Spherically Symmetric Random Permutations

Alexander Gnedin and Vadim Gorin

De Finetti's and Freedman's theorems revisited

De Finetti's (30's) Thm: An infinite exchangeable sequence $\boldsymbol{\xi} = (\xi_1, \xi_2, \dots) \in \{0, 1\}^{\infty}$ is a (unique) mixture of Bernoulli(*p*) sequences.

Exchangeability \leftrightarrow invariance of the distribution P of ξ under the group S_{∞} of finite permutations \leftrightarrow each marginal distribution $P_n, n = 1, 2, ...,$ is invariant under S_n .

The theorem is equivalent to Hausdorff's characterisation of moment sequences for probability measures on [0, 1].

Freedman's (60's) Thm: An infinite spherically symmetric (ISS) sequence $\boldsymbol{\xi} = (\xi_1, \xi_2, ...) \in \mathbb{R}^{\infty}$ is a (unique) mixture of iid $\mathcal{N}(0, \sigma^2)$ -sequences.

Infinite spherical symmetry \leftrightarrow invariance of the distribution P of ξ under the group O_{∞} of finite-dimensional orthogonal transformations. The theorem is equivalent to Schoenberg's characterisation of functions ϕ , s.t. $\phi(x_1^2 + \cdots + x_n^2)$ is positive definite for every n. Let $\rho_n = ||(\xi_1, \dots, \xi_n)||$, and let $U_{n,r}$ be the uniform distribution on *n*-dim sphere with radius *r*.

- ISS ↔ the conditional distribution (ξ₁,...,ξ_n) | ρ_n = r is U_{n,r} for all n, r.
- Every ISS probability measure *P* is a unique convex mixture of extreme ISS measures.
- A sequence r_ν (ν = 1, 2, ...) is called *regular* if U_{ν,rν}'s converge to some P (in the sense of weak convergence of n-dim distributions). Every extreme ISS P can be *induced* through a regular sequence.
- If P is extreme then $U_{\nu,\rho_{\nu}}$ converge to P almost surely, that is ρ_{ν} is regular almost surely.
- Under $\otimes \mathcal{N}(0, \sigma^2)$, a LLN holds: $\rho_{\nu} \sim \sigma \nu^{1/2}$ a.s.
- The family $\otimes \mathcal{N}(0, \sigma^2)$ depends continuously on σ .

Propagation of stochastic monotonicity: if P_ν, P'_ν are spherically symmetric in ℝ^ν and such that ρ_ν under P_ν is stochastically greater than under P'_ν (i.e. E_P[g(ρ_ν)] ≥ E_{P'}g(ρ_ν) for every increasing g), then the same is true for every ρ_n, n ≤ ν.

Equivalently: for a random point sampled uniformly from a sphere, the bigger the sphere the bigger (stochastically) the projection.

By a sandwich argument using the stochastic monotonicity:

• a sequence is regular iff $r_{\nu} \sim \sigma \nu^{1/2}$ for some $\sigma \in [0, \infty)$, in which case the induced P is $\otimes \mathcal{N}(0, \sigma^2)$.

Freedman's Thm follows by noting that all measures $\otimes \mathcal{N}(0, \sigma^2)$'s are disjoint for distinct σ .

Replacing the Euclidean distance in \mathbb{R}^n by the L^p -distance leads to mixtures of iid sequences with density $c(\lambda)e^{-\lambda|x|^p}$ (Berman '80).

To derive de Finetti's Thm using this path, $\|(\xi_1, \ldots, \xi_n)\|$ should be seen as the Hamming distance to $(0, \ldots, 0)$, and the regularity condition becomes $r_{\nu} \sim p \nu$.

Applications of stochastic monotonicity to the boundary problem on graded graphs appear in AG–Pitman (Stirling triangles), and Bufetov–VG (Young lattice).

Let $f_n : S_n \to S_{n-1}$ be *n*-to-1 projections (n > 1). If $f_n(\pi) = \sigma$, we say that π is an extension of σ , and that σ is the projection of π .

Consider S^{∞} , the projective limit of (S_n, f_n) 's. Each $\pi \in S^{\infty}$ is a (generalised) virtual permutation.

A random virtual permutation is a probability measure P on S^{∞} , uniquely determined by consistent marginal distributions, $P_{n-1} = f_n(P_n)$.

Cardinal example: the *uniform* virtual permutation has distribution P^* such that each marginal distribution P_n^* uniform on S_n .

Endow each S_n with a metric, and let ||π_n|| be the distance to the identity in S_n. A probability measure P on S[∞] is called *infinitely* spherically symmetric if for every n the conditional distribution of π_n given ||π_n|| = r is U_{n,r}, that is uniform on the sphere in S_n of radius r.

To ensure that spherical symmetry is preserved under projections, the metric should be *compatible* with projections in the following sense: n = 1, 2, ...

• the number of extensions $\#\{\pi \in S_n : \|\pi\| = r, f_n(\pi) = \sigma\}$ only depends on $\|\sigma\|$,

which implies that $f_n(U_{n,r})$ is a mixture of $U_{n-1,\bullet}$'s.

- A ISS virtual permutation P corresponds uniquely to a Markov chain $\|\pi_1\|, \|\pi_2\|, \ldots$, which has *backward* transition probabilities $\|\pi_{n-1}\| \leftarrow \|\pi_n\|$ same as under the uniform P^* .
- By the virtue of Doob's *h*-transform this can be recast in terms of harmonic functions for the Markov chain ||π₁||, ||π₂||,... under P^{*}.

Metrics on S_n : Chritchlow ('85), Diaconis ('88)... Which are consistent with *some* projections?

There is a natural choice of projections for Hamming, Cayley and Kendall-tau metrics.

Hamming spherical symmetry

For the Hamming distance on S_n , $\|\pi\| = n - F(\pi) \in \{0, 2, 3, \dots, n\}$, where

$$F(\pi) = \#\{j \in [n] : \pi(j) = j\}, \ \pi \in S_n$$

is the number of fixed points. A $\pi \in S_n$ with $||\pi|| = n$ is a *derangement*. A projection $f_n : S_n \to S_{n-1}$ compatible with the *F*-statistic is the operation of deleting *n* from the cycle notation. For instance, (13)(24) $\in S_4$ has five extensions

(153)(24), (135)(24), (13)(254), (13)(245), (13)(24)(5).

With such f_n 's, S^{∞} is the space of virtual permutations introduced by Kerov-Olshanski-Vershik.

• Under ISS distribution P, $\pi = (\pi_1, \pi_2, ...)$ has each π_n conditionally uniform given the number of fixed points $F(\pi_n)$.

Definition Fix $\alpha \in (0, 1]$ and apply the following rules to define a virtual permutation P^{α}

- each *n* independently of other elements is *singleton* with probability α , and non-singleton with probability 1α ,
- every singleton *n* is a fixed point in π_{ν} for $\nu \ge n$,
- the virtual permutation restricted to the set of nonsingleton elements is distributed like under P^{*}, provided the nonsingleton elements are enumerated in increasing order by N.

For $\alpha = 0$ set $P^0 = P^*$.

Sequential construction of P^{α} (extended Dubins-Pitman *Chinese restaurant process*):

Given π_n with some k singletons, element n + 1 is singleton with probability α , and with the same probability $(1 - \alpha)/(n - k + 1)$ the element is inserted in a cycle clockwise next to any of n - k nonsingleton elements, or appended to π_n as a cycle (n + 1).

Under P^{α}

• the probability of any permutation with k fixed points is

$$p_{n,k} = \sum_{j=0}^{k} {\binom{k}{j}} \alpha^{j} (1-\alpha)^{n-j} \frac{1}{(n-j)!}$$

• $F(\pi_n)/n \to \alpha$ almost surely.

Paintbox construction of P^{α} : Split [0, 1] at point $1 - \alpha$, then split $[0, 1 - \alpha]$ in subintervals by the iterated uniform stick-breaking. Sample X_1, \ldots, X_n iid from Uniform[0, 1]. If $X_j > 1 - \alpha$, integer *j* is a fixed point of π_n . Otherwise, integers *i*, *j* belong to the same cycle of π_n iff X_i, X_j belong to the same partition interval within $[0, 1 - \alpha]$.

Theorem Every Hamming-ISS virtual permutation P is a unique mixture of $P^{\alpha}, \alpha \in [0, 1]$.

A proof employs the propagation of stochastic monotonicity property and the law of large numbers.

Example The uniform[0,1]-mixture over α yields

$$p_{n,k} = rac{k!}{(n+1)!} \sum_{j=0}^{k} rac{1}{j!}$$

(probability of any permutation with $F(\pi_n) = k$).

Enumeration of Hamming spheres in S_n

The number of derangements in S_n is

$$d_n = n! \sum_{j=0}^n \frac{(-1)^j}{j!}$$

and the number of permutations with k fixed points is

1

$$D_{n,k} = \binom{n}{k} d_{n-k},$$

satisfying a Pascal-type recursion

$$D_{n,k} = (n-k-1)D_{n-1,k} + D_{n-1,k-1} + (k+1)D_{n-1,k+1},$$

(with $D_{1,0} = 0, D_{1,1} = 1$).

Every Hamming-ISS probability measure P is determined by a nonnegative probability function $(p_{n,k})$ that satisfies a dual backward recursion

$$p_{n,k} = (n-k)p_{n+1,k} + p_{n+1,k+1} + kp_{n+1,k+1}, \quad k \in \{0, \dots, n-2, n\}$$

(where $p_{1,1} = 1$).

The extreme solutions can be obtained as limits of the Martin kernel

$$p_{n,k}^{\nu,\varkappa}=\frac{D_{n,k}^{\nu,\varkappa}}{D_{\nu,\varkappa}},$$

where $D_{n,k}^{\nu,\varkappa}$ enumerates the number of extensions of fixed permutation $\pi \in S_n$ with $F(\pi) = k$ to a permutation $\sigma \in S_{\nu}$ with $F(\sigma) = \varkappa$.

The identification of extreme Hamming-ISS permutations is equivalent to:

Theorem The Martin kernel converges along the sequence $\varkappa = \varkappa_{\nu}$ ($\leftrightarrow \varkappa_{\nu}$ is regular) iff $\varkappa \sim \alpha n$ for some $\alpha \in [0, 1]$, in which case the limit corresponds to P^{α} .

A direct proof is possible via the recursion on $p_{n,k}$ and explicit formula

$$D_{n,0}^{\nu,\varkappa} = \frac{(\nu-n)!}{\varkappa!} \sum_{m=0}^{\nu-n-\varkappa} \binom{n+m-1}{m} \frac{d_{\nu-n-m-\varkappa}}{(\nu-n-n-\varkappa)!}$$

The cycle partitions for Hamming-ISS permutation comprise *Kingman's partition structure* with 'exchangeable partition probability function' of the form

$$p(n_1,...,n_\ell) = p_{n,k} \prod_{j=1}^\ell (n_j - 1)!$$

where k is the number of 1's in n_1, \ldots, n_ℓ .

Kendall-tau spherical symmetry

The Kendall-tau distance between $\pi, \sigma \in S_n$ is the number of discordant positions i < j with

$$\operatorname{sgn}(\pi(i) - \pi(j)) = -\operatorname{sgn}(\sigma(i) - \sigma(j))$$

Then $|\pi|$ coincides with the number of inversions

$$I(\pi) = \#\{(i,j) : 1 \le i < j \le n, \pi(i) > \pi(j)\}.$$

This statistic is compatible with any of the following two projections $f'_n, f''_n : S_n \to S_{n-1}$. Writing $\pi \in S_n$ in one-line notation:

- (i) f'_n deletes the last entry $\pi(n)$, and re-labels $\pi(1), \ldots, \pi(n-1)$ by an increasing bijection with [n-1], e.g. 2, 5, 1, 4, 3 \rightarrow 2, 4, 1, 3.
- (ii) f''_n deletes letter *n* from the online notation of π , e.g. 2, 5, 1, 4, 3 \rightarrow 2, 1, 4, 3.

Adopting projection f'_n , we encode virtual permutation $\pi = (\pi_1, \pi_2, ...)$ into infinite *Lehmer code* $\pi \to (\eta_1, \eta_2, ...)$, where $\eta_n = \#\{j \in [n] : \pi_n(j) > \pi_n(n)\}$ For instance, 2, 5, 1, 4, 3 \leftrightarrow 0, 0, 2, 1, 2. In these coordinates S^{∞} is a product space and $I(\pi) = m_1 + \dots + m_n$

In these coordinates, S^{∞} is a product space, and $I(\pi_n) = \eta_1 + \cdots + \eta_n$. Under the uniform distribution P^* the variables η_n are independent with η_n distributed uniformly on $\{0, \ldots, n-1\}$.

Exponential tilting with parameter q does not affect the conditional distributions $(\eta_1, \ldots, \eta_n) | \eta_1 + \cdots + \eta_n = k$, yields truncated geometric distribution for η_n and the *Mallows distribution* on each S_n

$$P^q(\pi_n)=\frac{q^{I(\pi_n)}}{n_q!},$$

where $n_q = (1 - q^n)/(1 - q)$

• The law of large numbers: under Mallows distribution P^q , as $n \to \infty$

$$I(\pi_n) \sim egin{cases} rac{q}{1-q}n, & ext{for} \ \ 0 \leq q < 1, \ rac{1}{4}n^2, & ext{for} \ \ q = 1, \ \binom{n}{2} - rac{q^{-1}}{1-q^{-1}}n, & ext{for} \ \ 1 < q \leq \infty. \end{cases}$$

(Bhatnagar–Peled '17 give finer asymptotics for Mallows(q))

 The process of sums η₁ + · · · + η_n, n = 1, 2, ... with uniform η_j's has the property of propagation of stochastic monotonicity.

Theorem Every Kendall-tau-ISS virtual permutation P is a mixture of Mallows distributions $P^q, q \in [0, \infty]$.

Mahonian numbers

 $M_{n,k}$ counts solutions to $\eta_1 + \cdots + \eta_n = k$ with $\eta_j \in \{0, \ldots, j-1\}$ $M_{n,k}^{\nu,\varkappa}$ counts solutions to $\eta_{n+1} + \cdots + \eta_{\nu} = \varkappa - k$ with $\eta_j \in \{0, \ldots, j-1\}$ **Corollary** The Martin kernel

$$p_{n,k}^{\nu,\varkappa} = \frac{M_{n,k}^{\nu,\varkappa}}{M_{n,k}}$$

converges as $\nu \to \infty$ if either $\varkappa \sim c \nu$, or $\varkappa \sim {\binom{\nu}{2}} - c \nu$ (for $0 \le c < \infty$), or $\varkappa \gg \nu$ and $\frac{\nu^2}{2} - \varkappa \gg n$. In the last case the limit is $p_{n,k} = 1/n!$.

Cayley distance on S_n is the minimal number of transpositions needed to transform one permutation into another. Then $||\pi|| = n - C(\pi)$, with $C(\pi)$ the number of cycles of $\pi \in S_n$.

For the projections we choose f_n (removing *n* from the cycle notation), so S^{∞} is the Kerov-Vershik-Olshanski space of virtual permutations.

Then $C(\pi_n) = \sum_{j=1}^n \beta_j$, where β_j is the indicator of $\pi_j(j) = j$. Under P^* the indicators are independent, with β_j being Bernoulli(1/j), and the exponential tilting yields *Ewens distributions*

$$P^{ heta}(\pi_n) = rac{ heta^{C(\pi_n)}}{(heta)_n}$$

The propagation of stochastic monotonicity for sums $\beta_1 + \cdots + \beta_n$ is obvious, since β_j 's are two-valued. The regularity condition becomes $C(\pi_n) \sim \theta \log n$.

Theorem (AG–Pitman '05) Every Cayley-ISS virtual permutation is a mixture of Ewens' $P^{\theta}, \theta \in [0, \infty]$.