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I-Brownian motions in Weyl chambers and representation theory

1) Conditioned random walks and representation theory (Ph. Biane)
- Lie algebra sl>(C) = {M € M(C) : tr(M) =0}
- For x € N, Vi : x + 1 dimensional irreducible complex representation of
S[Q(C).
- Clebsch-Gordan rules :

Vx ® Vl - Vx+1 7 Vx717

x €N (Vo1 = {0}).
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1) Conditioned random walks and representation theory (Ph. Biane)
- Lie algebra sl>(C) = {M € M(C) : tr(M) =0}
- For x € N, Vi : x + 1 dimensional irreducible complex representation of
S[Q(C).
- Clebsch-Gordan rules :

Vx ® Vl - Vx+1 7 Vx717

x € N (V-1 ={0}).
- For g > 1, x € N, the character :

chi (@) =g +q 4 g =T g (g)

Clebsch-Gordan rules : for x € N, (s_1 = 0).

Sx(q)Sl(Q) - 5X+1(q) + Sxfl(q)7
s+1(q) s-1(q)
sx(q)s1(q)  s<(q)si(q)




I-Brownian motions in Weyl chambers and representation theory

- A simple random walk (with drift) on Z conditioned to remain non
negative, with a Markov kernel on N

% sy(q)
K(x,y) = 4 1y _xj=1, X,y €N.
(v s«(q)s1(q) = Y
- wheng=1

7 y+1
K(x,y) = 57—1jy-x-1, X,y EN.
(o) = sy tvr=e XV E



I-Brownian motions in Weyl chambers and representation theory

- For xp € N, x € N, Clebsch-Gordan rules :

5(@)50(a) = 3 MLy (a).

yeN

- Markov kernel on N

~ S, (q)
K = 07 m e N.
(X>y) Sx( )SXO( ) Xoxgr XY



I-Brownian motions in Weyl chambers and representation theory

2) Conditioned Brownian motion
For ()A<,,) the conditioned random walk, with g = e\lﬁ, v >0,

X, N
(2 e > 0) — (B, t>0),
n— o0

NG

where (E;’) is a Brownian motion with drift 7, conditioned to remain positive.
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I-Brownian motions in Weyl chambers and representation theory

2) Conditioned Brownian motion
For ()A<,,) the conditioned random walk, with g = e\lﬁ, v >0,

Xing 5
t>0) — (B/,t>
(\/57 _0)n—>oo(t’ _0)7
where (E;’) is a Brownian motion with drift 7, conditioned to remain positive.
Its transition densities (p;) are

—2vy

lst(xmy) = ﬁp?(xa.VL

2

p?(X7y):pt(X7y)767 ’Yxpt(i)(?y)a X7y7t>0'

When v =0,
Y
X

pe(x,¥) = =(pe(x,¥) — pe(x,—y)), x,y,t>0.



I-Brownian motions in Weyl chambers and representation theory

3) Affine Lie algebra sl(C) (C. Lecouvey, E. Lesigne, M. Peigné)
- 5(C) = Clz, 271 ® s1,(C) @ Cc @ Cd, where C[z, z™!] is the algebra of
Laurent polynomials in z, + bracket.

1 0
0 -1

A Cartan subalgebra : h = C ( > @ Ccep Cd

- Weights :
P:{on+y%+zé:x,y€N}Cb*

- Dominant weights :

P+:{x/\o+y%—|—25:0§y§x}ﬂP
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3) Affine Lie algebra sl(C) (C. Lecouvey, E. Lesigne, M. Peigné)
- 5(C) = Clz, 271 ® s1,(C) @ Cc @ Cd, where C[z, z™!] is the algebra of
Laurent polynomials in z, + bracket.

1 0

- A Cartan subalgebra : h =C (0 1

>@Cc@(€d

- Weights :
P:{on+y%+zé:x,y€N}Cb*

- Dominant weights :

P+:{x/\o+y%—|—25:0§y§x}ﬂP

Integrable highest-weight modules Vi, A € Py.
- Characters : for A € Py, chy =35, mx(B)e”.

- One has
cha(h) =" my(B)e”? < o,

BepP
forh=rd+...,r>0.



I-Brownian motions in Weyl chambers and representation theory

Forh=rd, r >0

chx(h)cha,(h) = ZmAAochB
pep

- Remark : A=xNg+---=B=(x+1)NAo+...



I-Brownian motions in Weyl chambers and representation theory

Forh=rd, r >0

chx(h)cha,(h) = ZmAAochB
pep

- Remark : A=xNg+---=B=(x+1)NAo+...

- Markov Kernel on P, :

; _ chg(h) s
KOB) = G th)chng () ™0 MO € P

- Remark:)A(O:O,)A(,,:n/\oJr....



I-Brownian motions in Weyl chambers and representation theory

1) A conditioned Space-Time Brownian motion
Convergence of the conditioned Markov chain (X, t > 0) when n goes to
inifnity :
-Forh=2d f+1-2a=0,ac[1/2,1],
o4

1 ~
— Xnt] 25 toolo + &2 mod §
ne n— oo 2

- For h=1%d

el

1~
“Xig —5 tho+ %2 mod §
n n— oo 2

~Forh=1d f+1-2a=0 a>1 (X =n"Ao),

(651

3 mod ¢

1 ~ N
=Xy 5> Mo+ X
n n— oo
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1) A conditioned Space-Time Brownian motion
Convergence of the conditioned Markov chain (X, t > 0) when n goes to
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- For h=1d

Y

1~
= Xint] L tho+ K2 mod s
n n—o00 2

~Forh=1d f+1-2a=0 a>1 (X =n"Ao),

(651

3 mod ¢

1 ~ N
=Xy 5> Mo+ X
n n— oo



[1-Bessel 3 and positive conditioned Brownian motion.

1) Radial part
- SU(2) = {M e M(C) : MM* = |, det(M) = 1}
- su(2) ={M e My(C) : M+ M* =0, tr(M) =0}
={M= (iylj(rz lyiiXZ> , x,y,z € R}
Adjoint action : Ad(k)M = kMk*, k € SU(2), M € su(2)
ir 0
0 —ir

- Radial part : rad(M) = (I(; 0. ) ,r=/2+y2+ 22

—Ir

VM € su(2)3lr € Ry :M:k( )k*,for some k € SU(2).



I1-Bessel 3 and positive conditioned Brownian motion

2) Radial part of a Brownian motion on su(2)
- A Brownian motion on su(2) : by = < X e Zt), t>0
1yt + Z¢ —IX¢

- The radial part process :
0 —i/X2+y24+z22) T

- (V/x2+ y% + z%,t > 0) : Brownian motion conditioned to remain positive



I1-Bessel 3 and positive conditioned Brownian motion

3) What did we do?
- K = SU(2) a compact Lie group, ¢ = su(2) its Lie algebra.
-h= {<IX O. > : x € R}, a Cartan subalgebra.
0 —ix
- An adjoint action Ad : K — GL(¥)
W = t/Ad(K) = {(’g 0 ) - x > 0}, a Weyl chamber

—ix
- Equipp ¢ with a scalar product (M, N) = %tr(MN).



I1-Bessel 3 and positive conditioned Brownian motion

3) What did we do?
- K = SU(2) a compact Lie group, ¢ = su(2) its Lie algebra.
-h= {<IX O. > : x € R}, a Cartan subalgebra.
0 —ix
- An adjoint action Ad : K — GL(¥)
W = t/Ad(K) = {(’g 0 ) - x > 0}, a Weyl chamber

—ix
- Equipp ¢ with a scalar product (M, N) = %tr(MN).

(bt)e>0 Brownian motion on su(2) —  (re)e>o radial part process on W.
l projection of (bt)¢>0 on b <

(xt)t>0 Brownian motion on § —  (xt)e>0 conditioned to remain in W



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

(Pressley, Segal)

1) Affine Lie algebra and Coadjoint action of the loop group.
- LSU(2) ={f :[0,1] — SU(2) : f(0) = f(1)} + regularities
- Lsu(2) = {f :[0,1] — su(2) : £(0) = f(1)} + regularities.

- scalar product (.,.) on su(2).
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(Pressley, Segal)

1) Affine Lie algebra and Coadjoint action of the loop group.
- LSU(2) = {f :[0,1] — SU(2) : f(0) = f(1)} + regularities
- Lsu(2) = {f :[0,1] — su(2) : £(0) = f(1)} + regularities.
- scalar product (.,.) on su(2).
- (Real) Affine Lie algebra Lsu(2) & Rc, with Lie bracket

[§+ Acyn + pc] = [, 1] + w(€,n)c,

w(&n) = [; (€ (8)n(t)) dt.
- Coadjoint action of £LSU(2) on Lsu(2)" & RAg
(Mo(c) =1, No(Lsu(2)) = 0) :

1
7.(6+ Mo) = [Ad* (7)) — A / (vrs,) ds] + Mo,

where v € LSU(2), ¢ € Lsu(2)', x € Lsu(2), A € R, and
Ad* (7)b(x) = ¢(v~x7).



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

2) Coadjoint orbit and Radial part
Now, Lsu(2) is the completion of the previous one equipped with the Ly norm.
Consider the Cameron-Martin space

H' = {x:[0,1] — su(2) : x(0) = 0, x € Lo}



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

2) Coadjoint orbit and Radial part
Now, Lsu(2) is the completion of the previous one equipped with the Ly norm.
Consider the Cameron-Martin space

H' = {x:[0,1] — su(2) : x(0) = 0, x € Lo}

For x € H', given A > 0, the action of £LSU(2) on ¢x € Lsu(2)', defined by
1
6= [ tei)ds. yels
0
is given by
1
’Y((z)x + )\/\0) = / (-7'75)'(5')’571 — )\’Y;’y;l) ds + )\/\0,
0

for v € LSU(2), /v ' € L,.



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

Lsu(2) ®RAo ~ H' @ RAo

For A > 0, x € H', denotes by ¢(x + M) the solution of

Ade(x + Mo) = e(x + Ao) dx,
with initial condition e¢(x + AM\o)o = e.



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

Lsu(2) ®RAo ~ H' @ RAo

For A > 0, x € H', denotes by ¢(x + M) the solution of

Ade(x + Mo) = e(x + M) dx,
with initial condition e¢(x + AM\o)o = e.
Proposition

The linear form ¢« + Ao and ¢, + A\ are in the same orbit for the action of
LSU(2) if and only if the endpoint e(x + AM\o)1 and e(y + AM\o)1 are in the
same orbit for the adjoint action of SU(2) on itself.



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

Definition
For A > 0, x € H, one defines the radial part of ¢, + M\ as the linear form

r. + Mo, where where 1, (¢) = ¢ (77 O

0 —i7rr>’ t € [0,1], and r is the unique

real number in [0, A] such that

iT

e 0 N
E(X-i-)\/\o)l:k( 0 e_m&)k,

>~

for some k € SU(2). It is denoted by rad(¢px + AM\o) or rad(x + Ao).



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

3) Restriction to a Cartan sub-algebra of Lsu(2) @ Rec.
- A Cartan sub-algebra ~ h & Rc.
- (A B) = ﬁtr(AB*), A, B € su(2).
iu 0

- a1 € b* defined by a1(H,) = 22, for H, = (0 —iu) )



[1l-Loop groups and Loop Algebras : Coadjoint orbit and Radial part

3) Restriction to a Cartan sub-algebra of Lsu(2) @ Rec.
- A Cartan sub-algebra ~ h & Rc.
- (A, B) = 2tr(AB ), A, B € su(2).
- oy € b” defined by a1(H.) = 22, for H, (Ig _0’.u> .
For A > 0, r € [0, ], one has
(br, + Mo)jpre = r& AN € WP

where W2 = {AMo +r%L : 0 < r <A} C h* @ RAo.



IV- Radial part of a Brownian path on su(2)

(I. Frenkel)

Definition
For A > 0, and x = (xs)se[o,1) @ su(2)-valued Brownian motion, one defines the
radial part of (x + M) as the unique real number r in [0, \] such that

iT

X 0 «
E(X+)\/\0)1 =k ( 0 e_,'7r§> k 5
for some k € SU(2), where e(x + M\o):1 is the solution of the SDE
Ade(x + M) = e(x + M) o dx,

with initial condition e(x + AM\o)o = e. It is denoted by rad(x + A/\o).



V- Radial part process associated to a Brownian sheet on su(2)

Proposition
Let (x{)seo,1),ccr, be a standard Brownian sheet on su(2). Then

tho + rad(x" + t/\o)%, t>0,
is a space-time Brownian motion
[e51 t
tAO + bt? = t/\(] + (Xl, )|h7 t> O,

conditioned to remain in the affine Weyl chamber W37 .



V- Radial part process associated to a Brownian sheet on su(2)

What did we do?

" Brownian motion on RAq & Lsu(2)" " Radial part process on W27,
tAo+f0 ,dxf),t>0 —  (tho+r%),t>0.

l restriction to h & Rc 4
Brownian motion on RAy & b~ Brownian motion on RAg & h*
tho + (xi,.)jp, t > 0. —  conditioned to remain in W2



