Spherically Symmetric Random Permutations

Alexander Gnedin and Vadim Gorin

De Finetti's and Freedman's theorems revisited

De Finetti's (30's) Thm: An infinite exchangeable sequence $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \ldots\right) \in\{0,1\}^{\infty}$ is a (unique) mixture of $\operatorname{Bernoulli}(p)$ sequences.

Exchangeability \leftrightarrow invariance of the distribution P of $\boldsymbol{\xi}$ under the group S_{∞} of finite permutations \leftrightarrow each marginal distribution $P_{n}, n=1,2, \ldots$, is invariant under S_{n}.
The theorem is equivalent to Hausdorff's characterisation of moment sequences for probability measures on $[0,1]$.

Freedman's (60's) Thm: An infinite spherically symmetric (ISS) sequence $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \ldots\right) \in \mathbb{R}^{\infty}$ is a (unique) mixture of iid $\mathcal{N}\left(0, \sigma^{2}\right)$-sequences.

Infinite spherical symmetry \leftrightarrow invariance of the distribution P of $\boldsymbol{\xi}$ under the group O_{∞} of finite-dimensional orthogonal transformations.
The theorem is equivalent to Schoenberg's characterisation of functions ϕ, s.t. $\phi\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$ is positive definite for every n.

Let $\rho_{n}=\left\|\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|$, and let $U_{n, r}$ be the uniform distribution on n-dim sphere with radius r.

- ISS \leftrightarrow the conditional distribution $\left(\xi_{1}, \ldots, \xi_{n}\right) \mid \rho_{n}=r$ is $U_{n, r}$ for all n, r.
- Every ISS probability measure P is a unique convex mixture of extreme ISS measures.
- A sequence $r_{\nu}(\nu=1,2, \ldots)$ is called regular if $U_{\nu, r_{\nu}}$'s converge to some P (in the sense of weak convergence of n-dim distributions). Every extreme ISS P can be induced through a regular sequence.
- If P is extreme then $U_{\nu, \rho_{\nu}}$ converge to P almost surely, that is ρ_{ν} is regular almost surely.
- Under $\otimes \mathcal{N}\left(0, \sigma^{2}\right)$, a LLN holds: $\rho_{\nu} \sim \sigma \nu^{1 / 2}$ a.s.
- The family $\otimes \mathcal{N}\left(0, \sigma^{2}\right)$ depends continuously on σ.
- Propagation of stochastic monotonicity: if $P_{\nu}, P_{\nu}^{\prime}$ are spherically symmetric in \mathbb{R}^{ν} and such that ρ_{ν} under P_{ν} is stochastically greater than under P_{ν}^{\prime} (i.e. $E_{P}\left[g\left(\rho_{\nu}\right)\right] \geq E_{P^{\prime}} g\left(\rho_{\nu}\right)$ for every increasing g), then the same is true for every $\rho_{n}, n \leq \nu$.

Equivalently: for a random point sampled uniformly from a sphere, the bigger the sphere the bigger (stochastically) the projection.

By a sandwich argument using the stochastic monotonicity:

- a sequence is regular iff $r_{\nu} \sim \sigma \nu^{1 / 2}$ for some $\sigma \in[0, \infty)$, in which case the induced P is $\otimes \mathcal{N}\left(0, \sigma^{2}\right)$.
Freedman's Thm follows by noting that all measures $\otimes \mathcal{N}\left(0, \sigma^{2}\right)$'s are disjoint for distinct σ.

Replacing the Euclidean distance in \mathbb{R}^{n} by the L^{p}-distance leads to mixtures of iid sequences with density $c(\lambda) e^{-\lambda|x|^{p}}$ (Berman '80).

To derive de Finetti's Thm using this path, $\left\|\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|$ should be seen as the Hamming distance to $(0, \ldots, 0)$, and the regularity condition becomes $r_{\nu} \sim p \nu$.

Applications of stochastic monotonicity to the boundary problem on graded graphs appear in AG-Pitman (Stirling triangles), and Bufetov-VG (Young lattice).

Spaces of virtual permutations

Let $f_{n}: S_{n} \rightarrow S_{n-1}$ be n-to- 1 projections $(n>1)$.
If $f_{n}(\pi)=\sigma$, we say that π is an extension of σ, and that σ is the projection of π.
Consider S^{∞}, the projective limit of $\left(S_{n}, f_{n}\right)$'s. Each $\pi \in S^{\infty}$ is a (generalised) virtual permutation.
A random virtual permutation is a probability measure P on S^{∞}, uniquely determined by consistent marginal distributions, $P_{n-1}=f_{n}\left(P_{n}\right)$.

Cardinal example: the uniform virtual permutation has distribution P^{*} such that each marginal distribution P_{n}^{*} uniform on S_{n}.

- Endow each S_{n} with a metric, and let $\left\|\pi_{n}\right\|$ be the distance to the identity in S_{n}. A probability measure P on S^{∞} is called infinitely spherically symmetric if for every n the conditional distribution of π_{n} given $\left\|\pi_{n}\right\|=r$ is $U_{n, r}$, that is uniform on the sphere in S_{n} of radius r.

To ensure that spherical symmetry is preserved under projections, the metric should be compatible with projections in the following sense: $n=1,2, \ldots$

- the number of extensions $\#\left\{\pi \in S_{n}:\|\pi\|=r, f_{n}(\pi)=\sigma\right\}$ only depends on $\|\sigma\|$,
which implies that $f_{n}\left(U_{n, r}\right)$ is a mixture of $U_{n-1, \bullet}$'s.
- A ISS virtual permutation P corresponds uniquely to a Markov chain $\left\|\pi_{1}\right\|,\left\|\pi_{2}\right\|, \ldots$, which has backward transition probabilities $\left\|\pi_{n-1}\right\| \leftarrow\left\|\pi_{n}\right\|$ same as under the uniform P^{*}.
- By the virtue of Doob's h-transform this can be recast in terms of harmonic functions for the Markov chain $\left\|\pi_{1}\right\|,\left\|\pi_{2}\right\|, \ldots$ under P^{*}.

Metrics on S_{n} : Chritchlow ('85), Diaconis ('88)... Which are consistent with some projections?

There is a natural choice of projections for Hamming, Cayley and Kendall-tau metrics.

Hamming spherical symmetry

For the Hamming distance on $S_{n},\|\pi\|=n-F(\pi) \in\{0,2,3, \ldots, n\}$, where

$$
F(\pi)=\#\{j \in[n]: \pi(j)=j\}, \quad \pi \in S_{n}
$$

is the number of fixed points. A $\pi \in S_{n}$ with $\|\pi\|=n$ is a derangement.
A projection $f_{n}: S_{n} \rightarrow S_{n-1}$ compatible with the F-statistic is the operation of deleting n from the cycle notation. For instance, $(13)(24) \in S_{4}$ has five extensions

$$
(153)(24),(135)(24),(13)(254),(13)(245),(13)(24)(5) .
$$

With such f_{n} 's, S^{∞} is the space of virtual permutations introduced by Kerov-Olshanski-Vershik.

- Under ISS distribution $P, \boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \ldots\right)$ has each π_{n} conditionally uniform given the number of fixed points $F\left(\pi_{n}\right)$.

Permutations with many fixed points

Definition Fix $\alpha \in(0,1]$ and apply the following rules to define a virtual permutation P^{α}

- each n independently of other elements is singleton with probability α, and non-singleton with probability $1-\alpha$,
- every singleton n is a fixed point in π_{ν} for $\nu \geq n$,
- the virtual permutation restricted to the set of nonsingleton elements is distributed like under P^{*}, provided the nonsingleton elements are enumerated in increasing order by \mathbb{N}.

For $\alpha=0$ set $P^{0}=P^{*}$.

Sequential construction of P^{α} (extended Dubins-Pitman Chinese restaurant process):
Given π_{n} with some k singletons, element $n+1$ is singleton with probability α, and with the same probability $(1-\alpha) /(n-k+1)$ the element is inserted in a cycle clockwise next to any of $n-k$ nonsingleton elements, or appended to π_{n} as a cycle $(n+1)$.

Under P^{α}

- the probability of any permutation with k fixed points is

$$
p_{n, k}=\sum_{j=0}^{k}\binom{k}{j} \alpha^{j}(1-\alpha)^{n-j} \frac{1}{(n-j)!}
$$

- $F\left(\pi_{n}\right) / n \rightarrow \alpha$ almost surely.

Paintbox construction of P^{α} : Split $[0,1]$ at point $1-\alpha$, then split [$0,1-\alpha$] in subintervals by the iterated uniform stick-breaking. Sample X_{1}, \ldots, X_{n} iid from Uniform[0,1]. If $X_{j}>1-\alpha$, integer j is a fixed point of π_{n}. Otherwise, integers i, j belong to the same cycle of π_{n} iff X_{i}, X_{j} belong to the same partition interval within $[0,1-\alpha]$.

Theorem Every Hamming-ISS virtual permutation P is a unique mixture of $P^{\alpha}, \alpha \in[0,1]$.

A proof employs the propagation of stochastic monotonicity property and the law of large numbers.

Example The uniform[0,1]-mixture over α yields

$$
p_{n, k}=\frac{k!}{(n+1)!} \sum_{j=0}^{k} \frac{1}{j!}
$$

(probability of any permutation with $F\left(\pi_{n}\right)=k$).

Enumeration of Hamming spheres in S_{n}

The number of derangements in S_{n} is

$$
d_{n}=n!\sum_{j=0}^{n} \frac{(-1)^{j}}{j!}
$$

and the number of permutations with k fixed points is

$$
D_{n, k}=\binom{n}{k} d_{n-k},
$$

satisfying a Pascal-type recursion

$$
D_{n, k}=(n-k-1) D_{n-1, k}+D_{n-1, k-1}+(k+1) D_{n-1, k+1},
$$

(with $D_{1,0}=0, D_{1,1}=1$).

Asymptotics of the Martin kernel

Every Hamming-ISS probability measure P is determined by a nonnegative probability function ($p_{n, k}$) that satisfies a dual backward recursion

$$
p_{n, k}=(n-k) p_{n+1, k}+p_{n+1, k+1}+k p_{n+1, k+1}, \quad k \in\{0, \ldots, n-2, n\}
$$

(where $p_{1,1}=1$).
The extreme solutions can be obtained as limits of the Martin kernel

$$
p_{n, k}^{\nu, \varkappa}=\frac{D_{n, k}^{\nu, \varkappa}}{D_{\nu, \varkappa}},
$$

where $D_{n, k}^{\nu, \varkappa}$ enumerates the number of extensions of fixed permutation $\pi \in S_{n}$ with $F(\pi)=k$ to a permutation $\sigma \in S_{\nu}$ with $F(\sigma)=\varkappa$.

The identification of extreme Hamming-ISS permutations is equivalent to:
Theorem The Martin kernel converges along the sequence $\varkappa=\varkappa_{\nu}$ ($\leftrightarrow \varkappa_{\nu}$ is regular) iff $\varkappa \sim \alpha n$ for some $\alpha \in[0,1]$, in which case the limit corresponds to P^{α}.

A direct proof is possible via the recursion on $p_{n, k}$ and explicit formula

$$
D_{n, 0}^{\nu, \varkappa}=\frac{(\nu-n)!}{\varkappa!} \sum_{m=0}^{\nu-n-\varkappa}\binom{n+m-1}{m} \frac{d_{\nu-n-m-\varkappa}}{(\nu-n-n-\varkappa)!}
$$

The cycle partitions for Hamming-ISS permutation comprise Kingman's partition structure with 'exchangeable partition probability function' of the form

$$
p\left(n_{1}, \ldots, n_{\ell}\right)=p_{n, k} \prod_{j=1}^{\ell}\left(n_{j}-1\right)!
$$

where k is the number of 1 's in n_{1}, \ldots, n_{ℓ}.

Kendall-tau spherical symmetry

The Kendall-tau distance between $\pi, \sigma \in S_{n}$ is the number of discordant positions $i<j$ with

$$
\operatorname{sgn}(\pi(i)-\pi(j))=-\operatorname{sgn}(\sigma(i)-\sigma(j))
$$

Then $|\pi|$ coincides with the number of inversions

$$
I(\pi)=\#\{(i, j): 1 \leq i<j \leq n, \pi(i)>\pi(j)\} .
$$

This statistic is compatible with any of the following two projections $f_{n}^{\prime}, f_{n}^{\prime \prime}: S_{n} \rightarrow S_{n-1}$. Writing $\pi \in S_{n}$ in one-line notation:
(i) f_{n}^{\prime} deletes the last entry $\pi(n)$, and re-labels $\pi(1), \ldots, \pi(n-1)$ by an increasing bijection with $[n-1$], e.g. $2,5,1,4,3 \rightarrow 2,4,1,3$.
(ii) $f_{n}^{\prime \prime}$ deletes letter n from the online notation of π, e.g.
$2,5,1,4,3 \rightarrow 2,1,4,3$.

Adopting projection f_{n}^{\prime}, we encode virtual permutation $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \ldots\right)$ into infinite Lehmer code $\boldsymbol{\pi} \rightarrow\left(\eta_{1}, \eta_{2}, \ldots\right)$, where
$\eta_{n}=\#\left\{j \in[n]: \pi_{n}(j)>\pi_{n}(n)\right\}$
For instance, $2,5,1,4,3 \leftrightarrow 0,0,2,1,2$.
In these coordinates, S^{∞} is a product space, and $I\left(\pi_{n}\right)=\eta_{1}+\cdots+\eta_{n}$. Under the uniform distribution P^{*} the variables η_{n} are independent with η_{n} distributed uniformly on $\{0, \ldots, n-1\}$.

Exponential tilting with parameter q does not affect the conditional distributions $\left(\eta_{1}, \ldots, \eta_{n}\right) \mid \eta_{1}+\cdots+\eta_{n}=k$, yields truncated geometric distribution for η_{n} and the Mallows distribution on each S_{n}

$$
P^{q}\left(\pi_{n}\right)=\frac{q^{I\left(\pi_{n}\right)}}{n_{q}!}
$$

where $n_{q}=\left(1-q^{n}\right) /(1-q)$

- The law of large numbers: under Mallows distribution P^{q}, as $n \rightarrow \infty$

$$
I\left(\pi_{n}\right) \sim\left\{\begin{array}{l}
\frac{q}{1-q} n, \text { for } 0 \leq q<1 \\
\frac{1}{4} n^{2}, \text { for } q=1, \\
\binom{n}{2}-\frac{q^{-1}}{1-q^{-1}} n, \text { for } 1<q \leq \infty
\end{array}\right.
$$

(Bhatnagar-Peled '17 give finer asymptotics for Mallows(q))

- The process of sums $\eta_{1}+\cdots+\eta_{n}, n=1,2, \ldots$ with uniform η_{j} 's has the property of propagation of stochastic monotonicity.

Theorem Every Kendall-tau-ISS virtual permutation P is a mixture of Mallows distributions $P^{q}, q \in[0, \infty]$.

Mahonian numbers

$M_{n, k}$ counts solutions to $\eta_{1}+\cdots+\eta_{n}=k$ with $\eta_{j} \in\{0, \ldots, j-1\}$ $M_{n, k}^{\nu, \kappa}$ counts solutions to $\eta_{n+1}+\cdots+\eta_{\nu}=\varkappa-k$ with $\eta_{j} \in\{0, \ldots, j-1\}$
Corollary The Martin kernel

$$
p_{n, k}^{\nu, \varkappa}=\frac{M_{n, k}^{\nu, \varkappa}}{M_{n, k}^{\nu}}
$$

converges as $\nu \rightarrow \infty$ if either $\varkappa \sim c \nu$, or $\varkappa \sim\binom{\nu}{2}-c \nu$ (for $0 \leq c<\infty$), or $\varkappa \gg \nu$ and $\frac{\nu^{2}}{2}-\varkappa \gg n$. In the last case the limit is $p_{n, k}=1 / n!$.

Cayley spherical symmetry

Cayley distance on S_{n} is the minimal number of transpositions needed to transform one permutation into another. Then $\|\pi\|=n-C(\pi)$, with $C(\pi)$ the number of cycles of $\pi \in S_{n}$. For the projections we choose f_{n} (removing n from the cycle notation), so S^{∞} is the Kerov-Vershik-Olshanski space of virtual permutations.
Then $C\left(\pi_{n}\right)=\sum_{j=1}^{n} \beta_{j}$, where β_{j} is the indicator of $\pi_{j}(j)=j$. Under P^{*} the indicators are independent, with β_{j} being Bernoulli $(1 / j)$, and the exponential tilting yields Ewens distributions

$$
P^{\theta}\left(\pi_{n}\right)=\frac{\theta^{C\left(\pi_{n}\right)}}{(\theta)_{n}}
$$

The propagation of stochastic monotonicity for sums $\beta_{1}+\cdots+\beta_{n}$ is obvious, since β_{j} 's are two-valued. The regularity condition becomes $C\left(\pi_{n}\right) \sim \theta \log n$.
Theorem (AG-Pitman '05) Every Cayley-ISS virtual permutation is a mixture of Ewens' $P^{\theta}, \theta \in[0, \infty]$.

