Space-time Brownian motion in an affine Weyl chamber and radial part of an Hermitian Brownian sheet.

M. Defosseux

IHP, feb. 23th 2017

- 1) Conditioned random walks and representation theory (Ph. Biane)
 - Lie algebra $\mathfrak{sl}_2(\mathbb{C})=\{M\in\mathcal{M}_2(\mathbb{C}): \operatorname{tr}(M)=0\}$
 - For $x \in \mathbb{N}$, $V_x : x+1$ dimensional irreducible complex representation of $\mathfrak{sl}_2(\mathbb{C})$.
 - Clebsch-Gordan rules :

$$V_x \otimes V_1 = V_{x+1} \oplus V_{x-1},$$

$$x \in \mathbb{N} \ (V_{-1} = \{0\}).$$

- 1) Conditioned random walks and representation theory (Ph. Biane)
 - Lie algebra $\mathfrak{sl}_2(\mathbb{C})=\{M\in\mathcal{M}_2(\mathbb{C}): \mathsf{tr}(M)=0\}$
 - For $x \in \mathbb{N}$, $V_x : x+1$ dimensional irreducible complex representation of $\mathfrak{sl}_2(\mathbb{C})$.
 - Clebsch-Gordan rules :

$$V_x \otimes V_1 = V_{x+1} \oplus V_{x-1},$$

$$x \in \mathbb{N} \ (V_{-1} = \{0\}).$$

- For $q \geq 1$, $x \in \mathbb{N}$, the character :

$$\mathsf{ch}_{V_{\mathsf{x}}}(q) = q^{\mathsf{x}} + q^{\mathsf{x}-2} + \dots + q^{-\mathsf{x}} = \frac{q^{\mathsf{x}+1} - q^{-(\mathsf{x}+1)}}{q - q^{-1}} = s_{\mathsf{x}}(q)$$

- 1) Conditioned random walks and representation theory (Ph. Biane)
 - Lie algebra $\mathfrak{sl}_2(\mathbb{C})=\{M\in\mathcal{M}_2(\mathbb{C}): \mathsf{tr}(M)=0\}$
 - For $x \in \mathbb{N}$, $V_x : x+1$ dimensional irreducible complex representation of $\mathfrak{sl}_2(\mathbb{C})$.
 - Clebsch-Gordan rules :

$$V_x \otimes V_1 = V_{x+1} \oplus V_{x-1},$$

$$x \in \mathbb{N} \ (V_{-1} = \{0\}).$$

- For $q \geq 1$, $x \in \mathbb{N}$, the character :

$$\operatorname{ch}_{V_x}(q) = q^x + q^{x-2} + \cdots + q^{-x} = \frac{q^{x+1} - q^{-(x+1)}}{q - q^{-1}} = s_x(q)$$

- Clebsch-Gordan rules : for $x \in \mathbb{N}$, $(s_{-1} = 0)$.

$$\begin{split} s_x(q)s_1(q) &= s_{x+1}(q) + s_{x-1}(q), \\ 1 &= \frac{s_{x+1}(q)}{s_x(q)s_1(q)} + \frac{s_{x-1}(q)}{s_x(q)s_1(q)}. \end{split}$$

- A simple random walk (with drift) on $\mathbb Z$ conditioned to remain non negative, with a Markov kernel on $\mathbb N$

$$\widehat{K}(x,y) = \frac{s_y(q)}{s_x(q)s_1(q)} 1_{|y-x|=1}, \quad x,y \in \mathbb{N}.$$

- when q=1

$$\widehat{K}(x,y) = \frac{y+1}{2(x+1)} \mathbb{1}_{|y-x|=1}, \quad x,y \in \mathbb{N}.$$

- For $x_0 \in \mathbb{N}$, $x \in \mathbb{N}$, Clebsch-Gordan rules :

$$s_{\scriptscriptstyle X}(q)s_{\scriptscriptstyle X_0}(q) = \sum_{y\in\mathbb{N}} m_{\scriptscriptstyle X,X_0}^y s_y(q).$$

- Markov kernel on N

$$\widehat{K}(x,y) = \frac{s_y(q)}{s_x(q)s_{x_0}(q)}m_{x,x_0}^y, \quad x,y \in \mathbb{N}.$$

2) Conditioned Brownian motion

For (\widehat{X}_n) the conditioned random walk, with $q=e^{\frac{\gamma}{\sqrt{n}}},\,\gamma\geq 0$,

$$(rac{\widehat{X}_{[nt]}}{\sqrt{n}}, t \geq 0) \underset{n \to \infty}{\longrightarrow} (\widehat{B}_t^{\gamma}, t \geq 0),$$

where (\widehat{B}_t^γ) is a Brownian motion with drift γ , conditioned to remain positive.

2) Conditioned Brownian motion

For (\widehat{X}_n) the conditioned random walk, with $q=e^{\frac{\gamma}{\sqrt{n}}}$, $\gamma\geq 0$,

$$(rac{\widehat{X}_{[nt]}}{\sqrt{n}}, t \geq 0) \underset{n \to \infty}{\longrightarrow} (\widehat{B}_t^{\gamma}, t \geq 0),$$

where (\widehat{B}_t^{γ}) is a Brownian motion with drift γ , conditioned to remain positive. Its transition densities (\widehat{p}_t) are

$$\begin{split} \hat{p}_t(x,y) &= \frac{1 - e^{-2\gamma y}}{1 - e^{-2\gamma x}} p_t^0(x,y), \\ p_t^0(x,y) &= p_t(x,y) - e^{-2\gamma x} p_t(-x,y), \quad x,y,t > 0. \end{split}$$

2) Conditioned Brownian motion

For (\widehat{X}_n) the conditioned random walk, with $q=e^{\frac{\gamma}{\sqrt{n}}}$, $\gamma\geq 0$,

$$(rac{\widehat{X}_{[nt]}}{\sqrt{n}}, t \geq 0) \underset{n \to \infty}{\longrightarrow} (\widehat{B}_t^{\gamma}, t \geq 0),$$

where (\widehat{B}_t^{γ}) is a Brownian motion with drift γ , conditioned to remain positive. Its transition densities (\widehat{p}_t) are

$$\begin{split} \hat{p}_t(x,y) &= \frac{1 - e^{-2\gamma y}}{1 - e^{-2\gamma x}} p_t^0(x,y), \\ p_t^0(x,y) &= p_t(x,y) - e^{-2\gamma x} p_t(-x,y), \quad x,y,t > 0. \end{split}$$

When $\gamma = 0$,

$$\hat{p}_t(x,y) = \frac{y}{x}(p_t(x,y) - p_t(x,-y)), \quad x,y,t > 0.$$

- 3) Affine Lie algebra $\hat{\mathfrak{sl}}_2(\mathbb{C})$ (C. Lecouvey, E. Lesigne, M. Peigné)
 - $\hat{\mathfrak{sl}}_2(\mathbb{C}) = \mathbb{C}[z,z^{-1}] \otimes \mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}c \oplus \mathbb{C}d$, where $\mathbb{C}[z,z^{-1}]$ is the algebra of Laurent polynomials in z, + bracket.
 - A Cartan subalgebra : $\mathfrak{h}=\mathbb{C}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\oplus\mathbb{C}c\oplus\mathbb{C}d$
 - Weights :

$$P = \{x\Lambda_0 + y\frac{\alpha_1}{2} + z\delta : x, y \in \mathbb{N}\} \subset \mathfrak{h}^*$$

- Dominant weights :

$$P_{+} = \{x\Lambda_0 + y\frac{\alpha_1}{2} + z\delta : 0 \le y \le x\} \cap P$$

- 3) Affine Lie algebra $\hat{\mathfrak{sl}}_2(\mathbb{C})$ (C. Lecouvey, E. Lesigne, M. Peigné)
 - $\hat{\mathfrak{sl}}_2(\mathbb{C}) = \mathbb{C}[z,z^{-1}] \otimes \mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}c \oplus \mathbb{C}d$, where $\mathbb{C}[z,z^{-1}]$ is the algebra of Laurent polynomials in z, + bracket.
 - A Cartan subalgebra : $\mathfrak{h}=\mathbb{C}egin{pmatrix}1&0\\0&-1\end{pmatrix}\oplus\mathbb{C}c\oplus\mathbb{C}d$
 - Weights :

$$P = \{x\Lambda_0 + y\frac{\alpha_1}{2} + z\delta : x, y \in \mathbb{N}\} \subset \mathfrak{h}^*$$

- Dominant weights :

$$P_{+} = \{x\Lambda_0 + y\frac{\alpha_1}{2} + z\delta : 0 \le y \le x\} \cap P$$

- Integrable highest-weight modules $V_{\lambda}, \ \lambda \in P_{+}.$

- 3) Affine Lie algebra $\hat{\mathfrak{sl}}_2(\mathbb{C})$ (C. Lecouvey, E. Lesigne, M. Peigné)
 - $\hat{\mathfrak{sl}}_2(\mathbb{C}) = \mathbb{C}[z,z^{-1}] \otimes \mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}c \oplus \mathbb{C}d$, where $\mathbb{C}[z,z^{-1}]$ is the algebra of Laurent polynomials in z, + bracket.
 - A Cartan subalgebra : $\mathfrak{h}=\mathbb{C}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\oplus\mathbb{C}c\oplus\mathbb{C}d$
 - Weights :

$$P = \{x\Lambda_0 + y\frac{\alpha_1}{2} + z\delta : x, y \in \mathbb{N}\} \subset \mathfrak{h}^*$$

- Dominant weights :

$$P_{+} = \{x\Lambda_0 + y\frac{\alpha_1}{2} + z\delta : 0 \le y \le x\} \cap P$$

- Integrable highest-weight modules V_{λ} , $\lambda \in P_{+}$.
- Characters : for $\lambda \in P_+$, $\operatorname{ch}_{\lambda} = \sum_{\beta \in P} m_{\lambda}(\beta) e^{\beta}$.
- One has

$$\mathsf{ch}_\lambda(h) = \sum_{eta \in P} m_\lambda(eta) \mathsf{e}^{eta(h)} < \infty,$$

for h = rd + ..., r > 0.

For
$$h = rd$$
, $r > 0$

$$\mathsf{ch}_\lambda(h)\mathsf{ch}_{\Lambda_0}(h) = \sum_{eta \in P} m_{\lambda,\Lambda_0}^eta \mathsf{ch}_eta(h)$$

- Remark :
$$\lambda = x\Lambda_0 + \cdots \Rightarrow \beta = (x+1)\Lambda_0 + \ldots$$

For
$$h = rd$$
, $r > 0$

$$\mathsf{ch}_\lambda(h)\mathsf{ch}_{\Lambda_0}(h) = \sum_{eta \in P} m_{\lambda,\Lambda_0}^eta \mathsf{ch}_eta(h)$$

- Remark : $\lambda = x\Lambda_0 + \cdots \Rightarrow \beta = (x+1)\Lambda_0 + \ldots$
- Markov Kernel on P₊ :

$$\hat{K}(\lambda,\beta) = \frac{\operatorname{ch}_{\beta}(h)}{\operatorname{ch}_{\lambda}(h)\operatorname{ch}_{\Lambda_{0}}(h)} m_{\lambda,\Lambda_{0}}^{\beta}, \quad \lambda,\beta \in P_{+}$$

- Remark : $\widehat{X}_0 = 0$, $\widehat{X}_n = n\Lambda_0 + \dots$

1) A conditioned Space-Time Brownian motion Convergence of the conditioned Markov chain $(\widehat{X}_{[nt]}, t \geq 0)$ when n goes to

Convergence of the conditioned Markov chain $(X_{[nt]}, t \ge 0)$ when n goes to inifnity :

- For
$$h=\frac{1}{n^{\beta}}d$$
, $\beta+1-2\alpha=0$, $\alpha\in[1/2,1[$,

$$\frac{1}{n^{\alpha}}\widehat{X}_{[nt]} \xrightarrow[n \to \infty]{d} + \infty \Lambda_0 + \widehat{x}_t^+ \frac{\alpha_1}{2} \mod \delta$$

- For
$$h = \frac{1}{n}d$$
,

$$\frac{1}{n}\widehat{X}_{[nt]} \xrightarrow[n \to \infty]{d} t\Lambda_0 + \widehat{x}_t^a \frac{\alpha_1}{2} \mod \delta$$

- For
$$h=\frac{1}{n^{\beta}}d$$
, $\beta+1-2\alpha=0$, $\alpha>1$, $(\widehat{X}_0=n^{\alpha}\Lambda_0)$,

$$\frac{1}{n^{\alpha}}\widehat{X}_{[nt]} \xrightarrow[n \to \infty]{d} \Lambda_0 + \widehat{x}_t^j \frac{\alpha_1}{2} \mod \delta$$

1) A conditioned Space-Time Brownian motion Convergence of the conditioned Markov chain $(\widehat{X}_{[nt]}, t \geq 0)$ when n goes to inifnity:

- For
$$h=\frac{1}{n^{\beta}}d$$
, $\beta+1-2\alpha=0$, $\alpha\in[1/2,1[$,
$$\frac{1}{n^{\alpha}}\widehat{X}_{[nt]}\stackrel{d}{\underset{n\to\infty}{\longrightarrow}}+\infty\Lambda_0+\hat{x}_t^+\frac{\alpha_1}{2}\mod\delta$$

- For
$$h = \frac{1}{2}d$$
,

$$\frac{1}{n}\widehat{X}_{[nt]} \xrightarrow[n \to \infty]{d} t\Lambda_0 + \hat{x}_t^a \frac{\alpha_1}{2} \mod \delta$$

- For
$$h=\frac{1}{n^{\beta}}d$$
, $\beta+1-2\alpha=0$, $\alpha>1$, $(\widehat{X}_0=n^{\alpha}\Lambda_0)$,
$$\frac{1}{n^{\alpha}}\widehat{X}_{[nt]} \xrightarrow[n \to \infty]{d} \Lambda_0+\widehat{x}_t^i\frac{\alpha_1}{2} \mod \delta$$

II-Bessel 3 and positive conditioned Brownian motion.

1) Radial part

-
$$SU(2)=\{M\in\mathcal{M}_2(\mathbb{C}):MM^*=I,\,\det(M)=1\}$$

$$\begin{aligned}
- \mathfrak{su}(2) &= \{ M \in \mathcal{M}_2(\mathbb{C}) : M + M^* = 0, \operatorname{tr}(M) = 0 \} \\
&= \{ M = \begin{pmatrix} ix & iy - z \\ iy + z & -ix \end{pmatrix}, x, y, z \in \mathbb{R} \}
\end{aligned}$$

- Adjoint action : $Ad(k)M = kMk^*, k \in SU(2), M \in \mathfrak{su}(2)$
- $\forall M \in \mathfrak{su}(2) \exists ! r \in \mathbb{R}_+ : M = k \begin{pmatrix} ir & 0 \\ 0 & -ir \end{pmatrix} k^*$, for some $k \in SU(2)$.
- Radial part : rad(M) = $\begin{pmatrix} ir & 0 \\ 0 & -ir \end{pmatrix}$, $r = \sqrt{x^2 + y^2 + z^2}$.

II-Bessel 3 and positive conditioned Brownian motion

- 2) Radial part of a Brownian motion on $\mathfrak{su}(2)$
 - A Brownian motion on $\mathfrak{su}(2)$: $b_t = \begin{pmatrix} ix_t & iy_t z_t \\ iy_t + z_t & -ix_t \end{pmatrix}$, $t \geq 0$
 - The radial part process :

$$r_t = \begin{pmatrix} i\sqrt{x_t^2 + y_t^2 + z_t^2} & 0\\ 0 & -i\sqrt{x_t^2 + y_t^2 + z_t^2} \end{pmatrix}, t \ge 0.$$

- $(\sqrt{x_t^2+y_t^2+z_t^2},t\geq 0)$: Brownian motion conditioned to remain positive

II-Bessel 3 and positive conditioned Brownian motion

3) What did we do?

- K = SU(2) a compact Lie group, $\mathfrak{k} = \mathfrak{su}(2)$ its Lie algebra.
- $\mathfrak{h}=\{egin{pmatrix} ix & 0 \\ 0 & -ix \end{pmatrix}: x\in\mathbb{R}\}$, a Cartan subalgebra.
- An adjoint action $Ad: K \to GL(\mathfrak{k})$
- $W = \mathfrak{k}/Ad(K) = \{ \begin{pmatrix} ix & 0 \\ 0 & -ix \end{pmatrix} : x \ge 0 \}$, a Weyl chamber
- Equipp \mathfrak{k} with a scalar product $(M, N) = \frac{1}{2} tr(MN)$.

II-Bessel 3 and positive conditioned Brownian motion

3) What did we do?

- K = SU(2) a compact Lie group, $\mathfrak{k} = \mathfrak{su}(2)$ its Lie algebra.
- $\mathfrak{h}=\{egin{pmatrix} ix & 0 \\ 0 & -ix \end{pmatrix}: x\in\mathbb{R}\}$, a Cartan subalgebra.
- An adjoint action $Ad: K \to GL(\mathfrak{k})$
- $W = \mathfrak{k}/Ad(K) = \{ \begin{pmatrix} ix & 0 \\ 0 & -ix \end{pmatrix} : x \ge 0 \}$, a Weyl chamber
- Equipp \mathfrak{k} with a scalar product $(M, N) = \frac{1}{2} \operatorname{tr}(MN)$.

$$(b_t)_{t\geq 0}$$
 Brownian motion on $\mathfrak{su}(2)$ \longrightarrow $(r_t)_{t\geq 0}$ radial part process on W .

projection of
$$(b_t)_{t\geq 0}$$
 on \mathfrak{h}

$$(x_t)_{t\geq 0}$$
 Brownian motion on \mathfrak{h} \longrightarrow $(x_t)_{t\geq 0}$ conditioned to remain in W

(Pressley, Segal)

- 1) Affine Lie algebra and Coadjoint action of the loop group.
 - $\mathcal{L}SU(2) = \{f : [0,1] \to SU(2) : f(0) = f(1)\} + \text{regularities}$
 - $\mathcal{L}\mathfrak{su}(2)=\{f:[0,1] o\mathfrak{su}(2):f(0)=f(1)\}$ + regularities.
 - scalar product (.,.) on $\mathfrak{su}(2)$.

(Pressley, Segal)

- 1) Affine Lie algebra and Coadjoint action of the loop group.
 - $\mathcal{L}SU(2) = \{f : [0,1] \to SU(2) : f(0) = f(1)\} + \text{regularities}$
 - $\mathcal{L}\mathfrak{su}(2)=\{f:[0,1] o\mathfrak{su}(2):f(0)=f(1)\}$ + regularities.
 - scalar product (.,.) on $\mathfrak{su}(2)$.
 - (Real) Affine Lie algebra $\mathcal{L}\mathfrak{su}(2)\oplus\mathbb{R}c$, with Lie bracket

$$[\xi + \lambda c, \eta + \mu c] = [\xi, \eta] + w(\xi, \eta)c,$$

$$w(\xi,\eta)=\int_0^1(\xi'(t),\eta(t))\,dt.$$

(Pressley, Segal)

- 1) Affine Lie algebra and Coadjoint action of the loop group.
 - $\mathcal{L}SU(2) = \{f : [0,1] \to SU(2) : f(0) = f(1)\} + \text{regularities}$
 - $\mathcal{L}\mathfrak{su}(2)=\{f:[0,1] o\mathfrak{su}(2):f(0)=f(1)\}$ + regularities.
 - scalar product (.,.) on $\mathfrak{su}(2)$.
 - (Real) Affine Lie algebra $\mathcal{L}\mathfrak{su}(2)\oplus\mathbb{R}c$, with Lie bracket

$$[\xi + \lambda c, \eta + \mu c] = [\xi, \eta] + w(\xi, \eta)c,$$

$$w(\xi,\eta)=\int_0^1(\xi'(t),\eta(t))\,dt.$$

- Coadjoint action of $\mathcal{L}SU(2)$ on $\mathcal{L}\mathfrak{su}(2)'\oplus \mathbb{R}\Lambda_0$ $(\Lambda_0(c)=1,\,\Lambda_0(\mathcal{L}\mathfrak{su}(2))=0)$:

$$\gamma.(\phi + \lambda \Lambda_0) = [Ad^*(\gamma)\phi - \lambda \int_0^1 (\gamma'_s \gamma_s^{-1},.) ds] + \lambda \Lambda_0,$$

where $\gamma \in \mathcal{L}SU(2)$, $\phi \in \mathcal{L}\mathfrak{su}(2)'$, $x \in \mathcal{L}\mathfrak{su}(2)$, $\lambda \in \mathbb{R}$, and $Ad^*(\gamma)\phi(x) = \phi(\gamma^{-1}x\gamma)$.

2) Coadjoint orbit and Radial part Now, $\mathcal{L}\mathfrak{su}(2)$ is the completion of the previous one equipped with the L_2 norm. Consider the Cameron-Martin space

$$H^1 = \{x : [0,1] \to \mathfrak{su}(2) : x(0) = 0, \dot{x} \in L_2\}$$

2) Coadjoint orbit and Radial part

Now, $\mathcal{L}\mathfrak{su}(2)$ is the completion of the previous one equipped with the L_2 norm. Consider the Cameron-Martin space

$$H^1 = \{x : [0,1] \to \mathfrak{su}(2) : x(0) = 0, \dot{x} \in L_2\}$$

For $x \in H^1$, given $\lambda > 0$, the action of $\mathcal{L}SU(2)$ on $\phi_x \in \mathcal{L}\mathfrak{su}(2)'$, defined by

$$\phi_{x}(y) = \int_{0}^{1} (y_{s}, \dot{x}_{s}) ds, \quad y \in L_{2}$$

is given by

$$\gamma.(\phi_{x} + \lambda \Lambda_{0}) = \int_{0}^{1} (., \gamma_{s} \dot{x}_{s} \gamma_{s}^{-1} - \lambda \gamma_{s}' \gamma_{s}^{-1}) ds + \lambda \Lambda_{0},$$

for $\gamma \in \mathcal{L}SU(2)$, $\gamma'\gamma^{-1} \in L_2$.

$$\mathcal{L}\mathfrak{su}(2)'\oplus\mathbb{R}\Lambda_0\sim H^1\oplus\mathbb{R}\Lambda_0$$

For $\lambda > 0$, $x \in H^1$, denotes by $\epsilon(x + \lambda \Lambda_0)$ the solution of

$$\lambda d\epsilon(x + \lambda\Lambda_0) = \epsilon(x + \lambda\Lambda_0) dx,$$

with initial condition $\epsilon(x + \lambda \Lambda_0)_0 = e$.

$$\mathcal{L}\mathfrak{su}(2)'\oplus\mathbb{R}\Lambda_0\sim H^1\oplus\mathbb{R}\Lambda_0$$

For $\lambda > 0$, $x \in H^1$, denotes by $\epsilon(x + \lambda \Lambda_0)$ the solution of

$$\lambda d\epsilon(x + \lambda \Lambda_0) = \epsilon(x + \lambda \Lambda_0) dx,$$

with initial condition $\epsilon(x + \lambda \Lambda_0)_0 = e$.

Proposition

The linear form $\phi_x + \lambda \Lambda_0$ and $\phi_y + \lambda \Lambda_0$ are in the same orbit for the action of $\mathcal{L}SU(2)$ if and only if the endpoint $\epsilon(x + \lambda \Lambda_0)_1$ and $\epsilon(y + \lambda \Lambda_0)_1$ are in the same orbit for the adjoint action of SU(2) on itself.

Definition

For $\lambda>0$, $x\in H^1$, one defines the radial part of $\phi_x+\lambda\Lambda_0$ as the linear form $\phi_{\pi_r}+\lambda\Lambda_0$, where where $\pi_r(t)=t\begin{pmatrix} i\pi r & 0 \\ 0 & -i\pi r \end{pmatrix}$, $t\in[0,1]$, and r is the unique real number in $[0,\lambda]$ such that

$$\epsilon(x+\lambda\Lambda_0)_1 = k \begin{pmatrix} e^{i\pi\frac{r}{\lambda}} & 0 \\ 0 & e^{-i\pi\frac{r}{\lambda}} \end{pmatrix} k^*,$$

for some $k \in SU(2)$. It is denoted by $rad(\phi_x + \lambda \Lambda_0)$ or $rad(x + \lambda \Lambda_0)$.

- 3) Restriction to a Cartan sub-algebra of $\mathcal{L}\mathfrak{su}(2)\oplus\mathbb{R}c$.
 - A Cartan sub-algebra $\sim \mathfrak{h} \oplus \mathbb{R}c$.
 - $(A,B) = \frac{1}{(2\pi)^2} tr(AB^*), A,B \in \mathfrak{su}(2).$
 - $\alpha_1 \in \mathfrak{h}^*$ defined by $\alpha_1(H_u) = \frac{2u}{2\pi}$, for $H_u = \begin{pmatrix} iu & 0 \\ 0 & -iu \end{pmatrix}$.

- 3) Restriction to a Cartan sub-algebra of $\mathcal{L}\mathfrak{su}(2)\oplus\mathbb{R}c$.
 - A Cartan sub-algebra $\sim \mathfrak{h} \oplus \mathbb{R}c$.

-
$$(A,B)=rac{1}{(2\pi)^2} \mathrm{tr}(AB^*)$$
, $A,B\in\mathfrak{su}(2)$.

-
$$\alpha_1 \in \mathfrak{h}^*$$
 defined by $\alpha_1(H_u) = \frac{2u}{2\pi}$, for $H_u = \begin{pmatrix} iu & 0 \\ 0 & -iu \end{pmatrix}$.

For $\lambda > 0$, $r \in [0, \lambda]$, one has

$$(\phi_{\pi_r} + \lambda \Lambda_0)_{|\mathfrak{h}+\mathbb{R}c} = r rac{lpha_1}{2} + \lambda \Lambda_0 \in W^{\mathit{aff}},$$

where $W^{\it aff}=\{\lambda\Lambda_0+r\frac{\alpha_1}{2}:0\leq r\leq\lambda\}\subset \mathfrak{h}^*\oplus\mathbb{R}\Lambda_0.$

IV- Radial part of a Brownian path on $\mathfrak{su}(2)$

(I. Frenkel)

Definition

For $\lambda > 0$, and $x = (x_s)_{s \in [0,1]}$ a $\mathfrak{su}(2)$ -valued Brownian motion, one defines the radial part of $(x + \lambda \Lambda_0)$ as the unique real number r in $[0,\lambda]$ such that

$$\epsilon(x+\lambda\Lambda_0)_1=k\begin{pmatrix}e^{i\pi\frac{r}{\lambda}}&0\\0&e^{-i\pi\frac{r}{\lambda}}\end{pmatrix}k^*,$$

for some $k \in SU(2)$, where $\epsilon(x + \lambda \Lambda_0)_1$ is the solution of the SDE

$$\lambda d\epsilon(x + \lambda\Lambda_0) = \epsilon(x + \lambda\Lambda_0) \circ dx,$$

with initial condition $\epsilon(x + \lambda \Lambda_0)_0 = e$. It is denoted by $rad(x + \lambda \Lambda_0)$.

V- Radial part process associated to a Brownian sheet on $\mathfrak{su}(2)$

Proposition

Let $(x_s^t)_{s \in [0,1], t \in \mathbb{R}_+}$ be a standard Brownian sheet on $\mathfrak{su}(2)$. Then

$$t\Lambda_0 + rad(x^t + t\Lambda_0)\frac{\alpha_1}{2}, t > 0,$$

is a space-time Brownian motion

$$t\Lambda_0+b_t\frac{\alpha_1}{2}=t\Lambda_0+(x_1^t,.)_{|\mathfrak{h}},t>0,$$

conditioned to remain in the affine Weyl chamber W^{aff}.

V- Radial part process associated to a Brownian sheet on $\mathfrak{su}(2)$

What did we do?

"Brownian motion on
$$\mathbb{R}\Lambda_0\oplus\mathcal{L}\mathfrak{su}(2)'$$
" $t\Lambda_0+\int_0^1(.,dx_s^t),\,t\geq 0$

restriction to
$$\mathfrak{h} \oplus \mathbb{R}c$$

Brownian motion on
$$\mathbb{R}\Lambda_0 \oplus \mathfrak{h}^*$$
 $t\Lambda_0 + (x_1^t,.)_{|\mathfrak{h}}, t \geq 0.$

Radial part process on W^{aff} . $\longrightarrow (t\Lambda_0 + r_t \frac{\alpha_1}{2}), t \ge 0.$

Brownian motion on $\mathbb{R}\Lambda_0 \oplus \mathfrak{h}^*$ conditioned to remain in W^{aff}

