: this list is exhaustive.



Hall-Littlewood measure: for two HL-positive specializations s1
and s2 we have

Prob(λ) ∼ s1(Pλ)s2(Pλ), λ ∈ Y.

In the case of alpha-specializations with parameters a1, . . . , aM ,
and b1, . . . ,bN it takes the form

Prob(λ) =∏
i ,j

1 − aibj
1 − taibj

Pλ(a1, . . . , aM)Pλ(b1, . . . ,bN).

One can also similarly define Hall-Littlewood processes
(subclass of Macdonald processes studied in
Borodin-Corwin’11).



1 1
1−aibj
1−taibj

(1−t)aibj
1−taibj

t(1−aibj)
1−taibj

1−t
1−taibj

Fact: the height function H(M ,N) for a stochastic six vertex
model with weights above is distributed as λ′1(M ,N), where λ
is distributed as Hall-Littlewood measure with parameters
a1, . . . , aM , b1, . . . ,bN .
Fact: More generally, for M1 ≥ ⋅ ⋅ ⋅ ≥Mk and N1 ≤ ⋅ ⋅ ⋅ ≤ Nk the
height functions {H(Mi ,Ni)} is distributed as first columns of
diagrams from Hall-Littlewood process (proved in
Borodin-Bufetov-Wheeler’16).



1 1
1−aibj
1−taibj

(1−t)aibj
1−taibj

t(1−aibj)
1−taibj

1−t
1−taibj

Fact: HL-RSK algorithm which proves these facts
(Bufetov-Matveev’17+, in progress).

Recent RSK-algorithms for generalizations of Schur functions:
O’Connell-Pei’12, Borodin-Petrov’13, Bufetov-Petrov’14,
Matveev-Petrov’15.

The idea is to consider a random basic step, not a
deterministic one.


