
Spherically Symmetric Random Permutations

Alexander Gnedin and Vadim Gorin

Alexander Gnedin and Vadim Gorin Spherically Symmetric Random Permutations



De Finetti’s and Freedman’s theorems revisited

De Finetti’s (30’s) Thm: An infinite exchangeable sequence
ξ = (ξ1, ξ2, . . . ) ∈ {0, 1}∞ is a (unique) mixture of Bernoulli(p) sequences.

Exchangeability ↔ invariance of the distribution P of ξ under the group
S∞ of finite permutations ↔ each marginal distribution Pn, n = 1, 2, . . . ,
is invariant under Sn.
The theorem is equivalent to Hausdorff’s characterisation of moment
sequences for probability measures on [0, 1].

Freedman’s (60’s) Thm: An infinite spherically symmetric (ISS)
sequence ξ = (ξ1, ξ2, . . . ) ∈ R∞ is a (unique) mixture of iid
N (0, σ2)-sequences.

Infinite spherical symmetry ↔ invariance of the distribution P of ξ under
the group O∞ of finite-dimensional orthogonal transformations.
The theorem is equivalent to Schoenberg’s characterisation of functions φ,
s.t. φ(x21 + · · ·+ x2n ) is positive definite for every n.
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Let ρn = ‖(ξ1, . . . , ξn)‖, and let Un,r be the uniform distribution on n-dim
sphere with radius r .

• ISS ↔ the conditional distribution (ξ1, . . . , ξn) | ρn = r is Un,r for all
n, r .

• Every ISS probability measure P is a unique convex mixture of
extreme ISS measures.

• A sequence rν (ν = 1, 2, . . . ) is called regular if Uν,rν ’s converge to
some P (in the sense of weak convergence of n-dim distributions).
Every extreme ISS P can be induced through a regular sequence.

• If P is extreme then Uν,ρν converge to P almost surely, that is ρν is
regular almost surely.

• Under ⊗N (0, σ2), a LLN holds: ρν ∼ σν1/2 a.s.

• The family ⊗N (0, σ2) depends continuously on σ.
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• Propagation of stochastic monotonicity: if Pν ,P
′
ν are spherically

symmetric in Rν and such that ρν under Pν is stochastically greater
than under P ′ν (i.e. EP [g(ρν)] ≥ EP′g(ρν) for every increasing g),
then the same is true for every ρn, n ≤ ν.

Equivalently: for a random point sampled uniformly from a sphere, the
bigger the sphere the bigger (stochastically) the projection.
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By a sandwich argument using the stochastic monotonicity:

• a sequence is regular iff rν ∼ σν1/2 for some σ ∈ [0,∞), in which
case the induced P is ⊗N (0, σ2).

Freedman’s Thm follows by noting that all measures ⊗N (0, σ2)’s are
disjoint for distinct σ.

Replacing the Euclidean distance in Rn by the Lp-distance leads to
mixtures of iid sequences with density c(λ)e−λ|x |

p
(Berman ’80).

To derive de Finetti’s Thm using this path, ‖(ξ1, . . . , ξn)‖ should be seen
as the Hamming distance to (0, . . . , 0), and the regularity condition
becomes rν ∼ p ν.

Applications of stochastic monotonicity to the boundary problem on
graded graphs appear in AG–Pitman (Stirling triangles), and Bufetov–VG
(Young lattice).
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Spaces of virtual permutations

Let fn : Sn → Sn−1 be n-to-1 projections (n > 1).
If fn(π) = σ, we say that π is an extension of σ, and that σ is the
projection of π.
Consider S∞, the projective limit of (Sn, fn)’s. Each π ∈ S∞ is a
(generalised) virtual permutation.
A random virtual permutation is a probability measure P on S∞, uniquely
determined by consistent marginal distributions, Pn−1 = fn(Pn).

Cardinal example: the uniform virtual permutation has distribution P∗

such that each marginal distribution P∗n uniform on Sn.
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• Endow each Sn with a metric, and let ‖πn‖ be the distance to the
identity in Sn. A probability measure P on S∞ is called infinitely
spherically symmetric if for every n the conditional distribution of πn
given ‖πn‖ = r is Un,r , that is uniform on the sphere in Sn of radius r .

To ensure that spherical symmetry is preserved under projections, the
metric should be compatible with projections in the following sense:
n = 1, 2, . . .

• the number of extensions #{π ∈ Sn : ‖π‖ = r , fn(π) = σ} only
depends on ‖σ‖,

which implies that fn(Un,r ) is a mixture of Un−1,•’s.

• A ISS virtual permutation P corresponds uniquely to a Markov chain
‖π1‖, ‖π2‖, . . ., which has backward transition probabilities
‖πn−1‖ ← ‖πn‖ same as under the uniform P∗.

• By the virtue of Doob’s h-transform this can be recast in terms of
harmonic functions for the Markov chain ‖π1‖, ‖π2‖, . . . under P∗.
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Metrics on Sn: Chritchlow (’85), Diaconis (’88). . . Which are consistent
with some projections?

There is a natural choice of projections for Hamming, Cayley and
Kendall-tau metrics.
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Hamming spherical symmetry

For the Hamming distance on Sn, ‖π‖ = n−F (π) ∈ {0, 2, 3, . . . , n}, where

F (π) = #{j ∈ [n] : π(j) = j}, π ∈ Sn

is the number of fixed points. A π ∈ Sn with ‖π‖ = n is a derangement.
A projection fn : Sn → Sn−1 compatible with the F -statistic is the
operation of deleting n from the cycle notation. For instance,
(13)(24) ∈ S4 has five extensions

(153)(24), (135)(24), (13)(254), (13)(245), (13)(24)(5).

With such fn’s, S∞ is the space of virtual permutations introduced by
Kerov-Olshanski-Vershik.

• Under ISS distribution P, π = (π1, π2, . . . ) has each πn conditionally
uniform given the number of fixed points F (πn).
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Permutations with many fixed points

Definition Fix α ∈ (0, 1] and apply the following rules to define a virtual
permutation Pα

• each n independently of other elements is singleton with probability
α, and non-singleton with probability 1− α,

• every singleton n is a fixed point in πν for ν ≥ n,

• the virtual permutation restricted to the set of nonsingleton elements
is distributed like under P∗, provided the nonsingleton elements are
enumerated in increasing order by N.

For α = 0 set P0 = P∗.
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Sequential construction of Pα (extended Dubins-Pitman Chinese
restaurant process):
Given πn with some k singletons, element n + 1 is singleton with
probability α, and with the same probability (1− α)/(n − k + 1) the
element is inserted in a cycle clockwise next to any of n − k nonsingleton
elements, or appended to πn as a cycle (n + 1).

Under Pα

• the probability of any permutation with k fixed points is

pn,k =
k∑

j=0

(
k

j

)
αj(1− α)n−j

1

(n − j)!

• F (πn)/n→ α almost surely.
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Paintbox construction of Pα: Split [0, 1] at point 1− α, then split
[0, 1− α] in subintervals by the iterated uniform stick-breaking. Sample
X1, . . . ,Xn iid from Uniform[0, 1]. If Xj > 1− α, integer j is a fixed point
of πn. Otherwise, integers i , j belong to the same cycle of πn iff Xi ,Xj

belong to the same partition interval within [0, 1− α].

Theorem Every Hamming-ISS virtual permutation P is a unique mixture
of Pα, α ∈ [0, 1].

A proof employs the propagation of stochastic monotonicity property and
the law of large numbers.

Example The uniform[0,1]-mixture over α yields

pn,k =
k!

(n + 1)!

k∑
j=0

1

j!

(probability of any permutation with F (πn) = k).
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Enumeration of Hamming spheres in Sn

The number of derangements in Sn is

dn = n!
n∑

j=0

(−1)j

j!

and the number of permutations with k fixed points is

Dn,k =

(
n

k

)
dn−k ,

satisfying a Pascal-type recursion

Dn,k = (n − k − 1)Dn−1,k + Dn−1,k−1 + (k + 1)Dn−1,k+1,

(with D1,0 = 0,D1,1 = 1).

Alexander Gnedin and Vadim Gorin Spherically Symmetric Random Permutations



Asymptotics of the Martin kernel

Every Hamming-ISS probability measure P is determined by a nonnegative
probability function (pn,k) that satisfies a dual backward recursion

pn,k = (n − k)pn+1,k + pn+1,k+1 + kpn+1,k+1, k ∈ {0, . . . , n − 2, n}

(where p1,1 = 1).
The extreme solutions can be obtained as limits of the Martin kernel

pν,κn,k =
Dν,κ
n,k

Dν,κ
,

where Dν,κ
n,k enumerates the number of extensions of fixed permutation

π ∈ Sn with F (π) = k to a permutation σ ∈ Sν with F (σ) = κ.
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The identification of extreme Hamming-ISS permutations is equivalent to:

Theorem The Martin kernel converges along the sequence κ = κν
(↔ κν is regular) iff κ ∼ αn for some α ∈ [0, 1], in which case the limit
corresponds to Pα.

A direct proof is possible via the recursion on pn,k and explicit formula

Dν,κ
n,0 =

(ν − n)!

κ!

ν−n−κ∑
m=0

(
n + m − 1

m

)
dν−n−m−κ

(ν − n − n − κ)!

The cycle partitions for Hamming-ISS permutation comprise Kingman’s
partition structure with ‘exchangeable partition probability function’ of the
form

p(n1, . . . , n`) = pn,k
∏̀
j=1

(nj − 1)!

where k is the number of 1’s in n1, . . . , n`.
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Kendall-tau spherical symmetry

The Kendall-tau distance between π, σ ∈ Sn is the number of discordant
positions i < j with

sgn(π(i)− π(j)) = −sgn(σ(i)− σ(j))

Then |π| coincides with the number of inversions

I (π) = #{(i , j) : 1 ≤ i < j ≤ n, π(i) > π(j)}.

This statistic is compatible with any of the following two projections
f ′n, f

′′
n : Sn → Sn−1. Writing π ∈ Sn in one-line notation:

(i) f ′n deletes the last entry π(n), and re-labels π(1), . . . , π(n − 1) by an
increasing bijection with [n − 1], e.g. 2, 5, 1, 4, 3→ 2, 4, 1, 3.

(ii) f ′′n deletes letter n from the online notation of π, e.g.
2, 5, 1, 4, 3→ 2, 1, 4, 3.
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Adopting projection f ′n, we encode virtual permutation π = (π1, π2, . . . )
into infinite Lehmer code π → (η1, η2, . . . ), where
ηn = #{j ∈ [n] : πn(j) > πn(n)}
For instance, 2, 5, 1, 4, 3↔ 0, 0, 2, 1, 2.
In these coordinates, S∞ is a product space, and I (πn) = η1 + · · ·+ ηn.
Under the uniform distribution P∗ the variables ηn are independent with ηn
distributed uniformly on {0, . . . , n − 1}.

Exponential tilting with parameter q does not affect the conditional
distributions (η1, . . . , ηn) | η1 + · · ·+ ηn = k, yields truncated geometric
distribution for ηn and the Mallows distribution on each Sn

Pq(πn) =
qI (πn)

nq!
,

where nq = (1− qn)/(1− q)
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• The law of large numbers: under Mallows distribution Pq, as n→∞

I (πn) ∼


q

1−qn, for 0 ≤ q < 1,
1
4n

2, for q = 1,(n
2

)
− q−1

1−q−1 n, for 1 < q ≤ ∞.

(Bhatnagar–Peled ’17 give finer asymptotics for Mallows(q) )

• The process of sums η1 + · · ·+ ηn, n = 1, 2, . . . with uniform ηj ’s has
the property of propagation of stochastic monotonicity.

Theorem Every Kendall-tau-ISS virtual permutation P is a mixture of
Mallows distributions Pq, q ∈ [0,∞].
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Mahonian numbers

Mn,k counts solutions to η1 + · · ·+ ηn = k with ηj ∈ {0, . . . , j − 1}
Mν,κ

n,k counts solutions to ηn+1 + · · ·+ ην = κ − k with ηj ∈ {0, . . . , j − 1}

Corollary The Martin kernel

pν,κn,k =
Mν,κ

n,k

Mn,k

converges as ν →∞ if either κ ∼ c ν, or κ ∼
(
ν
2

)
− c ν (for 0 ≤ c <∞),

or κ � ν and ν2

2 − κ � n. In the last case the limit is pn,k = 1/n!.
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Cayley spherical symmetry

Cayley distance on Sn is the minimal number of transpositions needed to
transform one permutation into another. Then ‖π‖ = n − C (π), with
C (π) the number of cycles of π ∈ Sn.
For the projections we choose fn (removing n from the cycle notation), so
S∞ is the Kerov-Vershik-Olshanski space of virtual permutations.

Then C (πn) =
∑n

j=1 βj , where βj is the indicator of πj(j) = j . Under P∗

the indicators are independent, with βj being Bernoulli(1/j), and the
exponential tilting yields Ewens distributions

Pθ(πn) =
θC(πn)

(θ)n
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The propagation of stochastic monotonicity for sums β1 + · · ·+ βn is
obvious, since βj ’s are two-valued. The regularity condition becomes
C (πn) ∼ θ log n.

Theorem (AG–Pitman ’05) Every Cayley-ISS virtual permutation is a
mixture of Ewens’ Pθ, θ ∈ [0,∞].
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